0

0
0

文字

分享

0
0
0

直擊海上實驗室!TARA 探險船如何航遍太平洋珊瑚礁,進行研究?

PanSci_96
・2018/04/06 ・2105字 ・閱讀時間約 4 分鐘 ・SR值 562 ・九年級
相關標籤:

  • 首圖說明:Tara 探險船停泊於基隆港。 圖源/ZYC 攝影
  • 採訪/YCL

航跡遍及赤道到北極的 Tara 探險船

海洋孕育著各式各樣生物,從肉眼無法觀察到的微小生物,到長達 30 公尺的巨大鯨魚,都在海洋生態系中都扮演著不同角色。全球海域中珊瑚礁只佔了海洋面積不到 0.2%,但可涵蓋將近 30% 的海洋生物物種。隨著全球氣候暖化、海水酸化與海洋污染等問題,對於海洋生物造成相當大的衝擊。這些危機喚起了全球各地人士對於海洋研究與教育之重視 。

Tara 海洋探險船就是本著這樣的精神,航行於全世界海域進行探勘與教育推廣,航跡包含赤道海域到冰層覆蓋的北極,船上駐有科學家、船員、藝術家等 16 名成員。自 2006 開始進行全球海域的大規模採樣行動,經歷了 2006-2008 年的北極考察計畫、2009-2013 年的海洋考察計畫、2014 年的地中海海洋塑膠計畫。現階段自 2016 年開始,為太平洋珊瑚礁計畫,此計畫如今已接近尾聲,於今年(2018)年第二次停靠了基隆港,供民眾上船參觀。

Tara 海洋探險船本次計畫採樣區域為珊瑚礁豐富的亞太地區。代表 TARA 接受採訪的 Serge Planes 博士表示,他們關注的範圍包括珊瑚金三角(Coral Triangle)位在太平洋的菲律賓、馬來西亞與巴布亞新幾內亞區域,在珊瑚金三角地區,有高達約上千種的珊瑚與五千種的魚類。往金三角的南北延伸,珊瑚的多樣性與數量都會遞減。

全球珊瑚面臨的危機

圖/skeeze @Pixabay

珊瑚礁就像陸地上的熱帶雨林一般,為海中生物良好的棲地,具有豐富的食物來源並提供繁殖的場所;生態學上的「熱點」生物量與生態多樣性均很高。隨著氣候暖化,全球珊瑚面臨相當嚴苛的危機。海水溫度上升,會造成珊瑚與其共生藻分離,而使珊瑚白化(Coral bleaching),長時間的白化可能會造成珊瑚死亡。除了全球暖化,珊瑚礁系統還遭遇到了環境汙染、海岸開發與過漁等問題。

珊瑚礁的存在帶來了許多有形及無形的資產。Serge Planes 博士指出,珊瑚礁除維護了海洋生態系的多樣性,全世界約有五億人的生活與珊瑚直接相關,為人類提供重要漁業、觀光、醫藥、教育與文化等資源。且珊瑚礁如同天然的防坡堤一般,可保護脆弱的海岸線免於受到海浪侵蝕。珊瑚礁的退化與死亡,不但代表了一個海洋生態系的崩潰,也代表了文化與歷史的消失。

Tara 探險船的太平洋珊瑚礁計畫

Tara 探險船 2016-2018 年太平洋珊瑚礁計畫的主要目的,就是要了解現今珊瑚的狀況並探討其與環境變遷的關係。探險船在決定航行路線前,會先從文獻調查珊瑚之分佈形況,並且聯絡當地研究人員確定珊瑚分布區域。航行到採樣地點時,會先進行浮潛確定珊瑚位置,再決定實際採樣地點。在本次太平洋珊瑚礁計劃共包括了 35 個採樣區域,每個區域有三個採樣站點,在台灣的採樣站點包括了綠島、蘭嶼與墾丁海域。

珊瑚礁生態系統具有相當高的物種多樣性,從魚類,甲殼類到微生物等,每種生物都扮演著不同的生態角色。為了了解此生態系統與環境間之互動關係,因此 Tara 探險船採集的樣本除了珊瑚外,也包含有海水中的微生物、浮游生物與海洋參數等。採樣深度有表層海水與珊瑚礁附近之海水。

Tara 探險船後甲板的濕式實驗室。攝影/ZYC

由於船上空間有限,此船在空間利用上相當節省。在甲板上有工作台、濕式實驗室、衛星與氣象通訊系統、小艇與海水淡化系統。甲板下則有乾式工作室、起居空間、廚房與樣本儲藏空間等,其中乾式實驗室設置有儀器可分析溫度、鹽度、酸鹼度與浮游生物數量。

Tara 探險船甲板下的乾式實驗室。攝影/ZYC

近期任務:珊瑚礁採樣、教育推廣

台灣位處於副熱帶海域,周遭有許多珊瑚礁系統。台灣周邊海域約有三百種珊瑚,珊瑚礁較豐富的地方是恆春半島、綠島、蘭嶼、小琉球、澎湖群島等地的沿岸海域。代表 TARA 接受採訪的 Serge Planes 博士指出,在 TARA 航次採樣中發現,台灣附近的珊瑚礁都處於健康狀態且魚類豐富。但 TARA 在台灣的採樣點並不多、且採樣時間並不是水溫高的季節,因此仍應警惕珊瑚礁白化的危機。設置海洋保護區並確保不要過度漁獲珊瑚礁漁業資源,也是保護珊瑚礁重要方法之一。

TARA 航次除了採集樣本收集科學資料,在全球各地巡迴時也有另一個任務,也就是推廣海洋教育。雖然海洋保育對一般人來說是個看似遙遠的議題,Planes 博士也主張作為個人依然可以有行動、造成改變,例如減少使用一次性消耗品,尤其是塑膠製品。因為陸地上的塑膠進入到海洋生態系,需花費幾百年的時間才能分解。或是潛水的時候,不要觸碰珊瑚、破壞珊瑚表面。

「我們並不需要完全的禁止捕魚,但的確要小心不要過度濫捕。」 Serge Planes 博士說:「而讓每個人理解到每次消費的選擇會造成影響,減少使用一次性的塑膠製品,也是非常重要的。」

Tara 探險船的機房。攝影/ZYC

更多有關探險船的資訊,請見Tara expeditions foundation

Tara 海洋探險船過去計劃內容

  • 2006-2008 年 北極考察計畫
  • 2009-2013 年 海洋考察計畫
  • 2014 年 地中海海洋塑膠計畫
  • 2016-2018 年 太平洋珊瑚礁計畫
文章難易度
PanSci_96
1189 篇文章 ・ 1739 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
是什麼蒙蔽了我的雙眼?如何防範生成式 AI 的假資訊陷阱?——專訪中研院資訊科技創新研究中心副研究員陳駿丞
研之有物│中央研究院_96
・2023/09/24 ・5782字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|沙珮琦
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

不再是有圖有真相!深偽影像猖獗,我們該如何判別?

你看過美國前總統川普被警方逮捕的影片嗎?又或是英國女王在皇宮中大跳熱舞的片段?多年來,人們普遍相信著「有圖有真相」的道理,然而,隨著圖像與影音相關的生成式 AI 越發成熟,我們似乎再也不能輕易相信自己的雙眼。而在真假影音的差異可說是微乎其微的狀況下,我們究竟該如何判斷資訊真實性?中央研究院資訊科技創新研究中心的副研究員陳駿丞與團隊每天在尋找的,便是有效又好用的解決方案。本次,中研院「研之有物」將透過專訪,從生成式 AI 的原理開始了解,一步步為各位解開深偽影像的神秘面紗。

你已經是個成熟的 AI 了!幫我工作!

一講到生成式 AI,許多人都能立刻喊出「ChatGPT」的大名,足見這個領域之熱門程度。其實,生成式 AI 發展並不是近年才開始的事,可是為什麼直到最近,才受到社會大眾的熱烈歡迎呢?

中研院資創中心的陳駿丞副研究員認為,其中最關鍵的原因,莫過於 AI 程式的優秀表現開始讓一般人很「有感」。由於生成式 AI 的相關研究快速發展,基礎建設在近年來逐漸成熟,使用介面也設計得十分親民,讓大眾能透過極為直覺、簡單的方式去使用,實際體會到應用的效果,例如改善工作效率、處理圖像任務等,再加上大眾媒體的渲染,便帶起了 2023 前半年的 AI 風潮。

陳駿丞笑著說,雖然自己不是文字生成式 AI 的專家,但使用「ChatGPT」時,也發現到它真的能做到很多事,比早期的 Siri 效果更好、更準確。的確,對於我們來說,這款基於 OpenAI 開發的大型語言模型(Large Language Model)的聊天機器人(Chatbot),就彷彿是一個全能小秘書一般,可以整理文案、改錯字,甚至連寫程式碼都不在話下。

場景轉換到影像領域,如今市面上也有同樣由 OpenAI 打造出的圖像生成平台「DALL·E 2」,或是大名鼎鼎的「Midjourney 」,都可以很有效率的將使用者文字描述轉換成圖片。雖然這些平台生成的內容偶爾還是會出現「破圖」的情況,例如頭髮少一塊,或是出現奇怪色塊等,但它們的生成速度極快,也能產生不少令人印象深刻的高品質內容;對於一般大眾而言,自然充滿吸引力。

陳駿丞解釋,過去也有許多以文字產生圖片的嘗試,但品質並不佳,而現在之所以可以顯得如此真實,便是借助了「擴散模型」(Diffusion Model)的強大威力。大約 2019 年左右,「擴散模型」逐漸超越了原本主流的「生成對抗網路」(Generative Adversarial Network,GAN),吸引大量研究人員投入,也因此衍生出「Midjourney」這類的圖片服務,打個字、按個鈕便能生成美美的圖片。進階使用者還可以輸入如同咒語般長的自訂提示詞(Prompt),生成符合需求的圖片,甚至還有人專門訓練生成提示詞的 AI,各種 AI 藝術社群也如雨後春筍般成立。

提示詞給的資訊越多,就越有機會用繪圖 AI 生成想要的客製化圖片。
圖|研之有物(資料來源|Midjourney)

神奇 AI 訓練師——「擴散模型」與「生成對抗網路」

等等等等,什麼是「擴散模型」?什麼是「生成對抗網路」?想了解兩者的不同,讓我們先從比較「資深」的那個開始說起。

所謂「生成對抗網路」,其實是由兩個網路所組成的,分別是「鑑別網路」(Discriminating Network)與「生成網路」(Generative Network)。這兩者間的關係就像是考官和學生(亦敵亦友!),學生(生成網路)要負責把圖生出來,交給考官(鑑別網路)去判斷這張圖跟真實圖片的分布究竟像不像,像就給過、不像就退回去砍掉重練。

至於考官(鑑別網路)為什麼能如此精確呢?因為研究員會預先餵給它真實的圖片,好協助鑑別網路做出足夠專業的判斷、給予精準回饋。而學生(生成網路)則在這一次次「交作業、修正、交作業、修正」的過程中,畫出越來越接近真實模樣的圖片。

生成對抗網路的概念比喻圖,生成網路與鑑別網路這兩組神經網路會相互訓練,生成網路所產出的圖片會越來越接近鑑別網路的目標,差異越來越小。
圖|研之有物(資料來源|李宏毅

相比起 GAN 對錯分明、馬上定生死的特點,「擴散模型」採取的路徑相對而言非常迂迴,但是結果更為精準,如果採用知名電腦科學家臺大電機系李宏毅教授的比喻,擴散模型就像是從一塊大石頭裡面刻出大衛像,圖片就在雜訊當中!

「擴散模型」在訓練期間的第一步是加噪(add noise),以貓為案例來說,擴散模型的原理就是將一張正常的貓咪圖片,用統計方法取樣出一張特定大小的雜訊圖(例如 512*512),過程中研究人員會控制參數去加上高斯雜訊。第二步是去噪(denoise),透過減去預測的高斯噪聲,得到乾淨的原貓圖。模型訓練的越好,預測的高斯噪聲量越準。

訓練好之後,「擴散模型」在輸出的時候,為了輸出符合使用者文字指令的貓咪圖片,模型會從隨機的雜訊圖開始,應用訓練過程的去噪器,像物理的擴散過程一樣,逐漸改變每個像素點的值,反覆去掉噪點,得到最後新的貓咪圖。

如果有用過 Midjourney 的人,應該也會發現 AI 收到文字指令開始產圖的時候,是從一張模糊不清的圖片,一顆顆像素逐漸改變,變成你要的圖。

擴散模型透過加噪和去噪來訓練模型,利用去噪來生成圖片。實際生成圖片的過程,就是逐步去除噪聲的過程。
圖|研之有物(資料來源|李宏毅

陳駿丞指出,由於這些噪聲都是研究員自己加的,所以控制度極高,也可以掌握其中細部的變化過程。而這種「保姆式」訓練法,最大的好處就在於:擴散模型是一種漸進式學習的過程,因此對於細節的掌握度將會更高。

陳駿丞提到,兩種方式的訓練時間其實差不多,但以執行時間來說,「擴散模型」會比較久一點,因為需要慢慢摸索,而 GAN 則是幾乎一步到位。不過,雖說處理時間可能較長,「擴散模型」卻也因為訓練比 GAN 更穩定與更全面這份特質,可以訓練很大的資料集,也能生出較為豐富多元的成果。

侵權與假消息——生成式 AI 的負面影響

能生出細膩而接近真實的圖乍聽之下是好事,但它同時也是一把雙面刃,可能伴隨著侵害智財權、製造假消息等等負面效應。

在訓練生成式 AI 相關模型時,必定需要大量的資料做為參考,而以 AI 繪圖來說,許多資料其實是未經授權的網路圖片;假設宮崎駿的圖片被盜用去訓練開源模型,那這些生成式 AI 後來生出的圖可能就會帶有宮崎駿的風格或曾經畫過的元素,這樣是否會帶來侵權或抄襲的問題?是我們必須思考的重要課題。

而說到假消息,就一定得談到值得關注的「深偽」(Deepfake)技術。雖然這個詞很容易讓人聯想到一些負面的事件,比如新聞報導網紅小玉用深偽技術製作不雅影片。然而,陳駿丞澄清,深偽技術最常出現的場域其實是在電影工業中。其中,最知名的應用,莫過於《玩命關頭》系列電影,在拍攝期間主角保羅沃克不幸意外離世,劇組便透過電腦合成影像技術,讓主角的弟弟替身上陣,主角身影得以再次與觀眾相見。

用你的魔法對付你!反制深偽影像的 AI

深偽技術若運用得宜,便是賺人熱淚的神器,反之,卻也可能成為萬人唾罵的幫兇,面對這樣強大的工具,難道我們只能乖乖束手就擒嗎?才不!既然 AI 如此強大,那我們就訓練 AI 來對付它!

陳駿丞分享道,反制深偽影像常用的方法便是訓練「二元偵測器」,藉由蒐集大量真實與偽造影像資料去訓練 AI,讓它得以判斷影像的真偽。然而,深偽有很多種,而二元偵測器對於沒有看過的資料,表現會大打折扣。

過去人們是用 GAN 來生圖,現在是用擴散模型來產圖,未來也有可能出現新的方式,想要找出一個一勞永逸的方法,其實並不容易。

陳駿丞認真地說,深偽偵測的過程,其實很像在研發一套「防毒軟體」,防毒軟體很難永遠跑在病毒前面,大多是遇到病毒再往下思考解方。但是,面對這樣的情況也不用完全悲觀,因為訓練偵測模型可以透過「非監督式」和「自監督式」等方式去進行模擬,進而得出比較能廣泛應用的工具。

除了偵測深偽的錯處之外,我們也可以針對訓練資料動點手腳,像是加上一些「浮水印」。許多生成式 AI 的訓練資料來自圖庫圖片,其中許多圖片自帶防盜浮水印,假設 AI 蒐集了這些素材,往後生成的圖片中可能就會出現「版權所X」等等字樣。

而我們能做的,便是為訓練資料加上肉眼看不見的浮水印。比如說,在影像領域中,伽碼(gamma)指的是用來編(解)碼照度的非線性曲線,我們可以偷偷將浮水印藏在人眼看不見的伽碼範圍中,唯有調整到特定區域,才能看見浮水印。聽起來是不是很像我們小時候用檸檬汁玩的隱形墨水呢?

同樣是浮水印,我們也可以將它藏在人眼比較不敏感的頻率中,然後偷偷放去圖片中邊邊角角的地方,讓人眼看不出來。 加入浮水印後,我們就可以進一步訓練偵測器去尋找浮水印。假設偵測器能在圖上面找到浮水印,那就可以藉此推斷圖的真偽。

而相對偵測、加浮水印等等「補救」的方式,假設我們已經掌握了一些模型的架構,便能透過添加「對抗樣本」(Adversarial Examples),直接攻入生成式 AI 的大本營,讓這些深偽 AI 只能生出一些亂七八糟、毫無邏輯的圖片,或是強迫生成特定的圖案。例如找出幾個常用、能進行臉部特徵操作的 GAN,針對它們研發相關對抗樣本,如此一來,只要加入了團隊開發的噪聲,便能同時打壞這幾種 GAN 的生成。

對抗樣本是防禦深偽模型的有效手段,干擾深偽模型的影像生成。
圖|研之有物

假消息滿天飛怎麼辦?交給深偽影像偵測器!

這麼看下來,深偽偵測若想做得好,需包含的面向又多又廣、還很複雜,但請各位別緊張,陳駿丞與中研院、臺灣大學、臺灣科技大學、成功大學、中央大學以及國家高速網路與計算中心其他教授與研究員共同組成的研究團隊,最近才剛打造出一款泛用性相對較佳的「深偽影像偵測器」,團隊其他研究成員包括王新民研究員、曹昱研究員、花凱龍教授、許志仲教授、許永真教授、蔡宗翰教授與國網的郭嘉真研究員。

這款偵測器以慕尼黑工業大學和義大利拿坡里費德里克二世大學共同提出的偽造人臉資料庫「Face Forensic++」為基礎,透過自監督的方式去產生出深偽的各式可能形式。

團隊是如何訓練偵測器的呢?具體的運作方式是:先偵測輪廓、產生一個「面罩」去界定人臉的位置;接著,再讓偵測器透過些許微調去模擬深偽影像的特徵;再來,將這些「模擬的深偽影像」丟回去當作訓練資料。經過訓練的偵測器便能大幅升級,可以根據顏色、頻率、邊緣特徵等等參數,去判斷影像的真偽,甚至可以幫這些深偽影像區分難度呢!

影片是陳駿丞與團隊的深偽辨識成果,這裡設定為辨識 Deepfake 模型。看到紅框了嗎?數值越小,就表示圖片是深偽的可能越高,這個工具不僅能告訴你影像的真假,甚至能針對顏色、頻率、調整程度做出判斷。
圖│研之有物(資料來源│陳駿丞)

聽起來,這樣的偵測器已經很完美了?陳駿丞笑著說,這樣的內容一經發表,偽造資訊的一方可能又會想辦法繞過這些地方,對雙方來說,這就是場永無止盡的攻防戰,對此,陳駿丞表示,團隊想要完成的,便是:

盡量提供一個比較完整的解決方案,提供普羅大眾各種可能的工具,盡可能讓大家的資料不會被偽造,並幫助他們偵測。

陳駿丞笑著說,在發表深偽偵測的研究內容之後,偽造資訊的一方肯定又會想辦法繞過,這是一場永無止盡的攻防戰。
圖|研之有物

深偽技術防護罩——對所有事保持懷疑

這一份深偽影像偵測器凝結了眾人的心血,陳駿丞很期待未來偵測器正式上線後,能透過國家高速網路與計算中心設計的好用介面讓大家方便操作,在詐騙防治方面盡一份心力。同時,也期待各界看到這個工具的潛力,願意成為堅強的支持力量。

那在這麼好用的工具正式上線之前,我們又該如何去判斷影片的真假呢?陳駿丞傳授了我們一些獨家小絕招:首先:注意「姿勢」,深偽影片可能會出現一些不自然的怪異姿勢;其次,可以關注「背景」,比如突然出現裂痕之類的;再來,也要看看「衣服」等等細節,可能會發現破圖的蹤跡。而影片若是出現側臉時,也比較容易發現瑕疵,比如說頭髮動得很怪、眼神不對、牙齒沒牙縫等等。

另一方面,如果影像的解析度太低,也會影響深偽偵測的準確性,所以,對於太過模糊的圖片、影片,都應該格外小心。

陳駿丞也提醒,隨著相關造假技術日臻成熟,圖片、影片中的細微瑕疵將會越來越難以察覺,這時候,一定要謹記以下原則:

不能像以前一樣看到影片就覺得是真的,還是要抱持懷疑的態度。

假設看到一些違反常理或「怪怪」的內容,一定要多方查證,絕不可以馬上就相信。

讀到這裡的各位,想必已經被陳駿丞裝上了一套強而有力的「深偽防毒軟體」,希望大家帶著這層防護罩,在生活中遠離虛假、靠近真相!(p.s. 要記得定期更新啊!)

陳駿丞與實驗室成員合影。未來他們將和國網中心合作,正式推出深偽偵測辨識平台。
圖|研之有物
研之有物│中央研究院_96
285 篇文章 ・ 2900 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
為什麼人類有頭髮?人類是如何從毛怪演變成現在的樣子?——《有點噁的科學》
時報出版_96
・2023/09/23 ・1579字 ・閱讀時間約 3 分鐘

哺乳動物的毛髮功能

所有哺乳動物都有毛髮(即使是醜得離譜的裸鼴鼠也有幾根陰毛),或多或少罷了,不過人類算是其中毛髮最少的。毛髮的主要功能是為我們的祖先們保暖,人全身約有五百萬根毛髮,其中大部分每天生長約○.四公釐(○.○二英寸)。這毛髮量聽起來好像很多,但與海狸上百億的毛髮和灰蝶的一千億根毛相比,這個數字就顯得微不足道了。

毛髮的主要功能是為我們的祖先們保暖,人全身約有五百萬根毛髮。圖/pexels

人類在演化過程中捨棄掉如此多毛髮,這在靈長類動物中絕無僅有,發生的原因目前尚不清楚。基因中有跡象顯示,我們約在一百七十萬年前就不再努力長毛了。

人類捨棄掉這麼多毛髮的原因

人類的體毛生長可能已轉化為青春期後的第二性徵,當我們準備好生育時才會出現。有個有趣的觀點是這樣的,人類毛髮脫落是因為跳蚤等體外寄生蟲作祟。

當人類的社群性格發展得更加明顯,群聚生活變得更緊密,跳蚤和蝨子的問題會變得更令人在意──將容易窩藏寄生蟲的毛髮削減掉,可避免牠們大批繁殖侵擾而造成破壞。

另外有個理論認為,人類學會用火之後,濃密的毛髮可能就成了一種負擔──毛髮稀疏的人引火自焚的機率比較小──但這個說法有點站不住腳。

人類的體毛生長可能已轉化為青春期後的第二性徵,當我們準備好生育時才會出現。圖/pexels

你閱讀本節時或許已經發現,我們對毛髮的了解遠不及我們所未知的。為什麼有些人頭髮是捲的,有些是直的,為什麼我們有頭皮屑,為什麼陰毛如此粗硬,這些都是待解的科學謎團。

一步一步解開毛髮的謎底

雖然如此,但基本生物學原理套用到所有毛髮上都還是說得通的。毛髮從深陷皮膚的毛囊中發芽,細胞在那裡分裂和繁殖,將毛髮從真皮乳突中擠出,有點像擠牙膏。你的頭髮在夏天長得比冬天時更快,毛髮的學術名稱為複層鱗狀角質化上皮(stratified squamous keratinized epithelium)。

複層意味著它是一層又一層細絲拼排而成,鱗狀表示它表面的細胞扁平,角質化上皮是一種由角蛋白組成的動物組織,角蛋白是相當特殊的纖維蛋白,許多堅韌而靈活的動物身體部位都由這種基礎材質構成,包括頭髮、指甲、爪子和蹄子。

毛髮有許多待解的科學謎團。圖/pexels

毛髮實際上已經死了,裡面沒有生化活動,但讓我們截取一根髮絲的橫切面來看看。它由三個主要的同心環組成:位於中心的是柔軟細緻、相對無明顯結構的髓質。

包圍它的是皮質,皮質為毛髮提供堅韌強度和支撐結構,並賦予其顏色(取決於黑色素含量)。然後是角質層外殼,其表面覆蓋著一層油性防水脂肪,只有薄薄的一個分子那麼厚。

毛髮的生長週期可謂絢爛又奇特,可分成三個發育階段,你身上的每根毛必定處於其中之一:較長的毛髮生長期;較短的衰退分解階段,此時毛囊收縮;以及休止期,此時原本的毛髮脫落,新的毛髮開始生長。

註解

  • 裸鼴鼠是哺乳類動物中唯一的溫度順應者(thermoconformer),牠們與昆蟲一樣,實際上是冷血動物,不必為調節體溫的事操心。

——本文摘自《有點噁的科學:尷尬又失控的生理現象》,2023 年 8 月,時報出版,未經同意請勿轉載。

時報出版_96
168 篇文章 ・ 33 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
0

文字

分享

0
0
0
造訪危險鄰居:歐西里斯的貝努採樣返回任務
EASY天文地科小站_96
・2023/09/23 ・3760字 ・閱讀時間約 7 分鐘

  • 謝承安/現就讀臺大物理系,因喜愛動畫《戀愛小行星》而喜好小行星
  • 林彥興/現就讀清大天文所,努力在陰溝中仰望繁星

2016 年 9 月 8 日,歐西里斯探測器(OSIRIS-REx)由擎天神五號火箭發射升空,追隨著前輩們 ── 隼鳥號隼鳥二號 ── 的腳步,前往近地小行星貝努(101955 Bennu),執行人類史上第三次的小行星取樣任務。

經過兩年多的飛行,歐西里斯號於 2018 年底成功抵達貝努,並在幾個月後成功採集樣本,預計在今年 9 月 24 號返回地球。透過採集小行星上的原始樣本,科學家將能夠推論 46 億年來太陽系的演變歷史,但除此之外,歐西里斯探測器也在環繞貝努的過程中進行了眾多觀測,也為小行星研究貢獻許多,現在就讓我們回顧歐西里斯號的浩瀚之旅!

歐西里斯基本介紹

歐西里斯想像圖。圖/NASA’s Goddard Space Flight Center Conceptual Image Lab

要了解歐西里斯號的觀測目標,我們只需要把他的英文全名攤開來看:

Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer

翻譯作太陽系起源、光譜解析、資源識別、安全保障、小行星風化層探索者。其縮寫歐西里斯,是埃及神話中的冥神。儘管你可能無法了解各個專有名詞,但在看過那麼長的名字後,應該也能知道歐西里斯探測器的任務可不僅是採集樣本而已。

歐西里斯號的目標是小行星 101955 號「貝努」。

這是一顆於 1999 年由林肯近地小行星研究小組(LINEAR)發現的近地小行星。之所以選擇貝努作為觀測目標,是因為貝努的軌道與地球十分接近,有撞擊地球的潛在風險,另一方面距離近,也可以讓探測器在較短的時間內抵達。

值得一提的是,「貝努」這個名字源自古埃及神話的神鳥,同時也是引領前往冥界的諸神之嚮導。同時,貝努小行星上的各式地形或是地點,也都是以不同神話中的鳥類來命名。

貝努的表面地圖,圖中的地名皆與鳥類神話有關。如 Strix 來自羅馬神話中的條紋鳥、Simurgh 則來自波斯神話中的西摩格鳥。圖/NASA/Goddard/University of Arizona

在發射後過了兩年,2018 年,歐西里斯號逐漸接近貝努,並以相機模組中的 8 吋望遠鏡(Polycam)不斷進行觀測,直至十二月成功抵達貝努。

而抵達後的第一項任務,就是詳細繪製全小行星的地圖,過去科學家曾經透過金石太陽系雷達來(GSSR)來探測貝努的模樣,但地面上的雷達雖然可以看到貝努的大致形狀,解析度卻仍不足以窺見小行星上詳細的地形起伏,也就無法事先決定採集樣本的地點但藉由探測器上攜帶的雷射測高儀(OSIRIS-REx Laser Altimeter, OLA),歐西里斯號得以透過發射雷射訊號與接收的時間差, 像是測量海底深度的聲納一樣,繪製全小行星的地形高度圖。另外其配載的高解析度相機(MapCam),也可以讓科學家一覽高解析度的貝努影像。

雷射測高儀測量過程示意圖。圖/NASA/Goddard/University of Arizona
NASA 哥達德太空中心以歐西里斯號製作的貝努表面導覽。影/Youtube

除了解地形以外,決定採樣地點時,另一項重要的考量是採樣地礦物或化學組成。正如同地球上各處的岩石化學組成不盡相同,不論是含水量、顆粒粗細程度以及有機物的有無,皆是採樣任務執行時需要考量的情況。於是,歐西里斯號使用了三種方法來探測小行星表面上的礦物。

第一種方法是透過風化層 X 射線成像光譜儀(Regolith X-Ray Imaging Spectrometer, REXIS)來觀測 X 射線光譜。讀者或許會想,X 射線多用來觀測高能天體的輻射,像是黑洞、超新星爆發等事件,並且小行星本身也不會發出 X 射線,為何要攜帶這樣的探測儀器?

事實上,當元素吸收到宇宙射線或太陽所發出的 X 射線時,內層的電子會吸收能量並游離,而外層的電子便會向下躍遷,補上原本內層電子的位置,更外層電子又再補上外層電子的位置。在這一連串的過程中,便會發出 X 射線。而由於每個元素的能階都是獨一無二的,藉由觀測X射線的光譜,我們便能了解小行星上各處的元素豐度。

這樣的分析方式被稱作 X 射線螢光分析(X-ray fluorescence, XRF),是一種非破壞性的元素鑑定方式,地質考察、考古甚至是博物館文物鑑定都常利用此方式進行探測。

REXIS 儀器。圖/REXIS Team / The planetary society

另外,歐西里斯號上還配戴可見光與紅外線分光儀(OVIRS),也能夠獲取小行星可見光與紅外線波段的光譜來辨別來辨別礦物或是有機物的種類。並且由於不同礦物的熱導率差異,歐西里斯還可以藉由熱輻射光譜儀(OSIRIS-REx Thermal Emission Spectrometer, OTES)掃描全小行星的熱輻射地圖來了解礦物與化學豐度。

熱輻射儀也可以更進一步用於研究小行星上的熱量傳輸問題。當小行星吸收太陽光後將以輻射的方式將能量釋放時,其光壓會給予小行星一個微小的作用力。在經年累月的作用下,便會對其軌道產生改變,此現象稱之為亞爾科夫斯基效應(Yarkovsky effect)。

由於亞爾科夫斯基效應的強弱會受到小行星的反照率、表面材質甚至是地形而影響,如果對小行星不夠了解,那預測小行星軌道的難度將大幅提升。因此歐西里斯號的近距離探測,對精準預測貝努的軌道非常重要。

樣本採集:歐西里斯與貝努的零距離接觸

在近兩年的搜集數據後,歐西里斯號便開始執行此次任務的最終目標:採集樣本。

一開始,科學家們有四個候選地點:夜鷺(Nightingale),此處位於年輕的隕石坑上,且具有最細顆粒的礦物;翠鳥(Kingfisher)為新的隕石坑並具有豐富的含水量;魚鷹(Osprey)具有較低反照率的岩石樣本;鷸(Sandpiper)位於兩個隕石坑之間,可能含有水合礦物。

在科學家掙扎的選擇後,最終決定在名為「夜鷺」的地點進行採樣。因為此處較年輕的地質特性,能夠讓我們採集到貝努更原始的樣本,以此探討貝努在太陽系闖蕩時所遺留的痕跡,再加上較細的礦物也能讓執行任務時能有較高的成功率。至於其他候選地點,只能說後會有期了。

NASA所選定的四個樣本採集地點之照片。圖/NASA/Goddard/University of Arizona

2020年10月20號,歐西里斯號伸出他的機器手臂,名為 Touch-And-Go Sample Acquisition Mechanism(TAGSAM),顧名思義便是碰一下小行星表面後便離開。其運作原理,是在碰觸到小行星表面時釋放加壓氮氣產生爆炸,再搜集飛散出來的碎屑樣本。

說起來雖然簡單,但降落在微小重力的且未知內部構造的小行星上其實非常困難,科學家們需要考量到所有可能影響的作用力,甚至是太陽光所造成的輻射壓都必須考慮進去。

現在,想像你是個科學家,坐在任務的控制室中,透過相機模組中的 SamCam,望著歐西里斯號逐漸靠近小行星,3,2,1⋯⋯,碰!(狀聲詞,事實上,太空中是沒有聲音的。)

Touch-And-Go任務的執行過程。圖/NASA/Goddard/University of Arizona

採集任務看似十分成功,歐西里斯號將 TAGSAM 的頂端放入樣品返回艙(Sample Return Capsule, SRC)中,SRC 也使用了眾多隔板將散落在太空中的碎屑放入其中,兩天後,歐西里斯號回傳了樣本採集艙的影像,確認歐西里斯號已搜集足夠的樣本,但此時卻發現了些意外,由於採集的樣本太大顆,艙門無法完全緊閉,導致有部分樣本散逸至太空中,還好這不影響任務的完成,算是有驚無險。

小行星的樣本從樣品返回艙中散逸。圖/NASA/Goddard/University of Arizona

2021 年 4 月 7 日,歐西里斯號展開他的最後一次飛越任務,此次他以超近距離(約 3.5 公里)觀測「夜鷺」在採集後的模樣,可以清楚看見採樣任務前後的區別,中心區域產生了一個深度超過45公分的凹痕! 周圍的岩石也因此錯位。

過去天文學家們透過眾多觀測數據推論,大多數的小行星比起堅硬的石頭,更像是散亂的碎石堆。後來科學家們也透過此次採樣任務確認貝努表面並非像是地殼般的堅硬固體,而比較像是流體般,才產生如此大的凹痕。

「夜鷺」在採樣任務前後的差異。圖/NASA/Goddard/University of Arizona

在做完惜別任務後,2021 年 5 月 10 號,歐西里斯號啟動了他的主引擎,開始返回地球的旅程。預計在今(2023)年 9 月 24 號,裝載著貝努樣本的樣本返回艙將與歐西里斯號脫離,並以秒速 12 公里的高速衝入地球大氣層,並著陸於猶他州的沙漠中,由研究人員回收後取出樣本進行更近一步的分析。

然而歐西里斯號的旅程仍尚未結束。

接下來它將在 2029 年對另一個有潛在撞擊地球風險的小行星 99942 阿波菲斯(APophis)進行觀測。就讓我們歡迎冥神與他所攜帶的樣本歸來,以及期待未來科學上的重大發現吧!

延伸閱讀

EASY天文地科小站_96
23 篇文章 ・ 1137 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事