Loading [MathJax]/extensions/tex2jax.js

0

5
0

文字

分享

0
5
0

碳14測定法│科學史上的今天:5/30

張瑞棋_96
・2015/05/30 ・957字 ・閱讀時間約 1 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

(本報訊)2011 年底於馬祖亮島島尾I遺址出土的人骨,經碳14 年代測定為距今 8,200 年的人骨遺骸,並命名為「亮島人」1 號。2012 年 7 月間又在同地點發現「亮島人」2 號,測定為距今 7,590 至 7,530 年。

是的,我們常看到考古學家用碳14 測定法判斷出土骨骸或文物的年代。事實上,除了考古學,包括地質學、生物學,乃至鑑定藝術品真偽都可能用到碳14 測定法。這項神通廣大的工具乃起源於美國化學家李比(Willard F. Libby, 1908-1980)於 1947 年 5 月 30 日在《科學》雜誌上所發表的論文〈來自宇宙輻射的放射性碳〉

一般我們所稱的碳元素有 6 個質子與 6 個中子,又稱碳 12;而碳 14 則多了 2 個中子,但它可不是由碳 12 變來的。事實上,地球上所有的碳 14 都是來自於宇宙射線中的中子束與大氣層中的氮原子撞擊後的產物。碳14產生後很快就與大氣中的氧原子結合成二氧化碳,因此大氣中的二氧化碳所含的碳原子除了碳 12,還有少量是由碳 14 組成。

碳12 是極為穩定的原子,但碳14 是種放射性元素,它會自動衰變回氮原子。每個碳14 原子衰變的時間都不一定,但一大堆碳14的平均衰變時間就很固定了;這就像學校裡每個學生的跑步速度都不一樣,但是每一班的平均速度都差不多。平均而言,過了 5,730 年碳14 原子就會有一半衰變成氮原子,這 5,730 年就是碳14 的半衰期。而科學家發現碳14 生成與衰變的速率差不多,所以亙古以來,地球上的碳14 與碳12 都維持一定的比例,大約是 1.3 兆分之一沒有改變。

二氧化碳被植物吸收,其中的碳原子經食物鏈進入動物體內後也是維持這樣的比例不變,直到這生物死亡為止。生物死亡之後,體內的碳12 數量維持不變,但碳14 卻會逐漸衰變而越來越少,因此只要測出骨骸中這兩者的比例,就能反推計算出此生物已經死了多少年。這就是李比提出的碳14 測定法,他也因此獲得 1960 年的諾貝爾化學獎。

-----廣告,請繼續往下閱讀-----

不過碳14 測定法也有其侷限。如前面所說,碳14 的正常比例只有 1.3兆分之一,經過十次半衰期就只剩一千三百兆分之一,這大約就是現代測量儀器的極限了。因此年份在六萬年以下的生物或物體才適用碳14 測定法,超過六萬年以上的就得利用其它半衰期更長的放射性元素了。所以下次你如果看到電視或電影中說某物品經碳14 測定有數十萬年歷史,就可以好好嘲笑它了。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1032 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

8
4

文字

分享

0
8
4
地磁四萬年前曾逆轉,引發了劇烈氣候變化
安比西林_96
・2021/04/07 ・2730字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

科幻作品中,導致世界毀滅原因的榜單上,總少不了「地磁逆轉」。這樣的情節並不只是科幻的危言聳聽,地球磁場就像地球的 AT 力場,可以阻擋來自太空的高能量粒子長驅直入,保護地球上的生靈。

地層中有些礦物可以記錄地磁方向,過去科學家由此得知地球誕生的這 45 億年以來,早已發生過好幾百次的地磁方向南北倒轉。雖然人類沒有紀錄、世界也沒有因此毀滅,但地磁逆轉對當時的生物而言,依然是一場可怕的大浩劫。

最近一次的地磁逆轉,發生在 42000 年前,新的研究告訴我們,當時還有太陽活動的改變,在這樣的共同影響下,引發一連串如末日電影情節的災難性事件:臭氧層被破壞、雷暴肆虐熱帶地區、太陽風產生壯觀的極光、北極冷空氣吹掃北美、冰蓋與冰川蔓延,造成氣候劇烈變化。

搖擺不定的地球磁極

電腦模擬下,非逆轉時期(左)與逆轉時期(右)的地球磁場示意圖。圖/wikipedia

雖然人類以指南針指引南北,但指南針指向的地磁北極,並非乖乖不變的一個定點。因地核運動的緣故,地磁北極會在地理北極——即地球自轉的軸心附近來回搖擺。地球磁極有時會發生更劇烈的變動,即前面所提的「地磁逆轉」,箇中原因科學家未有定論。  

人類首次發現地磁逆轉,就是前述發生在 42000 年前的「拉尚事件」(Laschamps event),也是被研究得最透徹的地磁逆轉。拉尚事件存在的證據散佈世界各地,最新來自澳洲塔斯馬尼亞一個天然冰河湖的沉積物岩芯。但地磁逆轉的發生,究竟會對地球的氣候與生態造成多大程度的影響,一直是科學上待釐清的疑問。來自澳洲新南威爾斯大學 (University of New South Wales) 與南澳博物館 (South Australian Museum) 的科學團隊最新的研究發現,地磁逆轉對地球帶來的衝擊比過去所想象的來得大,其影響範圍遍佈全球。 

-----廣告,請繼續往下閱讀-----

解密地磁逆轉的羅塞塔石碑——紐西蘭貝殼杉

 世界上的最好木材之一、可以生長逾千年的紐西蘭貝殼杉Agathis australis),又名考裏松(毛利語稱為 Kauri),在紐西蘭北部的泥潭沼澤中沉睡超過四萬年也不會腐朽,成為研究拉尚地磁逆轉事件最佳的實驗材料。

研究人員利用碳 14 定年法,分析紐西蘭貝殼杉年輪中的碳 14 比值,重現過去地球大氣層變化的高解析度時間軸。地球上所有的碳 14,都是大氣層中的氮原子,被宇宙輻射中的中子束撞擊後的產物。地球磁場會使宇宙輻射發生偏折,減少來到大氣層的宇宙輻射。因此磁場減弱時,更多的碳 14 就會誕生。結果顯示,過去研究中磁場强度的最低點、地磁逆轉之時,正好與貝殼杉記錄到的大氣層碳 14 高峰相吻合。這一發現幫助科學家建立更精準的新時間軸,突破過去待確定的疑問。

生長千年、萬年不朽的紐西蘭貝殼杉成為研究地磁逆轉的關鍵實驗材料。

「紐西蘭貝殼杉就像羅塞塔石碑[註],幫助我們將世界各地其他洞穴、冰芯和沼澤地所留存的環境變化記錄,連接起來。」領導這項研究計劃的 Alan Cooper 博士如此説道。

貝殼杉碳 14 的記錄,成為一個很好的校正基準,確定各個關鍵事件的時間點。地球發生的許多重大變化,如熱帶輻合帶(Intertropical Convergence Zone)和盛行西風帶(South Hemisphere Westerlies)在地磁逆轉時,突然同時改向兩極移動,為部分地區如澳洲帶來乾旱,導致一波古代巨獸的滅絕潮。而在北方,廣袤的勞倫斯冰蓋席捲如今的美國西部和加拿大地區,而歐洲的尼安德塔人也走向滅亡。

從紐西蘭 Ngāwhā 取得的古老紐西蘭貝殼杉原木。圖/Nelson Parker

建構氣候模型,還原末日時刻

為探究大大弱化的地球磁場,對大氣的電離作用、化學與動態變化之影響,研究團隊也建構了全球尺度的化學與氣候變化關係之模型,同時調查太陽能量的改變。

-----廣告,請繼續往下閱讀-----

當時地球磁場的强度減弱到今天的 6% 以下,是羅盤也會找不着北的程度。因此近乎失去磁場的地球,就像在充滿危險高能量粒子的太空中衣不蔽體,宇宙輻射可直接到達大氣層。而與此同時,太陽正經歷好幾次的太陽活動極小期(Grand Solar Minimum),儘管總體而言這時期的太陽活動較不頻繁,但也更不穩定,常常噴發巨大的太陽耀斑,使更强大的宇宙射線襲向地球。模型顯示,更禍不單行的是來自太空和太陽耀斑的宇宙射線,穿透大氣層上層使空氣中的分子帶電,造成一系列的化學反應,讓平流層的臭氧也流失慘重。此時期的地球表面,磁場與臭氧層的保護同時被削弱,對生物有害的宇宙輻射與紫外光比以往更強烈。

向宇宙神秘數字 42 致敬的亞當斯事件

模型所模擬的結果,與在各地觀察到自然氣候與環境改變的歷史記錄一致。氣候劇變下的末日,生物曝露在高强度的紫外線中,尼安德塔人和巨獸被無情淘汰,人類的祖先智人則躲入洞穴中。這也能解釋史前洞穴壁畫,為什麼會在四萬年前突然蓬勃出現。

地磁逆轉造成的極端氣候變遷,與太陽活動極小期,都剛好在 42000 年前同時發生。為紀念和宇宙神秘數字 42 的巧合,研究團隊將這段時間稱為「亞當斯事件」(Adams Event),以向提出這個數字的經典科幻作品《銀河便車指南》作者道格拉斯·亞當斯(Douglas Adams)致敬。數字 42 被喻為指向生命、宇宙和一切的終極答案。這真的是巧合嗎?沒有人知道。

有關「亞當斯事件」的有趣小短片

註解

羅塞塔石碑:製作於公元前 196 年,由於刻有古埃及法老王詔書內容的三種不同語言版本(古埃及象形文、埃及草書、古希臘文),讓考古學家得以有機會解讀出失傳千年的埃及象形文字,因此也被喻為破解謎題的關鍵。

-----廣告,請繼續往下閱讀-----
  1. Earth’s magnetic field broke down 42,000 years ago and caused massive sudden climate change
  2. Cooper, A., Turney, C. S., Palmer, J., Hogg, A., McGlone, M., Wilmshurst, J., … & Zech, R. (2021). A global environmental crisis 42,000 years ago. Science, 371(6531), 811-818.
  3. Radiocarbon dating considerations

延伸閲讀

  1. 地球磁場即將反轉?
  2. 跨年夜的捷運改變了地球磁場?那真是比萬磁王還要狂啊!
  3. 地球磁場倒轉到底多快?洞穴石筍古地磁紀錄大解密
  4.  地磁逆轉與太陽閃焰殺手
-----廣告,請繼續往下閱讀-----

0

1
0

文字

分享

0
1
0
放射性廢棄物如何處理?廢爐需要大家共同思考——《福島第一核電廠廢爐全紀錄》
臉譜出版_96
・2019/04/16 ・2117字 ・閱讀時間約 4 分鐘 ・SR值 551 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/吉川彰浩

廢棄物問題將延續 50 年以上

圖/wikipedia

放射性物質是危險的東西,這是眾所皆知的事,而我們選擇遠離那裡,可以的話,完全不想有任何牽扯,因此對於放射性廢棄物的處理,亦即廢爐一事,只有消極負面的印象而已,這是目前大家都有的感覺吧?

相信也有很多人是因為核電廠事故才這麼想,但若追溯歷史,其實這並不是今天才開始的事。

日本第一座核能發電廠是建於一九六三年十月二十六日、茨城縣東海村的 JPDR(Japan Power Demonstration Reactor)。在這座核電廠開始運轉的同時,如何處理放射性廢棄物的問題也就隨之展開,這可以說是從五十多年前就應該開始思考的問題。

-----廣告,請繼續往下閱讀-----

我們經常聽到放射性廢棄物無法進行任何處理的說法。

放射性物質的性質,就是依照種類的不同,只要經過一段時間(= 半衰期)後,量就會剩下一半,變成不會釋出幅射的穩定狀態,達到「無害化」的結果。

雖說放射性物質具有放著不管就會「無害化」的性質,但有一點需要知道的是,半衰期長短依種類不同而有所差異。舉例而言,碘 131 的半衰期約為 8 天, 銫 137 約為 30 年, 鈽 239 約為 2.41 萬年,鈾 238 約為 45 億年。要等到鈽或鈾完全無害,需要極長的時間。核燃料之所以被說成最麻煩的廢棄物,也是因為它是由半衰期長的鈽與鈾所構成。

鈽的電子殼層。圖/wikipedia

若從無害化是需要時間的角度來看,「高階放射性廢棄物無法進行任何處理」的說法可以說是正確的。不過,「雖然很難達到真正的無害化,但可以設法在盡量接近無害的狀態下進行保管」,而且「正因為是難以處理的東西,所以更要採取避免繼續增加的對策」,這就是目前核電廠在廢棄物處理上的原則。

-----廣告,請繼續往下閱讀-----

無害化狀態下的保管技術已經確立

青森縣六所村有高階放射性廢棄物管理中心與低階放射性廢棄物管理中心這兩個放射性廢棄物的最終處置場。

前者有可以穩定保管用過核燃料的設備,是一種叫玻璃固化體的容器,可於穩定狀態下長時間保管高階輻射廢棄物,貯存量可達二八八〇支玻璃固化體。後者則是將高階放射性廢棄物以外的東西放入大型鋼桶裡保管,貯存量為四十萬個兩百公升的鋼桶,未來預計增加到六十萬個。

或許有人會想,既然已經有最終處置場,技術上又能夠保管,那不就沒有問題了嗎?但是最大的瓶頸是「這邊可以代為貯存,但請先處理成可以被接受的狀態再帶過來」。

各位也是自己做垃圾分類,然後裝到袋子裡拿去丟的吧?這是丟垃圾的人被要求遵守的規定;同理,核電廠也有丟棄放射性廢棄物的規定。如果是用過核燃料的話,就裝在一種叫護箱的容器裡,其他則必須裝在鋼桶裡才能拿去丟棄。

-----廣告,請繼續往下閱讀-----

核廢料桶。圖/wikipedia

簡單講是裝在鋼桶裡送過去,實際上並沒有這麼單純。因為是放射性物質,所以必須在穩定的狀態下運送才行,例如運送高濃度污水時,要分成水與放射性物質,放射性物質還要經過乾燥處理以減少體積(減容化),粉狀物要用水泥或塑膠等固著成穩定的狀態(固化),才能裝入鋼桶裡運送,必須經過這樣的加工處理才行。

此處的問題是加工的難度,當中也有輻射強度高到人類不宜靠近、沒辦法輕易運送的高階放射性廢棄物。因此才會稍微轉換思考方式,採取暫時保管在發電廠內的作法。

1F 廢爐作業所產生的放射性廢棄物之所以一直保管在廠區內,主要原因就是無法加工到得以安全運出廠外。目前也持續在討論廢棄物適合運輸的狀態為何、該帶到哪,又該如何進行保管。

-----廣告,請繼續往下閱讀-----

雖然可能有人會認為,那不是東京電力或核電業界的問題嗎?但考量到半衰期等因素,放射性廢棄物確實也是一個會遺留給下一代的問題。

思考大家都能接受的處理方式

在國外核能相關設施的廢爐用語中,有一個字叫「legacy」,就是「遺產」之意。

正如本文一開始所述,這是一個約從五十年前就開始的問題,令人不禁感嘆我們究竟留下多麼棘手的東西啊,而我們的下一代應該也會有同感吧。

圖/wikimedia

-----廣告,請繼續往下閱讀-----

另外,前文也介紹到青森縣六所村的最終處置場,但六所村的居民們是否樂意在當地見到這些設施呢?

在核電廠事故後展開的除污事業中,除污廢棄物的輻射強度雖然大幅低於福島第一核電廠的廢棄物,但包含最終保管方式在內,也引起眾多討論。若將廢爐定位在放射性廢棄物的處理,並將處分方法也納入考量範圍的話,那對我們而言是「切身相關的問題」。然而,明明是切身相關的問題,我們卻始終避之唯恐不及,同時我們也與廢爐現場保持距離。

解決這個問題所需要的並不是技術,真正需要的應該是由投身廢爐工作的人、生活在周圍的我們、地方政府機構、核能相關管制當局等,所有人共同討論並確立一套大家都能夠接受的處理方法。「大家」一起思考並執行有關廢爐的方法,是我們必須留下的遺產。

 

 

 

 

本文摘自《福島第一核電廠廢爐全紀錄》,臉譜出版,2018 年 9 月出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。