0

5
0

文字

分享

0
5
0

碳14測定法│科學史上的今天:5/30

張瑞棋_96
・2015/05/30 ・957字 ・閱讀時間約 1 分鐘 ・SR值 554 ・八年級

(本報訊)2011 年底於馬祖亮島島尾I遺址出土的人骨,經碳14 年代測定為距今 8,200 年的人骨遺骸,並命名為「亮島人」1 號。2012 年 7 月間又在同地點發現「亮島人」2 號,測定為距今 7,590 至 7,530 年。

是的,我們常看到考古學家用碳14 測定法判斷出土骨骸或文物的年代。事實上,除了考古學,包括地質學、生物學,乃至鑑定藝術品真偽都可能用到碳14 測定法。這項神通廣大的工具乃起源於美國化學家李比(Willard F. Libby, 1908-1980)於 1947 年 5 月 30 日在《科學》雜誌上所發表的論文〈來自宇宙輻射的放射性碳〉

一般我們所稱的碳元素有 6 個質子與 6 個中子,又稱碳 12;而碳 14 則多了 2 個中子,但它可不是由碳 12 變來的。事實上,地球上所有的碳 14 都是來自於宇宙射線中的中子束與大氣層中的氮原子撞擊後的產物。碳14產生後很快就與大氣中的氧原子結合成二氧化碳,因此大氣中的二氧化碳所含的碳原子除了碳 12,還有少量是由碳 14 組成。

碳12 是極為穩定的原子,但碳14 是種放射性元素,它會自動衰變回氮原子。每個碳14 原子衰變的時間都不一定,但一大堆碳14的平均衰變時間就很固定了;這就像學校裡每個學生的跑步速度都不一樣,但是每一班的平均速度都差不多。平均而言,過了 5,730 年碳14 原子就會有一半衰變成氮原子,這 5,730 年就是碳14 的半衰期。而科學家發現碳14 生成與衰變的速率差不多,所以亙古以來,地球上的碳14 與碳12 都維持一定的比例,大約是 1.3 兆分之一沒有改變。

二氧化碳被植物吸收,其中的碳原子經食物鏈進入動物體內後也是維持這樣的比例不變,直到這生物死亡為止。生物死亡之後,體內的碳12 數量維持不變,但碳14 卻會逐漸衰變而越來越少,因此只要測出骨骸中這兩者的比例,就能反推計算出此生物已經死了多少年。這就是李比提出的碳14 測定法,他也因此獲得 1960 年的諾貝爾化學獎。

-----廣告,請繼續往下閱讀-----

不過碳14 測定法也有其侷限。如前面所說,碳14 的正常比例只有 1.3兆分之一,經過十次半衰期就只剩一千三百兆分之一,這大約就是現代測量儀器的極限了。因此年份在六萬年以下的生物或物體才適用碳14 測定法,超過六萬年以上的就得利用其它半衰期更長的放射性元素了。所以下次你如果看到電視或電影中說某物品經碳14 測定有數十萬年歷史,就可以好好嘲笑它了。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

8
4

文字

分享

0
8
4
地磁四萬年前曾逆轉,引發了劇烈氣候變化
安比西林_96
・2021/04/07 ・2730字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

科幻作品中,導致世界毀滅原因的榜單上,總少不了「地磁逆轉」。這樣的情節並不只是科幻的危言聳聽,地球磁場就像地球的 AT 力場,可以阻擋來自太空的高能量粒子長驅直入,保護地球上的生靈。

地層中有些礦物可以記錄地磁方向,過去科學家由此得知地球誕生的這 45 億年以來,早已發生過好幾百次的地磁方向南北倒轉。雖然人類沒有紀錄、世界也沒有因此毀滅,但地磁逆轉對當時的生物而言,依然是一場可怕的大浩劫。

最近一次的地磁逆轉,發生在 42000 年前,新的研究告訴我們,當時還有太陽活動的改變,在這樣的共同影響下,引發一連串如末日電影情節的災難性事件:臭氧層被破壞、雷暴肆虐熱帶地區、太陽風產生壯觀的極光、北極冷空氣吹掃北美、冰蓋與冰川蔓延,造成氣候劇烈變化。

搖擺不定的地球磁極

電腦模擬下,非逆轉時期(左)與逆轉時期(右)的地球磁場示意圖。圖/wikipedia

雖然人類以指南針指引南北,但指南針指向的地磁北極,並非乖乖不變的一個定點。因地核運動的緣故,地磁北極會在地理北極——即地球自轉的軸心附近來回搖擺。地球磁極有時會發生更劇烈的變動,即前面所提的「地磁逆轉」,箇中原因科學家未有定論。  

人類首次發現地磁逆轉,就是前述發生在 42000 年前的「拉尚事件」(Laschamps event),也是被研究得最透徹的地磁逆轉。拉尚事件存在的證據散佈世界各地,最新來自澳洲塔斯馬尼亞一個天然冰河湖的沉積物岩芯。但地磁逆轉的發生,究竟會對地球的氣候與生態造成多大程度的影響,一直是科學上待釐清的疑問。來自澳洲新南威爾斯大學 (University of New South Wales) 與南澳博物館 (South Australian Museum) 的科學團隊最新的研究發現,地磁逆轉對地球帶來的衝擊比過去所想象的來得大,其影響範圍遍佈全球。 

-----廣告,請繼續往下閱讀-----

解密地磁逆轉的羅塞塔石碑——紐西蘭貝殼杉

 世界上的最好木材之一、可以生長逾千年的紐西蘭貝殼杉Agathis australis),又名考裏松(毛利語稱為 Kauri),在紐西蘭北部的泥潭沼澤中沉睡超過四萬年也不會腐朽,成為研究拉尚地磁逆轉事件最佳的實驗材料。

研究人員利用碳 14 定年法,分析紐西蘭貝殼杉年輪中的碳 14 比值,重現過去地球大氣層變化的高解析度時間軸。地球上所有的碳 14,都是大氣層中的氮原子,被宇宙輻射中的中子束撞擊後的產物。地球磁場會使宇宙輻射發生偏折,減少來到大氣層的宇宙輻射。因此磁場減弱時,更多的碳 14 就會誕生。結果顯示,過去研究中磁場强度的最低點、地磁逆轉之時,正好與貝殼杉記錄到的大氣層碳 14 高峰相吻合。這一發現幫助科學家建立更精準的新時間軸,突破過去待確定的疑問。

生長千年、萬年不朽的紐西蘭貝殼杉成為研究地磁逆轉的關鍵實驗材料。

「紐西蘭貝殼杉就像羅塞塔石碑[註],幫助我們將世界各地其他洞穴、冰芯和沼澤地所留存的環境變化記錄,連接起來。」領導這項研究計劃的 Alan Cooper 博士如此説道。

貝殼杉碳 14 的記錄,成為一個很好的校正基準,確定各個關鍵事件的時間點。地球發生的許多重大變化,如熱帶輻合帶(Intertropical Convergence Zone)和盛行西風帶(South Hemisphere Westerlies)在地磁逆轉時,突然同時改向兩極移動,為部分地區如澳洲帶來乾旱,導致一波古代巨獸的滅絕潮。而在北方,廣袤的勞倫斯冰蓋席捲如今的美國西部和加拿大地區,而歐洲的尼安德塔人也走向滅亡。

從紐西蘭 Ngāwhā 取得的古老紐西蘭貝殼杉原木。圖/Nelson Parker

建構氣候模型,還原末日時刻

為探究大大弱化的地球磁場,對大氣的電離作用、化學與動態變化之影響,研究團隊也建構了全球尺度的化學與氣候變化關係之模型,同時調查太陽能量的改變。

-----廣告,請繼續往下閱讀-----

當時地球磁場的强度減弱到今天的 6% 以下,是羅盤也會找不着北的程度。因此近乎失去磁場的地球,就像在充滿危險高能量粒子的太空中衣不蔽體,宇宙輻射可直接到達大氣層。而與此同時,太陽正經歷好幾次的太陽活動極小期(Grand Solar Minimum),儘管總體而言這時期的太陽活動較不頻繁,但也更不穩定,常常噴發巨大的太陽耀斑,使更强大的宇宙射線襲向地球。模型顯示,更禍不單行的是來自太空和太陽耀斑的宇宙射線,穿透大氣層上層使空氣中的分子帶電,造成一系列的化學反應,讓平流層的臭氧也流失慘重。此時期的地球表面,磁場與臭氧層的保護同時被削弱,對生物有害的宇宙輻射與紫外光比以往更強烈。

向宇宙神秘數字 42 致敬的亞當斯事件

模型所模擬的結果,與在各地觀察到自然氣候與環境改變的歷史記錄一致。氣候劇變下的末日,生物曝露在高强度的紫外線中,尼安德塔人和巨獸被無情淘汰,人類的祖先智人則躲入洞穴中。這也能解釋史前洞穴壁畫,為什麼會在四萬年前突然蓬勃出現。

地磁逆轉造成的極端氣候變遷,與太陽活動極小期,都剛好在 42000 年前同時發生。為紀念和宇宙神秘數字 42 的巧合,研究團隊將這段時間稱為「亞當斯事件」(Adams Event),以向提出這個數字的經典科幻作品《銀河便車指南》作者道格拉斯·亞當斯(Douglas Adams)致敬。數字 42 被喻為指向生命、宇宙和一切的終極答案。這真的是巧合嗎?沒有人知道。

有關「亞當斯事件」的有趣小短片

註解

羅塞塔石碑:製作於公元前 196 年,由於刻有古埃及法老王詔書內容的三種不同語言版本(古埃及象形文、埃及草書、古希臘文),讓考古學家得以有機會解讀出失傳千年的埃及象形文字,因此也被喻為破解謎題的關鍵。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Earth’s magnetic field broke down 42,000 years ago and caused massive sudden climate change
  2. Cooper, A., Turney, C. S., Palmer, J., Hogg, A., McGlone, M., Wilmshurst, J., … & Zech, R. (2021). A global environmental crisis 42,000 years ago. Science, 371(6531), 811-818.
  3. Radiocarbon dating considerations

延伸閲讀

  1. 地球磁場即將反轉?
  2. 跨年夜的捷運改變了地球磁場?那真是比萬磁王還要狂啊!
  3. 地球磁場倒轉到底多快?洞穴石筍古地磁紀錄大解密
  4.  地磁逆轉與太陽閃焰殺手

0

1
0

文字

分享

0
1
0
放射性廢棄物如何處理?廢爐需要大家共同思考——《福島第一核電廠廢爐全紀錄》
臉譜出版_96
・2019/04/16 ・2117字 ・閱讀時間約 4 分鐘 ・SR值 551 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/吉川彰浩

廢棄物問題將延續 50 年以上

圖/wikipedia

放射性物質是危險的東西,這是眾所皆知的事,而我們選擇遠離那裡,可以的話,完全不想有任何牽扯,因此對於放射性廢棄物的處理,亦即廢爐一事,只有消極負面的印象而已,這是目前大家都有的感覺吧?

相信也有很多人是因為核電廠事故才這麼想,但若追溯歷史,其實這並不是今天才開始的事。

日本第一座核能發電廠是建於一九六三年十月二十六日、茨城縣東海村的 JPDR(Japan Power Demonstration Reactor)。在這座核電廠開始運轉的同時,如何處理放射性廢棄物的問題也就隨之展開,這可以說是從五十多年前就應該開始思考的問題。

-----廣告,請繼續往下閱讀-----

我們經常聽到放射性廢棄物無法進行任何處理的說法。

放射性物質的性質,就是依照種類的不同,只要經過一段時間(= 半衰期)後,量就會剩下一半,變成不會釋出幅射的穩定狀態,達到「無害化」的結果。

雖說放射性物質具有放著不管就會「無害化」的性質,但有一點需要知道的是,半衰期長短依種類不同而有所差異。舉例而言,碘 131 的半衰期約為 8 天, 銫 137 約為 30 年, 鈽 239 約為 2.41 萬年,鈾 238 約為 45 億年。要等到鈽或鈾完全無害,需要極長的時間。核燃料之所以被說成最麻煩的廢棄物,也是因為它是由半衰期長的鈽與鈾所構成。

鈽的電子殼層。圖/wikipedia

若從無害化是需要時間的角度來看,「高階放射性廢棄物無法進行任何處理」的說法可以說是正確的。不過,「雖然很難達到真正的無害化,但可以設法在盡量接近無害的狀態下進行保管」,而且「正因為是難以處理的東西,所以更要採取避免繼續增加的對策」,這就是目前核電廠在廢棄物處理上的原則。

-----廣告,請繼續往下閱讀-----

無害化狀態下的保管技術已經確立

青森縣六所村有高階放射性廢棄物管理中心與低階放射性廢棄物管理中心這兩個放射性廢棄物的最終處置場。

前者有可以穩定保管用過核燃料的設備,是一種叫玻璃固化體的容器,可於穩定狀態下長時間保管高階輻射廢棄物,貯存量可達二八八〇支玻璃固化體。後者則是將高階放射性廢棄物以外的東西放入大型鋼桶裡保管,貯存量為四十萬個兩百公升的鋼桶,未來預計增加到六十萬個。

或許有人會想,既然已經有最終處置場,技術上又能夠保管,那不就沒有問題了嗎?但是最大的瓶頸是「這邊可以代為貯存,但請先處理成可以被接受的狀態再帶過來」。

各位也是自己做垃圾分類,然後裝到袋子裡拿去丟的吧?這是丟垃圾的人被要求遵守的規定;同理,核電廠也有丟棄放射性廢棄物的規定。如果是用過核燃料的話,就裝在一種叫護箱的容器裡,其他則必須裝在鋼桶裡才能拿去丟棄。

-----廣告,請繼續往下閱讀-----

核廢料桶。圖/wikipedia

簡單講是裝在鋼桶裡送過去,實際上並沒有這麼單純。因為是放射性物質,所以必須在穩定的狀態下運送才行,例如運送高濃度污水時,要分成水與放射性物質,放射性物質還要經過乾燥處理以減少體積(減容化),粉狀物要用水泥或塑膠等固著成穩定的狀態(固化),才能裝入鋼桶裡運送,必須經過這樣的加工處理才行。

此處的問題是加工的難度,當中也有輻射強度高到人類不宜靠近、沒辦法輕易運送的高階放射性廢棄物。因此才會稍微轉換思考方式,採取暫時保管在發電廠內的作法。

1F 廢爐作業所產生的放射性廢棄物之所以一直保管在廠區內,主要原因就是無法加工到得以安全運出廠外。目前也持續在討論廢棄物適合運輸的狀態為何、該帶到哪,又該如何進行保管。

-----廣告,請繼續往下閱讀-----

雖然可能有人會認為,那不是東京電力或核電業界的問題嗎?但考量到半衰期等因素,放射性廢棄物確實也是一個會遺留給下一代的問題。

思考大家都能接受的處理方式

在國外核能相關設施的廢爐用語中,有一個字叫「legacy」,就是「遺產」之意。

正如本文一開始所述,這是一個約從五十年前就開始的問題,令人不禁感嘆我們究竟留下多麼棘手的東西啊,而我們的下一代應該也會有同感吧。

圖/wikimedia

-----廣告,請繼續往下閱讀-----

另外,前文也介紹到青森縣六所村的最終處置場,但六所村的居民們是否樂意在當地見到這些設施呢?

在核電廠事故後展開的除污事業中,除污廢棄物的輻射強度雖然大幅低於福島第一核電廠的廢棄物,但包含最終保管方式在內,也引起眾多討論。若將廢爐定位在放射性廢棄物的處理,並將處分方法也納入考量範圍的話,那對我們而言是「切身相關的問題」。然而,明明是切身相關的問題,我們卻始終避之唯恐不及,同時我們也與廢爐現場保持距離。

解決這個問題所需要的並不是技術,真正需要的應該是由投身廢爐工作的人、生活在周圍的我們、地方政府機構、核能相關管制當局等,所有人共同討論並確立一套大家都能夠接受的處理方法。「大家」一起思考並執行有關廢爐的方法,是我們必須留下的遺產。

 

 

 

 

本文摘自《福島第一核電廠廢爐全紀錄》,臉譜出版,2018 年 9 月出版。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。