Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

白堊紀植物改朝換代,昆蟲們如何因應?問問嚼嚼花粉的琥珀甲蟲吧!

蕭昀_96
・2018/06/25 ・2513字 ・閱讀時間約 5 分鐘 ・SR值 568 ・九年級

白堊紀(Cretaceous),可說是被子植物的時代。被子植物從白堊紀早期開始適應輻射,其多樣性在此時期爆炸性的成長,到了白堊紀晚期時被子植物已成了陸地植群的主宰,許多現生的科群也已然誕生。而相較於「花花世界」的絢爛,在此之前的中生代前期則是裸子植物和蕨類植物的世界,陸地森林充滿了蘇鐵、本內蘇鐵、銀杏和松柏等植物。

植物這樣大規模的「改朝換代」如何影響與其共生的昆蟲們呢?透過琥珀化石,我們可能得到了一點線索。

中生代的森林充滿了高大的裸子植物。 圖/12019 @Pixabay

來自白堊紀的琥珀化石:馬氏達爾文擬天牛

在西班牙北部的巴斯克─坎塔布連盆地,可以找到出產自白堊紀時期的琥珀化石,其年代估計約在 1.05 億年前,比近年在古昆蟲學界相當夯的緬甸琥珀估計為 9900 萬年前來得更早。2017 年一篇刊載於《支序分類學》(Cladistics)的論文中,揭露了一塊特別的巴斯克─坎塔布連盆地甲蟲琥珀化石:這隻甲蟲的周圍佈滿了花粉(甚至有一些還附在蟲體身上)。學者推測,這位苦主當時正在大口嚼著花粉餐,卻在吃得滿嘴都是時,倒楣地被樹脂給包埋,成為了時空凝結的可憐蟲。

被包埋在琥珀中的甲蟲苦主。研究人員們認為這隻甲蟲是在取食花粉時被包覆進樹脂,由於蟲體掙扎和樹脂流動而使花粉脫離身體,其右圖綠色箭頭方向為樹脂的流向,可看出花粉漸漸散開呈現一圓錐狀。 圖/原始論文

透過比較形態學,研究人員認為這隻甲蟲隸屬於擬天牛科(Oedemeridae),是本科最古老的化石紀錄。本種被命名為馬氏達爾文擬天牛(Darwinylus marcosi Peris),其屬名字首以達爾文命名,種小名則紀念作者的兒子馬可仕。擬天牛科為小、中小型甲蟲,軀體、足部修長而身體柔軟,觸角細長,前胸背板前寬後窄;成蟲白日會出現在花或葉面上,喜訪花取食花粉;部分類群像是芫菁會分泌毒素芫菁素(Cantharidin) 接觸到肌膚會造成起水泡、潰爛。

-----廣告,請繼續往下閱讀-----
現生的擬天牛喜訪花,很容易在花間觀察到。圖/Pollinator [CC BY SA-3.0] via wikipedia

白堊紀有哪些昆蟲幫裸子植物授粉?

研究人員更進一步對這個化石物種的形態和古生物學角度的剖析,探討其演化意義。2017 年稍晚,同篇文章作者領頭的研究團隊在《當代生物學》(Current Biology)再次發表了針對馬氏達爾文擬天牛的古生物學研究,探討訪花甲蟲與裸子植物間的授粉關係及演化歷史。

這次,研究團隊先確認了「這些花粉是否真的是屬於裸子植物的?」。透過植物孢粉化石的研究和微細結構的比對,這些花粉被認為屬於單槽粉屬(Monosulcites)(下圖),雖然單槽粉屬實際上除了包含各種不同的中生代裸子植物的花粉,在一些少數的例子裏,有一些被子植物的花粉也被歸類到單槽粉屬,然而由於這些被子植物單槽粉屬的化石在年代上均是新生代,因此研究團隊確認該琥珀化石中的這些花粉應是屬於裸子植物的花粉。

琥珀中的花粉屬於單槽粉屬(Monosulcites)。 圖/原始論文

在確認包裹馬氏達爾文擬天牛的的確是裸子植物的花粉後,文章作者接著探討達爾文擬天牛屬與裸子植物間的交互關係。

在此之前,與中生代裸子植物授粉有關的昆蟲依口器和取食方式分為三類:

-----廣告,請繼續往下閱讀-----
  • 透過吸管狀的長喙吸食裸子植物的授粉滴(Pollination Drops),這類昆蟲包括了:雙翅目張氏擬樹虻科 (Zhangsolvidae)的華麗喇叭虻(Buccinatormyia magnifica)、脈翅目麗蛉科(Kalligrammatidae)的猛暴麗蛉(Kallihemerobius feroculus) 和 艷麗中生脈翅蛉(Meioneurites spectabilis)。
  • 利用唇瓣舔吸授粉滴的雙翅目昆蟲,如:帕洛蠅屬(Paroikus)。
  • 使用口錐對植物體進行銼吸的纓翅目食孢薊馬科(Merothripidae)裸子粉授薊馬屬 (Gymnopollisthrips),包含大裸子粉授薊馬(G. maior)和小裸子粉授薊馬(G. minor)。

透過形態觀察,研究人員發現馬氏達爾文擬天牛的口器屬於咀嚼式口器;這點與原先的三種分類不同,卻與現生的擬天牛一樣:利用強壯的大顎啃食花粉。因而亦可能扮演著協助傳播花粉的角色,進而被認為是第四種中生代裸子植物的授粉形式。

馬氏達爾文擬天牛(Darwinylus marcosi Peris, 2016)的古生態學復原圖,其體表佈滿了裸子植物的花粉。 圖/原始論文。

植物大規模改朝換代,活下去或是我跟你走?

然而現生的擬天牛科成員常見於被子植物的花叢間,與裸子植物沒有明顯的伴生關係。那麼,又是什麼讓我遇見這樣的你?

白堊紀中期,有段全球性震盪期被稱為阿普第─阿爾布間斷期(Aptian-Albian gap),約在 1.25 億到 9 千萬年前。從化石紀錄來看,這段期間中原本優勢的裸子植物多樣性驟降,而被子植物則漸漸興盛,可謂改朝換代。此時站在命運交叉點的裸子植物伴生昆蟲們當然也面臨了生存挑戰,某些類群出現了新的策略,當然也有一些維持原來的生存方式,迎來了不同的結局和未來 (如下圖)。

某些昆蟲的類群因此在演化的歷史上滅絕,如:張氏擬樹虻;另一些昆蟲則繼續維持與裸子植物的伴生關係、存續至今,如現在還存在的食孢薊馬。當然,還有另外一些昆蟲的寄生對象則由裸子植物轉移到被子植物。如今在花間依然常見的擬天牛,由這次的琥珀化石暗示我們的,很可能就是成功由裸子植物拓殖到被子植物,度過嚴峻考驗、從此生生不息綿延昌盛的好例子。

-----廣告,請繼續往下閱讀-----
歷經裸子植物多樣性急遽下降,而被子植物則漸漸興盛的阿普第─阿爾布間斷期,與裸子植物伴生昆蟲們面臨了生存上的考驗,迎來了各式各樣的結局。 圖/原始論文

論文連結:





-----廣告,請繼續往下閱讀-----
文章難易度
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

0

17
4

文字

分享

0
17
4
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
0

文字

分享

0
6
0
草莓是果實還是種子?又或者……以上皆非?——「112年會考自然科考題」
椀濘_96
・2023/09/22 ・858字 ・閱讀時間約 1 分鐘

112 會考甫結束,自然考科中有題非常令人印象深刻……。

自然科第 35 題。圖/國立臺灣師範大學心理與教育測驗研究發展中心

原來我們吃的草莓不是以為的「果實」,那個紅紅的果肉是其實是草莓的花托,而上面黑色的點點也不是「種子」,而是果實本人!至於真正的種子呢?當然是在那些黑黑的果實裡啦~

這似乎顛覆我們的印象,以為日常生活中所吃的水果果肉就是植物的果實,究竟這當中又藏著什麼奧秘呢?若想進一步完整理解草莓,就得從果實的構造及分類說起。

果實為被子植物的生殖器官之一,當雌蕊中的胚珠完成受精作用後,子房便逐漸發育為果實,胚珠則發育成種子。有些植物的花托、苞片、花萼等構造會與子房外壁癒合,並隨之生長而膨大,成為果實的一部分;例如這次的主角——草莓。

-----廣告,請繼續往下閱讀-----

接著我們談談果實的分類。可依據發育、構造、型態的不同,分為:橘子的「柑果」、水蜜桃為「核果」、杏仁屬於「堅果」等等,至於草莓則被歸類在「瘦果」及「聚合果」。

花的解剖構造。圖/維基百科

現在我們要先將草莓紅紅的果肉剔除,只剩下單獨一粒粒黑黑小小的果實。「瘦果」(achene)顧名思義,型態硬而細小,其內僅有一粒種子,除了草莓外,常見的如愛玉子、向日葵的瓜子。

屬於「聚合果」(又稱「聚心皮果」,為複合果實的一種)的植物則是一朵花中有多個(兩個以上)離生的雌蕊,花的萼片(花萼)、花托一同參與了果實的發育,最終膨大癒合形成肉質果肉;另外,其果實被分類在聚合果的植物,常見的有釋迦、覆盆莓。

其實除了草莓還有許多我們意想不到,所吃的水果果肉並非單單只有果實本人,例如鳳梨、桑葚、香蕉、無花果……等等;它們也都和草莓一樣,由於果實發育的方式,所造就了如此特別、豐富型態,等著我們一一去認識!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)