0

0
0

文字

分享

0
0
0

外星生命可能存在嗎?真的碰到又該如何面對呢?

陳柏成 (Po Cheng Chen)
・2018/06/01 ・2607字 ・閱讀時間約 5 分鐘 ・SR值 595 ・九年級

自古以來,人類對外星生命一直存有各種猜測與想像。例如史蒂芬 ‧ 史匹柏(Steven Spielberg)於 1982 年所執導的科幻電影《E.T. the Extra-Terrestrial》,就勾勒了一個人類對外星人的美好想像。

ET 與小男孩之間的真誠友情,是人類對外星生命的美好想像。 圖/《E.T. the Extra-Terrestrial》劇照。 via IMDb

然而,縱使有研究推論[1],外星人可能比我們所想像的更近於人類外貌,但實際上若真有外星生命,他/牠會以什麼樣的形式存在,仍是未知,科學家也還持續進行著相關研究。

首先我們須認知到,外星生命(Extraterrestrial life)並非只涵蓋擁有高度智慧的外星人;實際上任何存在於地球外的生命體,皆可稱之為外星生命。關於這方面的研究,目前天體生物學(Astrobiology)即為主要代表,該領域研究核心在於探討地球及地球外,生命的可能起源與演化。

嗜極生物與外星生命

目前學界已知,對地球上的大多數生物來說地球外皆屬極端環境,因此若存在外星生命,該生命形式定有一定程度的近似於地球的,「嗜極生物(extremophile)」。因此,目前科學家探尋外星生命的方式是,分析地球上不同種類的嗜極生物,並將其所處的環境與外星星球比較,來推測外星生命存在的可能性。

那麼地球上究竟有哪些嗜極生物?舉例來說,Desulforudis audaxviator 就是一種很強悍的細菌。這種生存於地底下 2.8 公里處的生物,又被稱為「無畏的旅行者」(the bold traveller),主要以周圍岩石中衰變的鈾為養分來源[2][3],並且透過溶解態二氧化碳及周圍岩石獲取碳及氮元素維生(這兩者為構成已知生命的所需物質,也可用於製造蛋白質及胺基酸)。

於電子顯微鏡下觀察到的 Desulforudis audaxviator 外貌。  圖/Chivian, D. et al. 2008 via wikipedia

另一個有趣的例子是水熊(water bear)[4]。水熊是一種多細胞生物,且體積十分細小,是目前已知唯一可存活在太空中的動物。[5] 2007 年,瑞典的克里斯蒂安斯塔德大學(Kristianstad University)為確認水熊的能耐,選擇了兩種水熊 Richtersiu coronifer  以及 Milnesium tardigradums 作為實驗對象,並將牠們放入歐洲太空總署(ESA)參與的 FOTON-M3 太空任務發射之太空梭中,觀察水熊在經歷 10 天暴露在極端環境下(低溫、真空、高輻射),究竟能否生存。

別看水熊(Water bears)肥肥短短的就覺得牠一定蠢萌蠢萌,牠可是目前已知唯一可存活在太空中的動物。 圖/New Scientist

結果顯示,有些水熊竟然可以幾乎不受影響的存活著並進行排卵。這不禁讓科學家進一步思考,生物依靠星際旅行在宇宙中不同地方存在的可能性。事實上,關於這方面的假說稱為「泛種論(Panspermia)」[6]。泛種論的核心概念為宇宙中的生命體,可透由某種運輸機制,達到不同地方,並在適宜的條件下繼續生存與繁衍。可以想見的是,能滿足該假說的生命形式,須能適應一定程度的「艱難」條件,才能在宇宙中的運輸過程裡倖存,這也是為何天體生物學家們如此重視嗜極生物的原因。因為透過對這些生物的觀察,我們才有機會更進一步了解生命存在的可能樣貌,並幫助我們探索外星生命的生存環境。

如何面對外星生命?

那麼,若外星生命真存在於這宇宙中,我們應該用何種心態面對?事實上,這仍是學界持續爭辯的熱門議題。近日離開人世的黑洞大師史帝芬霍金(Stephen Hawking)便曾於探索頻道(Discovery Channel)提及對於人類接觸外星生命的憂慮[7],他擔心的出發點在於:回顧人類自身歷史不難發現,過去不同族群間的接觸,都曾因侵略、殖民付出慘痛代價。而我們若接觸外星生命,極有可能成為被外星人殖民的一方。不過,也有人認為這種想法錯了,例如 Scientific American 的專欄作家 Michael Shermer 即認為,高度文明的外星社會或許早已達到不需藉由剝削、殖民來獲取資源的地步[8]。

物理學家史蒂芬霍金對接觸外星生命的憂慮,來自於人類歷史上各民族間互相剝削侵略的慘痛教訓。 圖/wikipedia

然而,這些爭論都奠基於具有高度智慧的外星生命之上。如先前所述,我們目前所能發現的外星生命,較有可能類似於地球上的嗜極生物,而我們尋找外星生命的方式,也還是由我們已知生命的生存條件來搜索。事實上,有學者曾表示,這種以人類為中心來想像外星生命生存形式的思維,過度限制了我們尋找外星生命可能方向[9][10]。我們也必須坦承,目前人類確實無法驗證那些相異於地球生物的生存型態,是否確實生存於宇宙之中。

也因此,最務實的方式,或許還是先回歸最基本的問題:我們能在別的星球找到像我們一樣的生命體嗎?又或是,別的星球是否曾經存在像我們一樣的生命體?如果有,他/牠們會和我們有多像?我們是否有機會移居到那些星球?這些都是非常有意思的問題,也有助於我們探索生命最根本的起源。XGENEVE

參考資料:

  1. University of Oxford. (2017). Aliens may be more like us than we think.
  2. Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal, P. S., DeSantis, T. Z., … & Moser, D. P. (2008). Environmental genomics reveals a single-species ecosystem deep within Earth. Science, 322(5899), 275-278.
  3. Catherine Brahic. (2008). Goldmine bug DNA may be key to alien life. New Scientist
  4. 曾文宣. (2015). 整個世界都是我的裝備庫!來看看地表最強的水熊秘訣. 泛科學
  5. Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, M., & Rettberg, P. (2008). Tardigrades survive exposure to space in low Earth orbit. Current biology, 18(17), R729-R731.
  6. Kamminga, H. (1982). Life from space—a history of panspermia. Vistas in Astronomy, 26, 67-86.
  7. Into the Univrse with stephen hawking. Discovery Channel.
  8. Michael Shermer.(2011) Why Stephen Hawking is wrong about extraterrestrial intelligences.
  9. David Darling. Carbon-based life.
  10. Carbon chauvinism. Wikipedia





文章難易度
陳柏成 (Po Cheng Chen)
12 篇文章 ・ 5 位粉絲
熱愛自然科學,曾擔任PanSci實習編輯,現於美國夏威夷大學就讀博士班。如有任何問題,歡迎來信:consciencecpc@gmail.com

0

8
2

文字

分享

0
8
2
水熊蟲真的能跟量子位元「量子糾纏」嗎?
linjunJR_96
・2022/01/20 ・2131字 ・閱讀時間約 4 分鐘

身形嬌小的水熊號稱地表最強生物,能夠透過獨特的「隱生」能力在最極端的環境下存活。這種狀態有點類似冬眠,遇見不利生存的條件時將所有代謝活動停止。

近期,有一國際研究團隊宣稱這種生物還有另一種出乎意料的能耐:和超導量子位元進行量子糾纏。用生物體做量子糾纏可是前所未聞,讓大家都嚇壞了。不過這個實驗究竟做出了什麼結果,讓作者可以做出這種宣稱?科學家沒事又為什麼要去抓水熊來糾纏呢?

掃描式電子顯微鏡下的水熊成蟲。圖/EOL

什麼是量子糾纏?

量子糾纏是量子力學獨有的一種描述,至於實際上到底是在「糾纏」什麼,可以參考先前這篇文章[2]

儘管名字聽起來很神祕,但量子糾纏並不只存在於科幻電影和內容農場,現今在實驗室中造出糾纏的粒子對早已是稀鬆平常的技術。量子計算和量子傳送等應用領域就是以糾纏作為基礎發展至今。

雖然這樣說,但利用糾纏粒子將物品或人類在星際間傳送的夢想可能還得再等等。因為目前能夠成功被「糾纏」的都是個別的金屬離子、奈米大小的粒子、和鑽石結晶這類易於控制,結構簡單的微小目標物。

相對於這些乾淨整齊的系統,生物體的結構可說是極為雜亂複雜,難以成為量子實驗的對象。

此外,為了減少物質本身熱能所帶來的振動影響,糾纏的實驗程序時常需要在接近絕對零度的低溫環境下進行。在這種溫度下不只生命無法延續,許多物質的特性也都已經改變。

因此,儘管實驗方面已經發展許久,要對活生生的生物進行量子糾纏仍是相當遙遠的目標。對量子力學來說,整個生物世界太亂又太熱,完全不會想靠近一步。正因如此,這篇拿水熊做實驗的文章才引起了大家的關注。

水熊和超導量子位元的糾纏

水熊一般只有幾百微米大,算是「巨觀」生物中相對微小的種類,要做量子實驗的話較好下手;更重要的是水熊能夠以隱生狀態度過嚴苛的實驗環境,爾後再重新恢復活力,如此一來要是成功便也算是對生物體進行量子糾纏了。

實驗團隊於是將一隻水熊放到了絕對溫標 0.01 度(也就是只比絕對零度高 0.01 度),同時接近真空的環境中,在此和兩個超導量子位元進行實驗。他們將水熊放入其中一個量子位元零件中,並觀察到位元的共振頻率產生改變。接著他們用常見的量子計算程序將兩個位元進行糾纏,並測試糾纏結果。

根據測試的結果,作者宣稱水熊和兩個量子位元形成了三個位元的組合態。也就是說,水熊在這裡變成了第三個等效的量子位元,和另外兩個超導位元糾纏在一起!實驗結束後,水熊周遭的溫度和壓力被緩慢恢復至適合生存的範圍,最後重新開始代謝活動。

作者宣布他們突破了以往的實驗限制,打開了通往量子生物學的大門,並以「水熊和超導量子位元的糾纏」為題,將文章的預印版放上了 arXiv 網站,引起科學界一片譁然。

圖/GIPHY

等等,這其實不用量子力學也能解釋

雖然實驗相當有趣,媒體也爭相報導,但是許多物理學家認為這份研究的標題過為聳動,突破性恐怕也是過於誇大。

超導量子位元其實跟一般電子零件一樣,裡面有電容、電感等等基本單元所組成的電路;而接近絕對零度的水熊,基本上能當成一小團冰塊。

實驗團隊將冰塊放到電容裡面,會改變它的共振頻率等特性其實不足為奇。如果電容裡面掉進了一些灰塵,其電路性質也會受到類似的影響。

不論零件中放入冰塊,灰塵,還是螞蟻,這些影響都是「傳統」的電磁學可以描述的,並非量子現象。

也就是說,作者宣稱的「整隻水熊做為一個量子位元進入了量子糾纏態」這個解讀不只言過其實,甚至有誤導之嫌。這篇文章目前還未投稿至期刊,因此沒有經歷同行科學家的審查,還不算是夠格的科學實驗結果。

關於這份研究有哪些方面需要改進,目前仍是備受爭辯的有趣問題。不過有件事是大部分人都同意的,那就是這次實驗再度刷新了水熊生存能力的極限。或許將來某天,水熊的隱生能力真的能成為生物世界和量子物理之間的橋樑。不過就目前而言,好奇心滿點的物理學家得再更努力些。

編按:該如何驗證量子糾纏,可以參考〈驗證量子纏結的貝爾不等式 │ 科學史上的今天:06/28〉,此論文的主要問題是不能藉由實驗設計,來確認三者共振頻率改變是源自於量子糾纏。

參考資料

  1. 看過「水熊蟲」走路嗎?——牠的步態與 50 萬倍大的昆蟲很相似!
  2. 照出黑洞不算什麼,科學家連量子纏結都能拍到!?
  3. 水熊和超導量子位元的糾纏(原文)
linjunJR_96
31 篇文章 ・ 533 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

6
0

文字

分享

0
6
0
人腦是個很棒的東西!它是殘酷天擇的驚奇產物——《生命之鑰:一場對生命奧祕的美麗探索 》
三采文化集團_96
・2021/12/05 ・2401字 ・閱讀時間約 5 分鐘

  • 作者 / 保羅.納斯爵士(Sir Paul Nurse)
  • 譯者 / 邱佳皇

編按:筆者是知名遺傳學家和細胞生物學家,致力於控制細胞複製的研究工作,也就是所有生物生長和發展的基礎。於 2001 年獲頒諾貝爾生理學/醫學獎(Nobel Prize in Physiology or Medicine),同時也是阿爾伯特.愛因斯坦世界科學獎、拉斯克獎與皇家學會科普利獎章的獲獎者。

在本書中,保羅.納斯用優美、詼諧的語調幫讀者上了一堂生物學簡史,引領我們思考科學家長久以來追尋的生命之謎,讓讀者彷彿身歷其境、穿梭在各個時代的實驗室裡,感受那些科學發現過程的挫敗和欣喜。並除了學術理解,更希望帶給讀者哲學性的思考能力。

天擇殘酷的篩選過程創造了許多意想不到的事情,其中最令人驚奇的就是創造了人類的大腦。據我們目前所知,沒有其他生物和人類一樣能意識到自己的存在,人類的自我意識一定也經過了演化,至少是部分經過演化,讓我們更懂得在這個世界發生變化時調整自己的行為。人類和蝴蝶不同,或許也和我們已知的所有生物都不同,人類能刻意去選擇和對激勵我們的目標進行深思。

人腦和所有其他生物一樣都是基於同樣的化學和物理學所演化出來的,然而,出於某些不明的原因,人腦卻能從同樣簡單的分子以及諸多常見的運作力當中,生出複雜的能力。這一切是如何從人腦的液態古典化學發展出來的?我們眼前有一堆困難的問題需要解決。我們知道人類的神經系統是基於數十億個神經細胞(也稱「神經元」)之間極為複雜的互動組成,這些神經元之間彼此有數兆的連結,稱為突觸。這些極為精密和經常變化且相互連結的神經元網絡會建立訊息傳遞路徑,傳遞和處理大量的電子訊息流。

脊椎動物腦的主要解剖結構,此處將鯊魚和人的腦相比較,基本的部分都可以一一對應,但是形狀和尺寸有巨大的不同。圖/WIKIPEDIA

就如生物界的常例,我們一樣是透過研究較為簡單的生物,像是蠕蟲、蒼蠅和老鼠才知道這些過程。透過神經系統的感覺器官,我們才知道這些系統是如何從環境中收集訊息的。研究人員追踪了視覺、聽覺、觸覺、嗅覺和味覺信號通過神經系統的活動,同時標示出神經元的一些連結,這些連結會形成記憶、產生感情回應,並創造出像是收縮肌肉等外在行為。

果蠅Drosophila)作為基因對腦發育影響的研究對象,已經得到了深入的研究。圖/WIKIPEDIA

這些運作都很重要,但這些都只是開始。數十億個獨立神經元之間的互動是如何產生抽象的思想、自我意識和明顯的自由意志?對於這些問題的答案我們只觸及了皮毛,想找到令人滿意的答案,我們可能需要整個世紀甚至更久的時間,而我不認為只依賴傳統自然科學就能達成這個目標。

我們將必須更廣泛接受來自心理學、哲學和人文學的見解。電腦科學也能有所幫助,今天我們打造了一個最強大的人工智慧電腦程式,以高度簡化的形式模仿生物的神經網絡處理訊息的方式,這些電腦系統都有令人佩服且愈發強大的數據處理功能,但卻完全無法模仿人類抽象或想像的思考模式與自我察覺的能力或自我意識,就連要定義這些心理特質都非常困難。

現在,我們可以借助小說家、詩人或藝術家的協助,請他們貢獻創意,以更清楚的方式描述人類的心理狀態,或是去質問「活著」到底是指什麼意思。如果我們能在人文學和科學上擁有更加共通的語言,或至少是更多共享的知識能討論這些現象的話,或許更能了解演化如何和為何會讓我們以化學和訊息系統發展,而這個系統又出於某種原因,變成能意識到自己存在的實體。我們必須竭盡自己的想像力和創造力,才有可能了解這些力量可能帶來的結果。

宇宙之大超越我們想像,根據機率法則,似乎很難想像在這麼漫長的時間和廣大的空間中,生命─更何況是有感知能力的生命─只在地球上萌發過一次。我們是否會遇見外星生命是一個完全不同的議題,但假如我們真的遇到,我相信外星生命肯定也像人類一樣,是能自給自足的化學和物理機器,由訊息編碼合成的聚合物打造而成,而且同樣是透過天擇演化。

银河系, 暗星云, 宇宙, 天空, 日本
銀河系裡就有一千億顆行星,這還沒算上其他更遠的星系,也許宇宙的某個角落裡,也有著生機蓬勃的生命。圖/Pixabay

地球是我們唯一確定宇宙中有生命的星球。地球上包括人類在內的生命都非常卓越出色,這些生命經常令我們驚奇,儘管其多樣性令人困惑,科學家們還是努力理出了頭緒,我們對地球上生命的了解,也成為我們文化和文明發展的基礎。我們對生命日益增加的了解,很有可能可以改善全體人類的生活,但擁有這樣知識的助益遠不止於此。

透過生物學我們知道所有生物都是彼此相連且緊密互動的,人類與其他生物息息相關,包括本書談論到的所有生物都是,像是爬行的昆蟲、感染的細菌、發酵的酵母、擁有好奇心的大猩猩和飛舞的黃色蝴蝶,當然還包括這個生物圈的所有成員。這些物種都是生命的佼佼者,是一個龐大家族譜系所延續下來的最新後代,這個大家族透過細胞分裂綿延相連到遠古的時光裡。

就我們所知,人類是唯一了解這樣深遠的連結,並且能去思考這有什麼意義的生物,因此我們對這個地球上的生物有一個特殊的責任,雖然有些生物和我們關係近,有些關係遠,但我們都必須去關心、照顧並盡可能地了解這些生物。

──本文摘自三采文化《生命之鑰:諾貝爾獎得主親撰 一場對生命奧祕的美麗探索》/ 保羅.納斯爵士,2021 年 12 月,三采

三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

7
2

文字

分享

0
7
2
天文學未來 10 年的 3 大目標:探索適居行星、動態宇宙與星系演化—— Astro2020 報告
EASY天文地科小站_96
・2021/11/26 ・3393字 ・閱讀時間約 7 分鐘

  • 作者/林彥興|EASY 總編輯,現就讀清大天文所,努力在陰溝中仰望繁星

經過三年的漫長等待,Astro2020 終於在台灣時間 11/5 凌晨公布了結果報告。這場十年一次的大型天文會議,產出了一份 600 多頁的報告書,對美國國家天文發展策略提出建議。這份報告,將影響未來數十年美國乃至於全世界的天文物理發展。

圖/NASA/ESA; NSF/LIGO/Sonoma State University/A. Simonnet; Illustris Collaboration; NASA Goddard; NASA/JPL-Caltech; NASA/Ames/JPL-Caltech

這項「十年調查」為何至關重要?

Astro2020 的全稱為「天文學和天體物理學十年調查 Decadal Survey on Astronomy and Astrophysics 2020」。正如其名,這是美國國家學院大約每十年會召開一次的超大型會議。會中將蒐集來自各方天文學家的觀點,回顧過去十年間天文物理的重大突破,鎖定未來十年美國最應該優先投資的研究領域,並且研擬達成這些科學目標所需要的方法與技術,最終將這一連串的構想整理後,向政府機構(如 NASA、NSF)提出建議,成為它們規劃預算的重要參考。換言之,這場會議將會左右未來十年數十億甚至上百億美金的預算分配,重要性可想而知。

Decadal Survey 的歷史相當悠久,第一屆舉辦於 1964 年,之後大約每隔十年開一次,一路進行到今天。歷史上多個重要的天文計畫,比如:

  • 甚大天線陣列 VLA(1960s / 1970s):著名的美國無線電陣列望遠鏡。
  • 哈伯太空望遠鏡 HST(1970s):NASA 的大型軌道天文台(Great Observatories)之一,無人不知的光學太空望遠鏡。
  • 錢卓 X 射線太空望遠鏡 Chandra(1980s):大型軌道天文台之一,軌道上最頂級的 X 射線天文台之一。
  • 史匹哲太空望遠鏡 Spitzer(1990s):大型軌道天文台之一,觀測中紅外線波段的太空望遠鏡。
  • ALMA(2000s):當代最頂尖的次毫米波陣列望遠鏡。
  • 韋伯太空望遠鏡 JWST(2000s):即將於今年底升空,新一代的旗艦級紅外線望遠鏡。
  • 羅曼太空望遠鏡 Roman(2010s):下一代近紅外太空望遠鏡,在不犧牲解析度的前提下,擁有比哈伯大 100 倍的視野。
  • 薇拉.魯賓天文台 Rubin(2010s):預計兩年內落成的革命性巡天望遠鏡。

它們都曾是 Decadal Survey 推薦優先執行的重要計畫。

JWST(左)與 Roman(右)太空望遠鏡分別是 2000 年與 2010 年 Decadal Survey 推薦優先執行的太空望遠鏡任務,它們預計將在 2020 年代的天文觀測中扮演重要的角色。由此也可以看到,Decadal Survey 所推薦的大型旗艦計畫,往往需要十多年甚至二十年以上的時間才能發展成熟。圖/NASA GSFC/CIL/Adriana Manrique Gutierrez|GSFC/SVS

天文學未來 10 年的 3 大目標

Astro2020 提出,2020 年代天文物理的三個優先領域分別是:

  1. 通往適居世界之路 Pathways to Habitable Worlds
    以高對比度(high contrast)的探索系外行星與其中可能存在的生命跡象。
  2. 動態宇宙的新窗口 New Windows on the Dynamic Universe
    以重力波、微中子等多個資訊信使研究超新星爆炸、中子星合併等劇烈事件。
  3. 揭密星系演化推手 Unveiling the Drivers of Galaxy Growth
    研究宇宙一百多億年來的星系演化。

綜合上述三個領域的需求之後,Astro2020 提出未來美國應該優先投資的幾項重大計畫分別如下。

首先,Astro2020 對太空望遠鏡計畫的建議可能是最令人驚喜的。報告建議,美國應該啟動一系列「大型軌道天文台技術成熟計畫 Great Observatories Mission and Technology Maturation Program」,為 20 至 30 年後天文物理需要的天文台計畫鋪路。

其中最高優先度的計畫,是建造一座六米級的光學(從紫外線到近紅外線)望遠鏡,預計成本 110 億美元。從觀測的波段來看,它可以看成是現役哈伯太空望遠鏡的超級強化版;又或者,從 NASA 在 2019 年提供的四座「The New Great Observatories」概念研究來看,可以看成是縮小版的 LUVOIR-B,或是增強版的 HabEx。

Astro2020 認為,這樣的規格才有機會同時讓望遠鏡有辦法達成前述三大優先領域的需求(尤其是直接拍攝類似太陽-地球系統的系外行星大氣光譜),且有希望在 2040 年代前期升空。另外兩個應當在 2020 年代後半開始發展的計畫,分別是下一代 X 射線與遠紅外線的任務(分別可以看成 Lynx 和 Origin 的縮小版)。

LUVOIR-B 概念圖。Astro2020 推薦優先發展的下一代旗艦太空望遠鏡可能與此相似。圖/NASA GSFC

在地面望遠鏡方面,當務之急是繼續興建美國的兩座下一代巨型望遠鏡:三十米望遠鏡(TMT)與巨型麥哲倫望遠鏡(GMT)。在使用自適應光學的情況下,這個等級的望遠鏡將能達到 0.01 – 0.02 角秒等級的超高解析度,龐大的集光面積也將使它們能夠擁有非常高的靈敏度(sensitivity)。這樣的能力幾乎對天文物理的所有領域都能有革命性的幫助,比如它將能夠偵測、拍攝、甚至取得類地行星的大氣光譜。

但是,相比起另一個類似定位的歐洲計畫「歐洲極大望遠鏡 EELT」,GMT 與 TMT 的進度目前都嚴重落後。尤其原定要建造在夏威夷的 TMT,因為與當地原住民的衝突,自 2015 年開始就難以施工。Astro2020 建議,政府應該提供更多援助,幫忙解決兩個計畫預算不足的情況。但如果兩個計畫進度持續落後,Astro2020 也提供一套標準讓政府決定是否要放棄其中之一。

TMT 與 GMT。圖/USELTP/NOIRLab/TMT/GMT/NSF/AURA

除了光學之外,報告也建議在智利與南極建立下一代的微波望遠鏡,在宇宙微波背景(CMB)中尋找暴漲等宇宙學事件的證據,並且能夠提供前所未有的大面積、高靈敏度次毫米波天圖。下一代的甚大陣列望遠鏡(ngVLA)的先期研究也是重點之一,為其在 2030 年代的建造鋪路。此外下一代微中子探測器(IceCube-2)、重力波探測器(LIGO)等中等大小的計畫也要持續推進。

位於南極的 IceCube 微中子偵測器,是了解宇宙中高能事件的重要窗口之一。圖/Felipe Pedreros, IceCube/NSF

讓天文研究者更平等,也是重要議題

除了上述科學/科技相關的主題之外,Astro2020 也是 Decadal Survey 首次提到天文物理領域中存在的性別/種族等社會與倫理問題,以及許多對於「人」相關的建議。

報告中強調了美國天文學界的性別/種族倫理問題依舊嚴重,並且建議應將多元性納入獎項的評審機制,增加對學生、新進研究人員的資源投注,以及強化對各種不平等現象的資料收集,以更準確的將資源提供給需要的人。最後,報告也指出 Starlink、5G 等人類活動對天文研究產生的干擾。

Starlink 衛星群通過望遠鏡的視野中。這對天文觀測,尤其是對大面積的光譜巡天(Spectral Survey)會產生巨大的干擾。圖/ CTIO, NOIRLab, NSF, AURA and DECam DELVE Survey

結語

Decadal Survey 是美國天文物理界十年一遇的盛事。它回顧過去十年的天文物理成果,並為未來十年的發展劃下藍圖。Astro2020 建議,美國應該繼續建造兩座三十米級的地面光學望遠鏡(TMT、GMT),讓它們能在 2030 年代投入觀測。並且為 2040 年代的六米級大型光學太空望遠鏡的開發鋪路。除了科學與科技上的規劃,報告也指出天文物理界仍存在許多性別、種族等與「人」相關的問題有待改善。

整體來說,Astro2020 為 2020 年代的天文物理描述了令人興奮的未來。接下來,就讓我們一同期待,這些斑斕的夢是否能夠成為現實吧!

參考資料

  1. Interactive Overview: Pathways to Discovery in Astronomy and Astrophysics for the 2020s
  2. Astro2020 Science White Papers · Bulletin of the AAS
  3. The New Great Observatories
  4. US astronomy’s 10-year plan is super-ambitious
  5. Influential U.S. astronomy wish list calls for giant space telescope to spot an Earth analog

延伸閱讀

  1. 出事了哈伯!細數哈伯太空望遠鏡31 年來的維修升級史- PanSci 泛科學
  2. 百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」 – PanSci 泛科學
  3. 為何NASA 不惜大撒幣也要把它送上太空?——認識韋伯太空望遠鏡(一) – PanSci 泛科學
  4. 史上最大口徑的JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二) – PanSci 泛科學
  5. 太空巨獸JWST 升空後的150 萬里長征—— 認識韋伯太空望遠鏡(三) – PanSci 泛科學
  6. 淺談JWST 的科學意義:探索宇宙深處與塵埃後的外星世界!——認識韋伯太空望遠鏡(四) – PanSci 泛科學
  7. 放眼系外行星的新一代望遠鏡:HabEx太空望遠鏡
  8. 天文學家的野望LYNX X射線太空望遠鏡
  9. 一閃一閃亮晶晶,滿天都是人造衛星- PanSci 泛科學
EASY天文地科小站_96
21 篇文章 ・ 746 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
外星生命可能存在嗎?真的碰到又該如何面對呢?
陳柏成 (Po Cheng Chen)
・2018/06/01 ・2607字 ・閱讀時間約 5 分鐘 ・SR值 595 ・九年級

自古以來,人類對外星生命一直存有各種猜測與想像。例如史蒂芬 ‧ 史匹柏(Steven Spielberg)於 1982 年所執導的科幻電影《E.T. the Extra-Terrestrial》,就勾勒了一個人類對外星人的美好想像。

ET 與小男孩之間的真誠友情,是人類對外星生命的美好想像。 圖/《E.T. the Extra-Terrestrial》劇照。 via IMDb

然而,縱使有研究推論[1],外星人可能比我們所想像的更近於人類外貌,但實際上若真有外星生命,他/牠會以什麼樣的形式存在,仍是未知,科學家也還持續進行著相關研究。

首先我們須認知到,外星生命(Extraterrestrial life)並非只涵蓋擁有高度智慧的外星人;實際上任何存在於地球外的生命體,皆可稱之為外星生命。關於這方面的研究,目前天體生物學(Astrobiology)即為主要代表,該領域研究核心在於探討地球及地球外,生命的可能起源與演化。

嗜極生物與外星生命

目前學界已知,對地球上的大多數生物來說地球外皆屬極端環境,因此若存在外星生命,該生命形式定有一定程度的近似於地球的,「嗜極生物(extremophile)」。因此,目前科學家探尋外星生命的方式是,分析地球上不同種類的嗜極生物,並將其所處的環境與外星星球比較,來推測外星生命存在的可能性。

那麼地球上究竟有哪些嗜極生物?舉例來說,Desulforudis audaxviator 就是一種很強悍的細菌。這種生存於地底下 2.8 公里處的生物,又被稱為「無畏的旅行者」(the bold traveller),主要以周圍岩石中衰變的鈾為養分來源[2][3],並且透過溶解態二氧化碳及周圍岩石獲取碳及氮元素維生(這兩者為構成已知生命的所需物質,也可用於製造蛋白質及胺基酸)。

於電子顯微鏡下觀察到的 Desulforudis audaxviator 外貌。  圖/Chivian, D. et al. 2008 via wikipedia

另一個有趣的例子是水熊(water bear)[4]。水熊是一種多細胞生物,且體積十分細小,是目前已知唯一可存活在太空中的動物。[5] 2007 年,瑞典的克里斯蒂安斯塔德大學(Kristianstad University)為確認水熊的能耐,選擇了兩種水熊 Richtersiu coronifer  以及 Milnesium tardigradums 作為實驗對象,並將牠們放入歐洲太空總署(ESA)參與的 FOTON-M3 太空任務發射之太空梭中,觀察水熊在經歷 10 天暴露在極端環境下(低溫、真空、高輻射),究竟能否生存。

別看水熊(Water bears)肥肥短短的就覺得牠一定蠢萌蠢萌,牠可是目前已知唯一可存活在太空中的動物。 圖/New Scientist

結果顯示,有些水熊竟然可以幾乎不受影響的存活著並進行排卵。這不禁讓科學家進一步思考,生物依靠星際旅行在宇宙中不同地方存在的可能性。事實上,關於這方面的假說稱為「泛種論(Panspermia)」[6]。泛種論的核心概念為宇宙中的生命體,可透由某種運輸機制,達到不同地方,並在適宜的條件下繼續生存與繁衍。可以想見的是,能滿足該假說的生命形式,須能適應一定程度的「艱難」條件,才能在宇宙中的運輸過程裡倖存,這也是為何天體生物學家們如此重視嗜極生物的原因。因為透過對這些生物的觀察,我們才有機會更進一步了解生命存在的可能樣貌,並幫助我們探索外星生命的生存環境。

如何面對外星生命?

那麼,若外星生命真存在於這宇宙中,我們應該用何種心態面對?事實上,這仍是學界持續爭辯的熱門議題。近日離開人世的黑洞大師史帝芬霍金(Stephen Hawking)便曾於探索頻道(Discovery Channel)提及對於人類接觸外星生命的憂慮[7],他擔心的出發點在於:回顧人類自身歷史不難發現,過去不同族群間的接觸,都曾因侵略、殖民付出慘痛代價。而我們若接觸外星生命,極有可能成為被外星人殖民的一方。不過,也有人認為這種想法錯了,例如 Scientific American 的專欄作家 Michael Shermer 即認為,高度文明的外星社會或許早已達到不需藉由剝削、殖民來獲取資源的地步[8]。

物理學家史蒂芬霍金對接觸外星生命的憂慮,來自於人類歷史上各民族間互相剝削侵略的慘痛教訓。 圖/wikipedia

然而,這些爭論都奠基於具有高度智慧的外星生命之上。如先前所述,我們目前所能發現的外星生命,較有可能類似於地球上的嗜極生物,而我們尋找外星生命的方式,也還是由我們已知生命的生存條件來搜索。事實上,有學者曾表示,這種以人類為中心來想像外星生命生存形式的思維,過度限制了我們尋找外星生命可能方向[9][10]。我們也必須坦承,目前人類確實無法驗證那些相異於地球生物的生存型態,是否確實生存於宇宙之中。

也因此,最務實的方式,或許還是先回歸最基本的問題:我們能在別的星球找到像我們一樣的生命體嗎?又或是,別的星球是否曾經存在像我們一樣的生命體?如果有,他/牠們會和我們有多像?我們是否有機會移居到那些星球?這些都是非常有意思的問題,也有助於我們探索生命最根本的起源。XGENEVE

參考資料:

  1. University of Oxford. (2017). Aliens may be more like us than we think.
  2. Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal, P. S., DeSantis, T. Z., … & Moser, D. P. (2008). Environmental genomics reveals a single-species ecosystem deep within Earth. Science, 322(5899), 275-278.
  3. Catherine Brahic. (2008). Goldmine bug DNA may be key to alien life. New Scientist
  4. 曾文宣. (2015). 整個世界都是我的裝備庫!來看看地表最強的水熊秘訣. 泛科學
  5. Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, M., & Rettberg, P. (2008). Tardigrades survive exposure to space in low Earth orbit. Current biology, 18(17), R729-R731.
  6. Kamminga, H. (1982). Life from space—a history of panspermia. Vistas in Astronomy, 26, 67-86.
  7. Into the Univrse with stephen hawking. Discovery Channel.
  8. Michael Shermer.(2011) Why Stephen Hawking is wrong about extraterrestrial intelligences.
  9. David Darling. Carbon-based life.
  10. Carbon chauvinism. Wikipedia





文章難易度
陳柏成 (Po Cheng Chen)
12 篇文章 ・ 5 位粉絲
熱愛自然科學,曾擔任PanSci實習編輯,現於美國夏威夷大學就讀博士班。如有任何問題,歡迎來信:consciencecpc@gmail.com