0

1
1

文字

分享

0
1
1

地磁逆轉與太陽閃焰殺手

科學月刊_96
・2012/01/09 ・5866字 ・閱讀時間約 12 分鐘 ・SR值 557 ・八年級

-----廣告,請繼續往下閱讀-----

百萬年一次的地球磁場逆轉、來勢洶洶的太陽大規模磁爆,或許它們不再是杞人憂天的末日話題,而是值得深入探究的科學議題。

文 / 陳文屏(任教中央大學天文所、物理系)

大家可能跟我一樣,記憶中世界已經末日好幾次了,尤其最近在網路與媒體推波助瀾之下,類似謠言越發頻繁,幾乎每月一爆,有些明顯不值一駁,有些則很有創意而不易判別真偽。其實除了極少數狂熱份子以外,絕大多數人並未因為這些謠言而人心惶惶,他們房貸照繳,學測照考,只不過生活多了些話題。比較令人擔心是「狼來了」效應,也就是傳聞聽多麻木了,一味不信的結果,之後要是連氣候變遷、能源食物短缺這樣的議題都莫衷一是,這就不好了。

圖一:地球磁場逆轉與太陽大規模磁暴是否會造成世界末日呢?

2012 世界末日的傳言,本來應該最容易駁斥,因為純粹就是電影宣傳。但是似乎言之鑿鑿,整個傳言不斷廣受注意,且如滾雪球般推陳出新,似乎文明真將要走到盡頭。一般來說,有些謠言來自以訛傳訛,原來的真相被扭曲了;有些則製造出來惡意傳播或設計騙局。

-----廣告,請繼續往下閱讀-----

這次2012 傳聞之所以風行,除了配合電影宣傳,還有個關鍵因素就是內容的確有部分科學事實。姑且稱這為「撲克牌伎倆」吧,就是把已知科學知識,像撲克牌洗牌一樣,穿插了似是而非的猜測,達到混淆視聽或招搖撞騙的目的,不僅一般大眾難判虛實,有時候一知半解的人反而更容易接受說法,因為他們認為這些有科學根據。

要從謠言撲克牌當中辦認出哪些是事實,哪些是謬論,並不總是容易,多半時候乃因為我們專業知識不夠。尤其每當有人出來駁斥謠言,總另外有人提醒科學家要謙虛,因為歷史中不乏出現走在當代前端的智者,他們提出的理論不為當代接受,而受盡委屈甚至遭到迫害。有了這樣的提醒,連那些專業知識豐富的人也不願意出來說話了,因為他們清楚知道世界上的確還有很多不懂的學問,而如此認知原本就是科學家探求大自然的原動力。

電影的劇情是說根據馬雅使用的曆法,2012年12月20日為大循環的結束,整個世界就結束了。其實該曆法沒有這個意思,每個循環是14 萬4000 天(也有說法是5126年),目前這第13 個循環結束後,就是下個循環的開始。在大循環結束的時候,馬雅人懷著虔誠心情熱烈慶祝。這不奇怪,我們每年除夕就是如此,甚至每個星期一上班、上課都有些心情低落,都是循環的例子。

很難想像一個已經消失的文明,何以能夠預測數千年之後整個世界的命運。倒是有人趁機出書,認為「2012 年12 月21 日,也就是當年度冬至時節,太陽會在2 萬6000年當中首次與銀河中心對齊,因此平常來自銀河中心的未知能量,會在當天國際標準時下午11 點11 分受到擾亂」。

-----廣告,請繼續往下閱讀-----
圖二:(A)地球磁場在結構上很像磁鐵棒,在兩極處強度較強,但是地球磁場來自內部的電流作用而產生,與(B)磁鐵棒不同。

牌洗出來了!事實與謬論混在一起。太陽與其他千億顆恆星構成銀河系,我們距離銀河系中心2 萬8000 光年,繞行一圈需時約2 億4000 萬年的週期,這是簡單的圓心、圓周長與速度的問題。銀河中心聽起來有點神秘,宇宙當中也果然有未知能量,目前科學家還不知道它們的性質。以上這些都是事實。謬論在於太陽與銀河中心沒有排列對齊的說法,3個以上的點才能排列對齊,目前更沒有知道任何來自銀河中心的能量,能夠影響地球,更不用說會造成地球毀滅。

另一個說法是行星「尼比魯」(Nibiru)將於2012 年底回歸,與地球相撞,造成毀滅性後果。類似的說法每隔幾年就會出現。事實上,在所有會造成全球生物滅絕的種種可能性當中,小行星或彗星撞擊的確有可能發生,但絕對不是2012 年,因為要是尼比魯朝著我們而來,現在應該早被觀測到了。地球附近有成千上萬個小行星,還有無以數計的小石塊。小石塊無時無刻不與地球相撞,造成夜空的流星現象。大的石塊撞擊造成的破壞性大,但它們數量少,也容易被望遠鏡偵測到,它們的軌道目前皆受到監測。人類已有了預測這些撞擊的能力,雖然不是百分之百準確,但可確定不會發生在2012 年。

這裡針對兩項世界末日的說法來討論,它們都與磁場有關。第一個謠言是說地球磁場逆轉,第二個說法則認為太陽發生大規模磁暴。

地磁逆轉殺手?

有關地磁的謠傳,是說2012 年地球磁場將逆轉,也就是南、北極對調,宣稱逆轉的證據存在於古籍、太古地圖當中,並且與太陽磁場逆轉有關。我們先來看看地球磁場。日常生活隨時隨地都有磁場圍繞,除了電器以外,無所不在的是地球磁場,在赤道上強度大約為0.3高斯。做實驗時,我們看到磁粉分布集中在磁鐵棒兩端,這是強度最強之處。地球磁場有如大磁鐵,也有南北兩極,目前地磁南極(S)接近地球北極,而地磁北極(N)則在地球南極附近。

-----廣告,請繼續往下閱讀-----

地球磁場分布雖然有如磁鐵棒,但實際上地球並非一大塊磁鐵。從地球表面往中心,有不同結構,表層為平常看到的岩石,而核心則包含了鐵、鎳等重元素。地球內部溫度、壓力極高,內核心可能就是整塊鐵鎳結晶,之外則包覆了液態的外核心。據估計外核心平均溫度達5000℃,物質處於游離狀態。所以地磁不是因為核心是個永久磁鐵,而是因為該處溫度太高,物質無法以相同極性方向排列。一般相信地球磁場來自電流,條件是需要導電性高的流體,加上地球自轉與對流活動。

圖三:地球磁場保護地球,阻擋來自太空的高能量粒子(主要是來自太陽的質子)長驅直達地面。

地球磁場對於生命非常重要。要是沒有磁場,其後果不只是羅盤無法運作,而是來自太空的高能量粒子(主要是來自太陽的質子)長驅直達地面,造成生物死亡。根據測量,地球的磁場目前與地球自轉軸偏了約11 °,其方向並不固定,強度近來也逐漸減弱,大約每世紀減弱7%,但有可能只是短期變化。當熔岩從火山噴出,會因為冷卻而凝固成為玄武岩。這種岩石略帶磁性,所以當它固化時,便帶有當時地球磁場的訊息。藉由測量從火山噴發出來的玄武岩磁性,科學家發現地球磁場的確有逆轉現象,週期大約數萬年到數百萬年,平均20 萬到30 萬年。地磁逆轉過程中,會有段過渡時期,或許幾百年,地球暫時沒有磁場,但是化石證據卻顯示生物並沒有明顯受到影響。因此有些科學家認為磁極逆轉過程中,磁場可能並非整個消失,而是強度減弱,或是結構變得比較複雜,例如不再是簡單的南北兩極,而地球大氣層或許仍然足以阻絕質子穿透,以致生物並沒有整體滅絕。

圖四:太陽的結構,核心進行核反應,能量向外以輻射傳 出,再向外則以對流方式傳遞出來。

所以,地球磁場的確有變化,在過去也可能曾經發生逆轉。科學家或許仍不了解地球內部磁場如何產生以及變化的詳細過程,但是目前的科學知識足以知道「不會」發生哪些事情,也就是地磁不會在2012 年倒轉,地球也不會因此滅亡。

太陽閃焰殺手?

另一個世界末日的可能殺手,是太陽磁場大爆發。其根據是太陽活動以11 年為週期,而2012 年預計達到下個活動高峰,因此有了這個說法。讓我們看看太陽是什麼樣的東西,如何造成世界末日?

-----廣告,請繼續往下閱讀-----

太陽溫度高,平常看到的表層約為6000℃,而中央核心我們看不到,依照理論估算以及一些(例如微中子)觀察現象,核心溫度估計高達1500 萬℃,足以進行核反應。所產生的熱能讓游離的氣體高速運動,彼此推擠產生膨脹熱壓力,抵擋內縮的萬有引力,維持住太陽結構穩定。太陽穩定發光已經46 億年,目前研究顯示其中央豐富的氫元素還可以維持供應核原料達50~70億年,之後才因為中心核原料用盡,無法再維持穩定結構,而結束恆星的一生。

圖五:太陽表面黑子為磁場強烈之處,該處溫度較周圍氣體 來得低。

質量不同的恆星, 其中央核反應不同、結構不同,傳遞能量的方式也不一樣。類似太陽這樣的低質量恆星,其核心產生的能量以輻射方式向外傳遞,在半徑約30%處,改成主要以對流傳遞,將能量大量傳出,直到表層向四面八方輻射。跟前面提到的地球磁場原理類似,太陽自轉與對流作用,加上導電流體而產生磁場。太陽體積雖是地球百萬倍,但平均磁場強度卻相當於電冰箱門所用的磁鐵,大約50 高斯。

當太陽活動較弱的時候,磁力線分布有如磁鐵棒一般,分成南北兩極。然而當自轉持續進行,磁力線開始捲繞,逐漸出現水平方向,部分會浮出大氣層,這些磁力線集中、浮出大氣層之處,磁場強度高達數千高斯,多了磁力支撐,該地氣體壓力較低,仍可維持靜力平衡。由於氣體壓力與溫度成正比,因此磁力強的區域溫度便較低,大約攝氏4000多度,與周圍6000度相比,因此顯得較暗,這就是太陽黑子。它們總是成對出現,分別是磁兩極,其位置隨著太陽的自轉而改變。

太陽活動週期為11 年,開始時太陽活動弱,黑子數目少,噴發出來的物質規模小,日冕比較不明顯。隨著自轉,磁力線捲繞,水平方向的磁力線越來越多,而且越發擁擠,黑子個數增加,且逐漸出現在太陽赤道附近,這是太陽極大期,磁力線重組造成磁暴,表面噴發出大量高速帶電物質,衝向太空。之後磁極逆轉,開始另外11 年循環。所以太陽的磁場方向會逆轉,整個磁場週期為22 年。因此研究太陽磁極如何在短短11 年當中逆轉,尤其在過程中磁場的結構變化,可提供很多有關地磁逆轉的訊息。

-----廣告,請繼續往下閱讀-----

這幾年的黑子異常,倒不在於太陽過度活躍,反而是黑子數目創低紀錄。例如2007到2009 年間,黑子個數未如預期開始增加。事實上在2008 年的366 天當中,有266天,也就是73%,太陽表面沒有任何黑子。黑子數一直到2009 下半年才開始明顯增加,到2011 年春天,每天大約有數十個黑子,但是整體黑子數(包括極大與極小)仍然偏少。

有些科學家統計出黑子平均數目越少,也就是太陽越不活躍,地球大氣蒸發越和緩,導致雨量減少、作物欠收、沙塵暴與森林火災頻繁,進一步影響了全球經濟。科學家認為從16 世紀中到19 世紀中,地球發生小冰河期,尤其介於1645到1717年間,雖然不是真正冰河期,但地表的確溫度偏低,可以從那段時期的藝術作品中找到很多證據。造成這個現象的其中一個可能原因,就是太陽活動偏弱,這可以從當時太陽黑子數目少看得出來。值得一提是這段時期,中國歷史上北方外族不斷侵入,部分原因可能就是氣候太冷所致。

太陽是太陽系主要能量來源,其活動當然影響到地球。太陽表面一旦局部發生爆發,氣體挾帶巨大能量從表面噴出,以每秒數百公里的速度向外噴射,這個速度相當於時速百萬公里。這些高速氣體於2 、3 天後抵達地球,而太陽表面產生的閃焰光線則以每秒30 萬公里的速率,只花了8 分20 秒就率先到達地球。來自太陽的高速帶電粒子具有很大破壞力,因此太空船必須要有完善遮蔽,以保護太空人及儀器。地球表面因為受到大氣層與磁場的保護,以致這些粒子無法大量直接侵襲地表。

圖六:太陽表層在赤道自轉較快,磁力線跟著運動,使得原本南北向的某磁力 線,後來纏繞如毛線球般,右下方內圖顯示磁力線穿出大氣層,出現黑子群。

地球的直徑約為1 萬3000 公里,太陽的直徑約為140萬公里,地球與太陽之間的距離則為1 億5000 萬公里。如果把地球比喻成籃球,那麼太陽有如在3.5公里之外的一棟10 層大樓。和地球相比,太陽的確有如龐然大物, 2012~2014 太陽極大期所產生的局部爆發,對太空環境絕對有很大影響,歷史上也發生過大規模太陽爆發,連地面都受到波及,例如1859年9月1日俗稱的「卡靈頓閃焰」(Carrington flare)是過去450年來最大的爆發事件。科學家以太陽閃焰釋放的最大能量來分類,其中A、B、C等級規模小,對地球幾乎完全沒有影響, M 等級規模稍大, X 等級則規模更大;其中每個等級又以數字細分,數字越大,規模也越大。1989年3月10日,科學家觀測到太陽表面發生大規模閃焰,在幾分鐘內則看到巨量氣體噴發而出。閃焰以光速抵達,γ(迦瑪)射線充斥在地球大氣,游離出大量電子,導致電波通訊受阻。太陽噴發出的物質於12 日抵達,造成炫麗的極光,連低緯度也看得到。整個大地充滿電流,終於在13 日凌晨造成加拿大魁北克全區停電,美國東岸也受到影響。太空中的人造衛星,包括太空梭,也都受到波及。類似這樣的事件,提醒我們關注天氣不僅止於大氣中的颱風或鋒面,而應該包括太空天氣。

-----廣告,請繼續往下閱讀-----
圖七:過去400 年的太陽黑子數目統計

太陽磁暴對我們絕對會造成影響,大規模爆發可能造成電訊中斷,甚至大區域停電。在太陽即將逐漸開始活躍之際,對於這樣的威脅我們必須提高警覺。但是目前沒有證據顯示,太陽會發生超級磁暴,造成全球滅亡。如果問科學家2012 年太陽是否會發生超級磁暴,他們不會有答案,因為雖然知道太陽將進入活躍期,但是無法預測何時會發生爆發,規模會如何。地震的情形也是一樣,科學家孜孜不倦探討地球內部結構,了解地震原因,但還有很多詳細結構不清楚,因此還無法準確預測地震。要說某些人可以拿幾張圖表就說出下個大地震發生的地點與時間,這實在沒有道理。

電視名嘴現象

台灣電視上的名嘴真是奇特現象。其他國家電視節目也會找專家學者來解說,但是像台灣這些全能名嘴,尤其個人專長不同,但是任何話題總能侃侃而談,實在不可思議。其實這些名嘴有些本來就是記者,而現在也扮演了記者原來該有的角色,也就是查證新聞正確性,以及提供背景知識。從這個角度來看,名嘴功不可沒,他們針對有新聞性的話題,藉由網路與書籍做足功課,然後藉由良好口才,讓觀眾輕鬆取得整理過的資訊,補充白天新聞報導深度不足之處,是台灣補習文化又一案例。關鍵在於正確性,歷史學家在自己豐富的資料與知識內遊走,聽起來趣味盎然,說起太陽風暴,要是談到史料當中有關環境變遷的證據,戰爭與飢荒與太陽活動的關係,一定會是很好的話題,但要同樣這些人談論磁場重組、地球與銀河中心和黑洞排成一列,暗物質、暗能量這樣的題目,就很難有說服力了。

具有科學背景的學者在這波名嘴風潮最需要檢討。討論本科內的話題,他們當然游刃有餘,但出了本身專長,談起來難免捉襟見肘,錯誤連篇,嚴重誤導觀眾;真正的學者應該明白,要是在學術界,任何一項錯誤,大概早就斷送學術生涯了。學有專精的科學家被問到類似的題目,總滴水不漏地回答說目前還不知道,或是事情還沒有定論云云。民眾下了班,打開電視,沒有興致收聽嚴肅又沒有答案的東西,因此雖然知道節目胡扯,收視率卻能居高不下。解決之道之一就是科學家訓練說故事的能力,自己洗出一副完整的牌,讓謬論無所存在,說說已經知道了哪些事情,用簡單的語言、比喻,讓我們體會大自然可以理解的一面,然後帶領我們欣賞未知世界更迷人的一面。

參考資料

  1. [skeptic] 2012 and Counting by Dr. David Morrison
  2. 《中國大百科全書──天文學》,錦繡出版社,1994 年。
  3. The Great Magnet, the Earth
  4. 陳文屏教授
本文發表於 科學月刊 第四十三卷第一期
文章難易度
科學月刊_96
249 篇文章 ・ 3490 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
1

文字

分享

0
2
1
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3634字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2190 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

-----廣告,請繼續往下閱讀-----

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

-----廣告,請繼續往下閱讀-----
用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

-----廣告,請繼續往下閱讀-----

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

-----廣告,請繼續往下閱讀-----

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

-----廣告,請繼續往下閱讀-----

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

-----廣告,請繼續往下閱讀-----

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

-----廣告,請繼續往下閱讀-----

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

5
0

文字

分享

0
5
0
看不見的歐若拉——物理學家解釋火星上極光的成因
Ash_96
・2022/07/05 ・4548字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

極光。圖/envato elements

形成極光的要素有三,其中之一就是磁場。地球具有覆蓋全球的磁場,可以在兩極地區生成北極光和南極光;然而,火星沒有覆蓋全球的磁場,因此火星上的極光並非出現在兩極,只能在特定區域生成。

近期,愛荷華大學領導的研究團隊,根據美國航空暨太空總署(NASA)火星大氣與揮發物演化任務(MAVEN)探測器的數據,確認了火星離散極光是由太陽風和火星南半球地殼上空殘存的磁場相互作用所生成

極光三要素:大氣、磁場、高能帶電粒子

在介紹火星前,讓我們先把鏡頭轉到地球,談談地球上的極光在哪裡形成,以及如何形成。

地球極光出現的區域稱為極光橢圓區(auroral oval),涵蓋北極與南極地區,但並非以兩極為中心;換句話說,極光橢圓區也涵蓋了極圈以外的部分高緯度地區。另外,極光橢圓區的寬度與延伸範圍,會隨著太陽黑子 11 年的循環週期而變動。

-----廣告,請繼續往下閱讀-----

當太陽風和地球磁層的高能帶電粒子被地球磁場牽引,沿著磁力線加速往高緯度地區移動,最後和大氣中的原子碰撞時,就會形成多采多姿的極光。

綜合以上所述,可以得知極光的三個要素是:大氣、磁場、高能帶電粒子。

地球上這些「指引我們美妙未來的魔幻極光」,若屬於可見光波段,就能用肉眼觀測,並以相機記錄這夢幻舞動的光線。

極光橢圓區與地理北極、地磁北極相對位置圖。其中紅色實線表示極圈範圍,綠色區域則為極光橢圓區。圖/National Park Service

-----廣告,請繼續往下閱讀-----

火星的大氣層、磁場以及離散極光

在介紹離散極光之前,得先介紹它的幕後推手——行星際磁場(Interplanetary Magnetic Field,IMF)。IMF就是太陽風產生的磁場,在行星際空間主導著太陽系系統內的太空天氣變化,並阻擋來自星際間的高能粒子轟擊。

那麼 IMF 是如何產生的呢?當太陽風的高能帶電粒子從太陽表面向外傳播,會同時拖曳太陽的磁力線一起離開;太陽一邊自轉一邊拋射這些粒子,讓延伸的磁力線在黃道面上形成了螺旋型態的磁場。

以蛋糕裝飾來說明的話,太陽就像是在轉盤上的蛋糕,太陽風粒子就是擠花裝飾;而當蛋糕一邊以固定速度自轉,擠花逐漸向外擴散的同時,就會在蛋糕產生螺旋狀的軌跡。

因為太陽一邊自轉,一邊拋射太陽風的關係,IMF的磁力線會扭曲呈現如圖的螺旋狀。圖/維基百科
蛋糕的螺旋狀擠花。影片/Youyube

對太陽風和 IMF 有基本認識之後,讓我們把鏡頭轉向火星,談談火星的大氣層和磁層和地球有什麼不同。

-----廣告,請繼續往下閱讀-----

相較地球來說,火星的大氣層非常稀薄。這是因為太陽風的高能粒子轟擊火星大氣層,強大的能量將大氣層的中性原子解離為離子態,導致大氣層的散失;該過程稱作濺射(sputtering),發生在火星大氣層的濺射主要透過兩種方式達成—–第一,在 IMF 的作用之下,部分的離子會環繞磁力線運動,隨著 IMF 移動而被帶離火星;另外一部份的離子則像撞球一般,撞擊其他位於火星大氣層頂端的中性原子,引發連鎖的解離反應。 

MAVEN 任務的領銜研究員 Bruce Jakosky 說明,根據團隊研究的成果,太陽風的濺射效應會將火星大氣層中的惰性氣體氬解離,並將這些氬離子從大氣層中剝離。火星大氣層內氬的同位素(質子數相同,但是質量不同的元素)以氬-38 以及氬-36 為主,後者因為質量較小而較容易發生濺射。

藉由氬- 38 和氬-36 的佔比,Jakosky 的團隊推估火星約有 65% 的氬已經散逸至外太空。基於該研究結果還可以推算出火星大氣層中其他氣體的散逸情形;其中又以二氧化碳為焦點,畢竟行星需要足夠的溫度才能維持液態水的存在,而二氧化碳在溫室效應有很大的貢獻。

火星的大氣層因為太陽風的濺射效應逐漸被剝離。圖/NASA

接著,讓我們一探究竟火星磁場與地球有何不同。地球能形成全球磁場的奧秘是什麼呢?這要先從行星發電機理論開始說起,該理論指出行星要維持穩定的磁場有三個要件——導電流體、驅動導電流體運動的能量來源、科氏力。

-----廣告,請繼續往下閱讀-----

以地球為例,地核內部保留了地球形成初始的熱能,約有 4000°C 至 6000°C 的高溫。位於地核底層的高溫液態鐵,因為密度下降而上升至地核頂端,接觸到地函時,這些液體會喪失部分熱能而冷卻,因為溫度比周圍環境低,密度變高而下沉;如此不斷的熱對流循環下,讓帶有磁力的流體不斷運動,進而形成電磁感應。另外,科氏力的作用讓地球內部湧升的流體偏向,產生螺旋狀的流動效果,有如電流通過螺旋線圈移動的效果。

在火星所發現的地殼岩石證據顯示,火星在數十億年前曾經和地球一樣具有全球的磁場。科學家對火星磁場消失的原因還不是很清楚,其中一種假說認為可能跟火星質量較小有關,在火星形成之初散熱較快,造成火星外核液態鐵短時間內就凝固,無法像地球一樣,保留高溫地核使液態的鐵和鎳因為密度的變化,不斷從地核深處上升至地函,再冷卻下降,持續進行熱對流。

火星地核內部缺乏驅動導電流體的原動力,導致火星內部的發電機幾乎停止運轉,無法形成全球的磁場。話雖如此,火星仍然具備小區塊的磁場,主要分布在火星南半球留有殘存磁性的地殼上空。

行星發電機理論中科氏力影響行星地核內熱對流的導電流體偏向。圖/Wikipedia

磁層與大氣層相互依存,火星在太陽風不斷吹襲之下,大氣層愈趨稀薄;火星內部又缺乏發電機的動力,無法形成完整的磁層。火星缺乏厚實的大氣層保護,就難以阻擋外太空隕石的猛烈攻勢,因此如今呈現貧瘠乾燥又坑坑疤疤的外貌。

-----廣告,請繼續往下閱讀-----

既然這樣,看似缺乏極光形成要素的火星,又是如何形成極光的呢?

雖然火星沒有覆蓋全球的磁層作為保護,但火星南半球仍帶有區域性的磁場。在那裡,磁性地殼形成的殘存磁場與太陽風交互作用,滿足了極光生成的條件。這種極光被稱為「離散極光」,與地球上常見的極光不同,有些發生在人眼看不見的波段(比如紫外線),所以也更加提升了觀測難度。

那麼,研究團隊是怎麼發現這種紫外線離散極光的呢?那就是藉由文章首段提到的 MAVEN 探測器所搭載的紫外成像光譜儀(Imaging Ultraviolet Spectrograph,IUVS)!

該團隊的成員 Zachary Girazian 是一位天文及物理學家,他解釋了太陽風如何影響火星上的極光。

-----廣告,請繼續往下閱讀-----

火星離散極光的發現

研究團隊根據火星上離散極光的觀測結果,比較以下數據之間的關係——太陽風的動態壓力、行星際磁場(IMF)強度、時鐘角和錐角[註 1] 以及火星上極光的紫外線,發現在磁場較強的地殼區域內,極光的發生率主要取決於太陽風磁場的方向;反之,區域外的極光發生率則與太陽風動壓(Solar Wind Dynamic Pressure)關聯較高,但是太陽風動壓的高低則與極光亮度幾乎無關。

N. M. Schneider 與團隊曾在 2021 年的研究發表提到,在火星南緯 30 度至 60 度之間、東經 150 度至 210 度之間的矩形範圍內,當 IMF 的時鐘角呈現負值,如果正逢火星的傍晚時刻,較容易觀測到離散極光;也就是說在火星上符合前述的環境條件很可能有利於磁重聯(Magnetic Reconnection)——意即磁場斷開重新連接後,剩餘的磁場能量就會轉化為其他形式的能量(如動能、熱能等)加以釋放,例如極光就是磁重聯效應的美麗產物。

未來研究方向:移居火星

因為火星上離散極光的生成與殘存的磁層有關,而磁層又關乎大氣的保存。所以觀測離散極光的數據資料,也能作為後續追蹤火星大氣層逸散情形的一個新指標。愛荷華大學的研究成果,主要在兩個方面有極大的進展——太陽風如何在缺乏全球磁層覆蓋的行星生成極光;以及離散極光在不同的環境條件的成因。

人類一直以來懷抱著移居外太空的夢想,火星是目前人類圓夢的最佳選擇;但是在執行火星移民計畫之前,火星不斷逸散的大氣層是首要解決的課題。缺乏覆蓋全球的大氣層保護,生物將難以在貧瘠的土壤存活。或許透過火星上極光觀測的研究成果,科學家們將發掘新的突破點;期許在不久的將來,我們能找到火星適居的鑰匙。

-----廣告,請繼續往下閱讀-----
  • 註1:IMF 的時鐘角(Clock Angle)與錐角(Cone Angle)

如何判定 IMF 的角度呢?因為磁場空間是立體的關係,我們測量 IMF 方向切線與 X、Y、Z 軸之間的夾角——也就是運用空間向量的概念,來衡量 IMF 的角度。時鐘角是指 Y、Z 軸平面上,IMF 方向與 Z 軸的夾角;而錐角則是在 X、Y 平面上,IMF 方向與 X 軸之間的夾角。

IMF 時鐘角和錐角示意圖。圖/ResearchGate

參考資料

  1. Science Daily. Physicists explain how type of aurora on Mars is formed.
  2. Z. Girazian, N. M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. K. Jain, J.-C. Gérard, L. Soret, J. Deighan, C. O. Lee. Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, Volume 127, Issue 4.
  3. Michelle Starr. Mars Has Auroras Without a Global Magnetic Field, And We Finally Know How. ScienceAlert.
  4. Michelle Starr. For The First Time, Physicists Have Confirmed The Enigmatic Waves That Cause Auroras. ScienceAlert.
  5. Southwest Research Institute. SwRI Scientists Map Magnetic Reconnection In Earth’s Magnetotail.
  6. 呂凌霄。太空教室學習資料庫
  7. 頭條匯。火星上的「離散極光」是如何形成的?物理學家有新發現,帶你揭秘
  8. Wilson Cheung。【北極物語】承載北極文化──極光。綠色和平
  9. 大紀元。火星上的極光是如何形成的? 科學家解謎
  10. BBC News 中文。北極光:美國科學家首次在實驗室驗證北極光產生原理
  11. 明日科學。科學團隊藉由 NASA 的太空船所收集的資料得知火星大氣層的流失可能肇因於強烈的太陽風
  12. 台北天文館。NASA 首次繪製火星周圍電流分布圖,證實火星有磁場。科技新報。
  13. 交通部中央氣象局太空天氣作業辦公室。太空天氣問答集
  14. Denise Chow. In an ultraviolet glow, auroras on Mars spotted by UAE orbiter. NBC News.
  15. NASA. NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere.
  16. NASA Goddard. NASA | Mars Atmosphere Loss: Sputtering.
Ash_96
2 篇文章 ・ 2 位粉絲
外交系畢業,很多人看成外文(是不是又回頭看一次? ) 常常在外向與保守的極端之間擺盪;借用朋友說的詞彙,我屬於營業式外向。 喜歡踩點甜點店和咖啡廳,大概是嚮往那種文青都會女子的感覺,或是純粹愛吃。 喜歡k-pop ,跳舞的時候會自動設定為開演唱會模式,自我催眠現在我最帥。