0

0
0

文字

分享

0
0
0

博士畢業就職路迢迢?改善高教人才學用落差,日本怎麼做?

Research Portal(科技政策觀點)_96
・2018/04/30 ・6227字 ・閱讀時間約 12 分鐘 ・SR值 582 ・九年級

-----廣告,請繼續往下閱讀-----

緣起:借鏡日本提早十年的少子化經驗

日本高等教育的發展與少子化均比台灣提早十年,如何因應可借鏡之。圖/flickr

日本高等教育的發展與少子化的問題均比台灣提早約十年,其博士培育發展發生供需不均的問題從 1970~1980 年代初期日益嚴重,我國則從 1990 年代開始。

兩國目前博士占總人口的比例在 OECD 國家中都不算高,然而,日本政府在近十多年來積極推動促進博士人才就業與縮短學用落差的多樣政策之下,即使針對博士畢業生就業狀況仍有持續改善的空間(楊武勳,2013;李俊毅,2017),整體而言,目前已經沒有博士生過多的問題;相對的,我國則因為社會氛圍與企業主認知的影響,博士生人數持續下滑,對台灣長遠維持科研競爭力,不啻是一隱憂。

日本於地理位置、歷史文化、高教體制與科技政策推動等方面都與我國有相當多共同點,又在科研創新與經濟發展上領先許多亞洲國家。雖然,美國、英國、澳大利亞、德國、法國、日本、韓國、俄羅斯等的博士生教育發展都有其的特色及代表性。但考量台灣近年來積極追求由效率經濟轉型創新經濟,因此,值得探索在創新科研的發展上無法缺席的博士人才,同樣地處於亞洲的日本是如何協助其多元發展的。

面臨少子化,日本如何調整政策培育博士?

日本出生率從 1975 年開始下降,大學生原則從 1993 年開始下降,進入 90 年代後期,少子化的影響,使得大學教育供過於求,尤其私立大學因為生源不足已經嚴重影響到學校生存(OECD, 2011;石人炳,2005)。少子化除了影響教育結構,也影響學生質量與大學師資,教育品質的惡化從 1990 年代末期開始。

少子化除了影響教育結構,也會影響最後人才的的品質與數量。圖/AF.mil

政府為了改善學術水準,推動胃納量的減少與大學法人的整合(Education Rebuilding Council, 2007),並重視發展研究生教育。政府擴大研究生招生規模,專門研究所的數量也大量增加。若比較日本在 1955 年和 1997 年的研究生人數,碩士生大約增加五倍,博士生人數大約增加了四倍。

雖然為國家培育許多人才,但是也逐漸出現了博士畢業人數超過大學教師需求的現象。1984 年 10 月,學術審議會發表了《關於改善學術研究體制的基本對策》的報告,敦促文部科學省透過調整政策來保障博士學位人員獲得進一步培育。於是,在 1985 年日本振興學會創立了「特別研究員制度」,讓具有研究能力的優秀博士畢業生至學研機構進行 2-3 年的研究工作並領取獎學金,開始了博士後研究的制度。

而後,此制度不斷發展,而促進了高端創新人才的培養。經過一段時間,日本國會於 1995 年通過了科技基本法,在第一期科學技術基本計畫(1996-2000)中推出「博士後一萬人支援計畫」,希望透過積極培養創新人才,因應世界科技的突飛猛進以維持經濟發展(譚建川,2014)。

培育了博士,接下來博士後的去處也是個問題啊。圖/wikipedia

然而,大量的博士後研究人員無法取得學校正式職位,且企業雇用博士人才的比率仍偏低,因此,日本為了因應 2000 年以後博士課程學生人數繼續成長,舒緩學非所用及博士後研究人員的就業問題,政府在第三期科學技術基本計畫(2006-2010年)中,政府明確提出要為博士課程畢業者在學術以外領域就業提供支援,並在「科學技術相關人才培養綜合計畫 2006」中設立「科學技術相關人才職業多樣化促進事業」。

除此之外,2010 年,內閣府推出新成長戰略,喊出 2020 年理工博士畢業生充分就業之口號;2011 年,文部科學省在科學技術振興調整費中設立「博士後實踐推進事業」,此計畫與「創新創出青年研究人才培養」計畫合併,從 2012 年起名為「博士後職業推進事業」。文部科學省希望透過教育系統的改革,促進博士及博士後的職業多樣化發展,並使更多的博士進入企業。

另外,日本政府於 2006 年開始推動「大學院教育振興施策要綱」,目前已經進展到第三期,並且將持續擴大推動。其針對研究生教育整體以及其中的博士教育與就業發展都有全面性的規劃,是長達十年的政策推動,並且已有初步成效。以下將進一步探討其中有關博士多元就業的措施。

來,說說看畢業後要做什麼?……(設計對白)圖/pixabay

近年日本如何振興大學院教育、推動卓越研究所?

(一)七個方向五大措施,提升博士職涯發展

為了促進博士人才的培育與發展,日本政府於 2005 年發布「新時代的大學院教育」(9月5日中央教育審議會答申)並於2006年發布「大學院教育振興施策要綱」,2011年文部科學省再提出「第二次大學院教育振興施策要綱」,強調改革的重點政策,並實施「博士課程教育先導計畫」(楊武勳,2013)。

2016年3月文部科學省發布第三次大學院教育振興施策要綱(第三次研究生教育推廣政策指導方針),實施期間是2016年至2020年,其包涵七個基本方向:

  1. 制度與組織性的研究所教育推廣、學生素質的保證
  2. 產、學、官、民四部門之間的合作
  3. 提高專業研究所的素質
  4. 確保研究所畢業生的職業發展
  5. 吸引來自世界各地的優秀人才
  6. 提高教育素質、促進教育依功能進行分化
  7. 改善博士人才的待遇
能夠畢業是蠻開心的,但後續的發展就是……圖/pxhere

大學院教育振興施策綱領中,探討與博士職涯發展以及工作待遇相關的主要是五大措施:博士教育領導計畫、全球企業家培訓計畫、科學與工程人才培育戰略、卓越研究所與博士人才資料庫。

博士教育領導計畫是由產業界、學術界與政府共同合作發展與開設課程,並內含中長期實習計畫的「五年綜合碩博士計畫」。全球企業家培訓計畫是針對重點栽培領域或積極學習的學生、學有專長的研究生與年輕的研究者,幫助他們在大學研發成果的基礎上,透過風險投資機構來實現創新創造,也透過現存的公司創造新企業或商業機會,目標在於讓參與者從中獲得發現、解決問題及風險思考的能力,並積極投入創業活動。

科學與工程人才培育戰略則是針對科學與工程領域人才,推出「博士教育領導計畫」、「全球企業家培訓計畫」、「科研補助資助計畫」、「特別研究員計畫」等一系列的方案並召開「科學與工程人才培訓產學官圓桌會議」。

相較於博士課程的變革、鼓勵創新創業方案、聚焦科學工程領域的計畫與建立人才資料庫,「卓越研究所」則是針對博士教育如何更具有競爭力與吸引力的政策措施,對於台灣面臨博士生人數不斷下降的問題之此時,正需全面提高博士教育的價值,因此,「卓越研究所」方案的規劃與推動,值得進一步了解。

日本卓越研究所的目的在於加強人才培育。圖/pixabay

(二)卓越研究所加強人才培育

1、推動背景:碩士畢業後進修博士人數下滑

日本面對近年來碩士畢業後繼續進修博士的人數持續下滑,優秀且年輕的博士人才流失情形相當嚴重,可能導致未來國際競爭力的低落,且期待研究生教育能夠培育出創造社會創新的人才,因此,在2015年9月召開的中央教育委員會「推動未來的研究生教育改革(審議總結)」當中,與會者主張,吸引包括亞洲在內等來自世界各地的優秀學生是很重要的,而在研究型大學中如何指導優秀的研究生也是重要議題。

另外,其也認為鼓勵相同研究領域的研究生,在機構以外進行合作將有助於提升研究生教育的競爭力。因此,建議有必要實施「卓越研究所」,以充分利用過去累積的人才及研究優勢。

圖一/碩士畢業後繼續進修博士的人數及比率變化(2001-2015年)。資料來源:文部科学省(2016)。 

2、主要內涵:提升交流就業,培育更多博士人才

簡而言之,日本文部科學省預計從2018年開始全面實施「卓越研究所」,規畫作為國內大學、民間企業、國立研發單位及國外頂尖大學與研究機構在人才交流與合作研究方面的媒介,目標在於引導新知識的創造及應用、培育博士後人才並參與國外頂尖大學的共同研究。

圖二/「卓越研究所」主要內涵。資料來源:文部科学省(2016)。 

預計在十年期間中推動的措施包括:開設連貫式碩博士系統教育課程;導入品質工程(QE)等概念以確保學生素質;提供優秀學生生活所需的經濟支持(例如:給予參與產學合作研究者研究助理獎學金,並提高受獎期間的靈活性等);實施大學與其合作機構間青年教職員的人才交流(例如:採用大學與企業間的交叉任用制度等);鼓勵學生參與產學合作研究計畫、鼓勵傑出的社會人士攻讀博士學位、企業增加其投資經費與雇用博士人才以促進就業。

尤其,根據「博士人材追跡調査」第 2 次報告書(2018)的最新資料顯示,日本博士畢業生在私部門就業人數並沒有顯著增加且在研究領域擁有終身職職位者占比仍低。因此,目標設定在具體地促進博士人才在研究能力與多元就業更具競爭力的「卓越研究所」方案,更值得我們關注。

台灣現行人才培育政策有哪些內容?

台灣由教育部負責全國從初等到高等的正式人才培育體系,2013 年提出了「教育部人才培育白皮書」,以「培育優質創新人才,提升國際競爭力」為教育整體發展願景,期藉由前瞻及宏觀之教育規劃與推動,為國家培育多元優質人才。

-----廣告,請繼續往下閱讀-----

然而,在研究生教育階段,為了提高博士生的競爭力以促進博士進入產業的做法上,我國目前主要做法是以下兩個方式:教育部產學合作培育研發菁英計畫以及科技部推出的鼓勵企業參與培育博士研究生試辦方案。透過此二方案,不論是在整合碩博士系統教育課程、提供學生經濟資助、促進學生參與產學合作計畫、鼓勵企業投資博士之培育與聘用等方面,皆有所助益。

表一/教育部與科技部促進博士生與產業鏈結的獎勵做法。資料來源:教育部(2017);科技部(2017)。

除此之外,行政院科技會報辦公室自民國 102 年起推動「生技高階人才培訓與就業計畫」,此是透過法人及學研機構、結合廠商及醫學中心的合作,提供博士後結合產業需求的加值訓練機會,在三年總期程計畫中,共有 17 個培訓單位、165 家實習廠商參與投入,共培訓 326 位博士學員,建立國內第一個產業博士後模式。

接續著此試辦計畫的成果,科技部於民國 106 年底宣布啟動「重點產業高階人才培訓與就業計畫」(Rebuild After PhDs’Industrial Skill and Expertise,RAISE),運用法人等研究單位及大學校院的能量,鏈結合作廠商共同培養符合我國重點產業所需的高階人才,預計107年到109年辦理三梯次的培訓,產業領域包括生技醫藥、智慧機械、亞洲‧矽谷、綠能科技、循環經濟、新農業、數位經濟、國防科技、晶片設計及半導體等領域。

由法人等學研單位擔任培訓單位,針對博士級人才辦理 1 年期的在職培訓(on the job training),培訓期間至少 6 個月要到產業界實習,政府將補助每人每月培訓酬金,期盼培訓完成後科研博士可在業界就業或創業,成為提升產業競爭力的推手。此做法可以達到提供博士後培訓與相當於薪資水準的培訓補助經濟資助、促進產學鏈結、鼓勵企業投資博士人才之培育與聘用等方面之效益。

表二/我國促進博士人才進入產業之培訓與就業計畫。資料來源:行政院網站(2017);RAISE(2017)。

參考各國經驗,如何維持台灣人才品質?

然而,整體而言,近年來台灣仍存有許多問題,包括優秀人才對攻讀博士學位卻步、博士生素質低落、高教師資老化、博後人才無法獲得正式職位等;且政府尚未提出更具體有效的政策措施。

另外,中國大陸於 2018 年 2 月 28 日發布 31 項「關於促進兩岸經濟文化交流合作的若干措施」,其中有關「教育」類計六項措施,如:台灣人可參與大陸國家重點研發計畫與「千人計畫」、承認在臺灣取得的學術成果、鼓勵台灣人至大陸高校任教等;希望藉由提供教學、科研職位或經費補助,吸引台灣學研人才赴陸任職或參與科研活動。

面對中國大陸磁吸台灣各領域尖端人才的挑戰,台灣目前尚有抗衡的空間,主要在於自由的學術環境、以及相關法規上的規範對於公私立科研機構及大學院校現職專任教師及相關人員的規範。但是,面對來自於世界各國在科研實力、與人才延攬上的競爭;除了前述所提到,近年來政府已經積極推動之提升博士培育與私部門就業的相關措施之外;如何毫不遜色地維持博士教育的品質與重視博士人才的價值,實為我國爭取人才的關鍵。

2018 年中國提出的教育相關措施,多認為為吸引台灣人才任職所規劃。圖/giphy

針對日本「卓越研究所」中的其他舉措,包括:導入品質工程、鼓勵在職人士攻讀博士、跨單位人才交叉任用等措施,在提升博士生品質、增進卓越博士人才的培育數量、提高博士學以致用的正式聘用等面向上的實質成效,值得追蹤。並且藉由評估「卓越研究所」後續發展與其帶來之博士就業效益,以進一步探討除了目前做法,我國是否也應配合國內條件研擬措施來提升大眾對於博士培育與發展的正面評價。

參考文獻

  1. RAISE(2017)。重點產業高階人才培訓與就業計畫
  2. 大陸國台辦 (2018)。《關於促進兩岸經濟文化交流合作的若干措施》, 國務院台灣事務辦公室國家發展和改革委員會.
  3. 生技高階人才培訓與就業計畫
  4. 石人炳 (2005)。日本生育率下降對高等教育的影響。南京師大學報,(5),84-88。
  5. 行政院 (2017)。生技高階人才培訓與就業計畫
  6. 李俊毅 (2017)。文部科學省科學技術學術政策局訪談摘要(未出版)
  7. 科技部(2017)。鼓勵企業參與培育博士研究生試辦方案
  8. 重點產業高階人才培訓與就業計畫
  9. 教育部(2017)。教育部各司處所訂補助原則或要點
  10. 楊武勳 (2013)。日本博士課程畢業生就業問題。臺灣教育評論月刊,2(7),70-74。
  11. 譚建川 (2014)。日本教科書的中國形象研究。中國大陸:北京大學出版社。
  12. OECD. (2011). OECD Economic Surveys: Japan, Chapter 4 Education reform in Japan, OECD, Paris.
  13. 文部科学省. (2016).「卓越大学院(仮称)」構想に関する基本的な考え方について(概要), 政策審議會.
  14. 文部科学省. (2016).卓越大学院(仮称)構想に関する基本的な考え方について , 政策審議會.
  15. 文部科学省. (2016).第3次大学院教育振興施策要綱(概要), 報道発表.
  16. 文部科学省. (2016).第3次大学院教育振興施策要綱, 報道発表.
  17. 文部科学省. (2016).第3次大学院教育振興施策要綱參考資料集, 報道発表.
  18. 文部科学省官方網站
  19. 文部科学省科学技術学術政策研究所第1調査研究グループ. (2018).「博士人材追跡調査」第2次報告書, 科学技術学術政策研究所.

本文轉載自科技政策與資訊中心網站《科技政策觀點》,原文標題《日本博士教育增進研究競爭力之政策的初探與啟發

-----廣告,請繼續往下閱讀-----
文章難易度
Research Portal(科技政策觀點)_96
10 篇文章 ・ 9 位粉絲
Research Portal(科技政策觀點)為科技政策研究與資訊中心(STPI)以重要議題導向分析全球科技政策與科技發展趨勢,呈現研究觀點與產出精華。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
2

文字

分享

1
3
2
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1