0

0
0

文字

分享

0
0
0

鋼盔下的秘密?-神奇的鱟

大海子
・2012/03/18 ・1909字 ・閱讀時間約 3 分鐘 ・SR值 517 ・六年級

鱟在生殖期間雌雄個體形影不離,所以有鴛鴦魚的美名。
鱟在生殖期間雌雄個體形影不離,所以有鴛鴦魚的美名。

鱟最早出現在四億伍千萬年前,歷經地球有史以來規模最大的二疊紀生物大滅絕,那次災難中,全世界有百分之九十八的物種都消失了,鱟則是幸運的殘存者之一;約二億五千萬年以前,鱟的外型幾乎維持不變,但卻再一次逃過隕石撞地球,造成恐龍的另一次大滅絕。鱟歷經種種浩劫仍能存活下來,難道都只歸功於鱟那堅硬的鋼盔外殼,讓它逃過環境的異常變遷,躲過隕石的襲擊,所以才能如此繁衍至今嗎?不禁令人好奇,鋼盔下倒底藏了什麼神奇的秘密呢?

鱟的鋼盔其實既不強悍也不堅硬,如果真的硬得跟士兵的鋼盔沒有兩樣的話,光是重量,就足以將鱟累死了。然而鱟卻巧妙地使用力學原理,達到輕巧而又堅固的功能;如果從剖面來看,可以看出鱟隧道的外型,這樣的結構不但充分擴大內部的空間,且另就力學的觀點而言,接近半圓形的幾何外型,有著最堅固的構造,近乎流線型的外殼亦也可降低波浪的衝擊力,讓鱟無論在沙灘上覓食或在水中游泳都可省下不少力氣。

雌雄鱟的外部特徵有些微小的差異, 主要是為了繁衍後代所展出來的適應。
雌雄鱟的外部特徵有些微小的差異, 主要是為了繁衍後代所展出來的適應。

鱟在小時候,雌雄外型相似,常令人雌雄莫辨。但有趣的是,被稱為鴛鴦魚或夫妻魚的鱟,為了族群的延續,提高交配的成功率,雄與雌在最後一次脫殼之後轉變成大人時,雄鱟原本完整的圓弧狀前端,凹陷出一新月狀的弧形,形狀與大小恰恰好就是雌鱟腹部的半圓外型,讓雄鱟可以緊密地貼在雌鱟的腹部,不易被海浪沖散,可以與雌鱟形影不離,親密相隨;而雌鱟腹部兩側下緣原本用來防禦的長硬棘,從原本的六根減少為三根,其用意在於當雄鱟附在身上,避免刺傷心上人的一種體貼的溫柔設計。當人們鳥瞰沙灘上成對的夫妻鱟,並羨慕他們親密相伴的同時,也應瞭解雌雄鱟為彼此所付出的努力。

實驗室內可以用不同飼料餵養幼鱟
實驗室內可以用不同飼料餵養幼鱟

鱟屬雜食性,在沙灘覓食中常有如推土機一般,到處推土,四處找尋有機物,從中央研究院陳章波博士的研究發現,稚鱟在出生第一次脫殼之後,就會開始進食,而且來者不拒,養殖常用的豐年蝦的幼生、文蛤、冷凍蝦肉,甚至熱帶魚的飼料都能大塊朵頤,毫不挑食,顯見鱟真能隨遇而安,這樣的生存策略,讓鱟不會受限於特定食物,不但可以隨時吃得飽,而且營養還很均衡。

-----廣告,請繼續往下閱讀-----

鱟藍色血液是檢驗藥品是否受到細菌污染的重要生物試劑:

無可避免的是,當鱟挖土弄泥搞得全身髒兮兮時,說不定還會吃進去一大堆細菌,萬一受到細菌感染,那不就是身體一天到晚都在發炎生病,但是鱟藍色的血液中,卻含有一種變形細胞,只要鱟的身體受傷或有細菌侵入體內時,這時變形細胞大軍,就會蜂擁而至,將細菌徹底殲滅,還給鱟健康的身體,因此鱟即使如在污泥攤中四處打滾,也不用擔心會受到細菌的傷害。人類看到這樣的特性,於是從鱟的血液中分離出來這樣的細胞,將它製成細菌測試藥劑,檢驗注入人身體的藥劑(如點滴)是否受到細菌的感染,避免讓病人受到二次的傷害,此對人類貢獻頗大。

海岸工程破壞了鱟的產卵與養育幼鱟的生存棲地。
海岸工程破壞了鱟的產卵與養育幼鱟的生存棲地。

然而神奇活現的鱟自人類出現之後,就在各地沙灘漸漸消失,反而面臨滅絕的命運。撇開大量捕捉鱟當作食物的因素之外,最主要的原因是原本鱟賴以繁殖的天然的沙灘地,因填海造陸、建港築堤等種種開發建設所需,正快速地消失,讓鱟的產房(棲息地)也遭到了破壞,遑論繁衍後代子孫了。亞洲各國相關組織大多已經將三棘鱟不是列成嚴重瀕危與瀕危的物種,就是歸類為一級重要生物保護名錄之列,然國內尚未公告三棘鱟為「瀕臨絕種、珍貴稀有」的保育類野生動物,讓神奇的鱟命運坎苛,前途茫然。隨著鱟的消失,伴隨在歷史中的種種鱟的文化亦逐漸衰微,古云「不孝有三,無後(鱟)為大」,身為海洋國家的一份子,是否在保護熊貓的同時,對於生存在沙灘上的活化石也應盡一份保育的責任呢?

ps. 以上照片由中央研究院陳章波老師實驗室所提供

-----廣告,請繼續往下閱讀-----
文章難易度
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

8
2

文字

分享

0
8
2
「安靜的滅絕」——全球長頸鹿面臨生存危機?
風言
・2021/07/20 ・3593字 ・閱讀時間約 7 分鐘

「世界長頸鹿日」(6/21)剛過不久,一則長頸鹿受到不當圈養甚至死亡的新聞,就躍上媒體版面。長頸鹿雖然不是新聞報導的常客,但大家對牠們應該不會陌生:長頸鹿高高的身影配上非洲草原的日落美景,經常出現於宣傳非洲旅遊的圖片,在世界各地的主要動物園,也幾乎都可以見到牠們的蹤影,牠們應該安好地在非洲生活繁衍著。可是近年的調查發現,原來牠們的數量一直在下降,正靜悄悄地在非洲大地上消失!

長頸鹿高高的身影配上非洲草原的日落美景,經常出現於宣傳非洲旅遊的圖片。圖/Pixabay

無聲無息消失的長頸鹿

和大象和犀牛等野生動物相比,長頸鹿受到的關注相對較小;一直以來針對長頸鹿野外族群的研究也不太多,因此多年來各國均十分缺乏針對牠們族群數目的研究數據。2016 年,多國專家整理了各國零星分散的數據,才發現長頸鹿在過去數十年間的數字大幅下降了 30%:由 80 年代起超過 150,000 隻長頸鹿,下跌至 2016 年時只有約 97,000 多隻。

當所有族群數加起來,97,000 多隻看上去好像還不太差,但實際上若把不同種的長頸鹿分開計算,部份種類和亞種的數目實在下降得驚人,一些族群如努比亞長頸鹿(Nubian giraffe)的數目更大幅下跌超過 9 成。

國際自然保護聯盟從 1963 年起編製瀕危物種紅色名錄(IUCN Red List),根據物種及亞種的滅絕風險,把不同物種族群分成無危、近危、易危、瀕危、極危,以至野外滅絕和滅絕七個級別,代表不同物種族群數目受到的威脅。IUCN 把所有長頸鹿歸成易危(Vulnerable)級別,但也把數個他們認為是亞種的長頸鹿歸成瀕危或極危。這個評級引起了外界對長頸鹿保育的關注。在此之前,由於長頸鹿的族群危機並未受到一般民眾及新聞的注目,所以牠們也被形容為「安靜的滅絕(Silent Extinction)」。

-----廣告,請繼續往下閱讀-----
一張含有 地圖 的圖片

自動產生的描述
長頸鹿看似數量不少,其實各族群有著不同程度的滅絕風險,努比亞長頸鹿的數目更下跌超過9成,與科爾多瓦長頸鹿一同被列為極危級別。圖/discovergiraffe

為什麼長頸鹿的數目會直直下降?

對於某些瀕危動物,科學家很了解影響牠們數量下降的主要原因,就如大象和犀牛便因象牙和犀牛角而被大量獵殺;紅毛猩猩的棲地便因森林被大量開發而遭受破壞。長頸鹿在非洲分佈甚廣,為什麼牠們的數量會直直下降?

經過多年的調查和分析,科學家漸漸發現令長頸鹿族群數目下降並不只有單一原因,而是源自不同層面的威脅,在非洲的不同地方,因著環境和文化的不同,長頸鹿受到的威脅也會有分別,下文簡單地把不同的原因說明一下: 

  • 棲地的破壞:廣泛來說,這是現今世界很多物種的第一大威脅,長頸鹿也不例外。世界自然基金會(WWF)估計,瀕危物種紅色名錄內85%受威脅物種的主要威脅,來自棲息地的破壞。在非洲的草原,由於人類對土地有不同的需求,往往在草原大量伐木、放牧、建設農地和市鎮,掠奪了長頸鹿原先應有的棲息環境。很多長頸鹿的棲地也不在保護區範圍之內,令長頸鹿的生活備受威脅。例如在東非北部生活的網紋長頸鹿(Reticultaed Giraffe)便因土地的開發和人類放牧而令牠們的數目下降了 50%。 
  • 棲地破碎化:長頸鹿是大型哺乳動物,需要很大的地方生活,由於人類的開發,很多長頸鹿的棲地被切割而變得破碎。試想像,如果我們家強行被一條通道分成兩部分,那將對生活帶來多大的不便和影響?在東非肯雅和坦桑尼亞生活的馬賽長頸鹿(Masai Giraffe),和在西非尼日爾(Niger)生活的西非長頸鹿(West African Giraffe),均由於城市建設、農業以及畜牧業的開發,使得很多長頸鹿的棲地被人類分割而變得支離破碎,牠們的棲地往往被人類的農地、道路或房屋分隔,這令很多長頸鹿族群被迫分離,也令牠們承受人為意外(如汽車碰撞、被鐵栅傷害)的機會大增。
人類在草原大量伐木、放牧、建設農地和市鎮,掠奪了長頸鹿原先可用的棲地。圖/Pixabay
  • 原住民捕獵:很多原住民會捕獵羚羊、猩猩以及長頸鹿作為肉食的來源,長頸鹿由於身型巨大,牠們的生活範圍很多時候也在保護區以外,所以也是十分受歡迎的「野味」。當中最受此原因影響的便是在東非生活的馬賽長頸鹿(Masai Giraffe),牠們的族群數目已經下降了 50%。在肯亞,有報導指出在一個野味市場,一年可能有多達 800 公斤的長頸鹿肉出賣,而每頭長頸鹿的價值可以高達 600-800 美元。
  • 非法捕獵:捕殺長頸鹿販賣至國外是也長頸鹿族群減少的其中一個原因。近年便有兩隻十分罕見的白化長頸鹿在肯亞被非法獵殺,而引起廣泛的報導。英國的獨立報發現,美國在 2006-2015 年間,入口了 40,000 件從長頸鹿不同身體部份製成的物品,包括骨骼、皮膚,甚至是長頸鹿幼兒的標本。這也是導致努比亞長頸鹿(Nubian Giraffe)數目大幅下降的主因。
  • 政治因素:非洲部份國家多年的戰爭亦令很多長頸鹿的保育工作不能進行,很多地方的政府均無法在生態保育投入大量資源,長頸鹿的保育很多時也需要非政府組織(Non-governmental organization)或私人機構的幫助才能進行。
長頸鹿所面臨的各種人為生存壓力。圖/discovergiraffe

地方發起保護長頸鹿的支援前線

就此看來,保護長頸鹿並不容易,需要多方通力合作,針對不同原因而作出對應的方法。

就棲息地的保護,很多地方政府或私人保育機構會成立保護區,例如尼日爾便有一個專為保護西非長頸鹿而成立的 Koure Giraffe Reserve。在南非和納米比亞,南部長頸鹿(Southern Giraffe)由於相對上得到較多私人保育機構的妥善保護和管理,令牠們的族群數目在四個長頸鹿物種中唯一不跌反升。有保育組織會把長頸鹿轉移到受保護的區域,希望牠們能在新的地方落地生根,成功繁衍。專注長頸鹿保育的保育組織 Giraffe Conservation Foundation(GCF)便在非洲不同國家協助長頸鹿搬家,最近他們便幫助於烏干達的 Pian Upe Wildlife Reserve 成功引進了消失了 25 年的長頸鹿。

-----廣告,請繼續往下閱讀-----
重新引入烏干達默奇森瀑布國家公園的羅氏長頸鹿,是努比亞長頸鹿的一個亞種。圖/wiki

在禁止非法貿易方面,長頸鹿在 2019 年被列入瀕危野生動植物種國際貿易公約(CITES)的動物名單附錄 II[註],儘管很多地方的法律只明訂進出口個體需要准許證,卻沒有規範動物身體部位的貿易,但被列入法律保護也是重要的成就。教育方面,很多保育組織也在非洲以及不同地方進行教育推廣,向公眾和下一代灌輸保育長頸鹿的知識。

除了合適的政策,增加對不同地方長頸鹿的認識也十分重要。保育專家近年便提倡正確的長頸鹿分類,生物學家也在非洲各地進行人類對長頸鹿族群影響的研究,希望更能針對性地為保育政策提供重要的資訊。

綜合來看,長頸鹿的生存受到多種原因的威脅,要全面保育長頸鹿免受滅絕的危險,需要政策、法律、科研、教育等一系列的配套措施,看來,我們還有漫漫長路要走。希望在各方的努力和大家的關注下,長頸鹿的族群可以穩定下來,讓我們及下一代可以繼續在非洲的草原上欣賞到這種美妙的動物。

註解

  • 瀕危野生動植物種國際貿易公約(CITES),是於 1963 年起草、1975 年正式執行的一份國際協約,其目的是希望透過限制對野生動植物的出口和進口,確保野生動植物的國際交易不會危害到物種本身的生存。

參考資料:

  1. 聯合新聞網:頑皮世界將引進18隻長頸鹿 挨轟飼養條件差10年死4隻
  2. Giraffe Conservation Status. Giraffe Conservation Foundation. https://giraffeconservation.org/giraffe-conservation-status/
  3. Giraffe. The IUCN red list of threatened species. https://www.iucnredlist.org/species/9194/136266699
  4. Giraffes facing ‘silent extinction’ as population plunges. BBC News. https://www.bbc.com/news/science-environment-38240760
  5. Losing their homes because of the growing needs of humans. World Wild Fund. https://wwf.panda.org/discover/our_focus/wildlife_practice/problems/habitat_loss_degradation/ 
  6. Two rare white giraffes killed in Kenya. National Geographics. https://www.nationalgeographic.com/animals/2020/03/rare-white-giraffes-poached/
  7. CITES conference responds to extinction crisis by strengthening international trade regime for wildlife. The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). https://cites.org/eng/CITES_conference_responds_to_extinction_crisis_by_strengthening_international_trade_regime_for_wildlife_28082019
  8. Kenya’s giraffes slump under local bushmeat trade. African Wildlife Foundation. https://www.awf.org/news/kenyas-giraffes-slump-under-local-bushmeat-trade
  9. A bold plan to save Africa’s shrinking giraffe herds. National Geographics. https://www.nationalgeographic.com/animals/article/bold-plan-to-save-africas-giraffes-feature
  10. Bushmeat hunting: The greatest threat to Africa’s wildlife? Mongabay. https://news.mongabay.com/2020/10/bushmeat-hunting-the-greatest-threat-to-africas-wildlife. /https://news.mongabay.com/2020/10/bushmeat-hunting-the-greatest-threat-to-africas-wildlife/
  11. Bibles, bar stools and cowboy boots: How the US market in giraffe products is driving their ‘silent extinction’. Independent. https://www.independent.co.uk/environment/illegal-wildlife-trade-giraffes-extinction-africa-us-hunting-markets-a9674996.html?fbclid=IwAR26w_Cnt2g4OTmrTefItL1vBjT5Di1RKbHo0EBBZUFcSw2NyJ862iZSles
  12. In Tanzania, Survival of Giraffes Is Influenced by How Close They Live To Towns. Science The Wire. https://science.thewire.in/environment/in-tanzania-survival-of-giraffes-is-influenced-by-how-close-they-live-to-towns/
風言
2 篇文章 ・ 2 位粉絲
從少對動物行為和演化著迷,特別喜愛長頸鹿,修讀了生態學系的環境保護碩士。 愛到不同地方作生態旅遊,閒時也會觀鳥和閱讀有關書籍,希望透過文字介紹神奇的動物行為和生態冷知識。

2

10
0

文字

分享

2
10
0
保育礁體還是保育生態系?藻礁與三接開發問題再對焦!——三接與藻礁保育、能源轉型關係〈對焦會議〉
PanSci_96
・2021/04/23 ・3485字 ・閱讀時間約 7 分鐘 ・SR值 604 ・九年級

  • 作者 / 何郁庭(H編)

桃園沿海約有 27 公里長的藻礁海岸線,範圍包含了白玉藻礁、大潭藻礁及觀新藻礁等珍貴的藻礁地形。為了避免中油第三天然氣接收站在大潭地區動工,珍愛藻礁團體自 2020 年底開始發起公投案,並收到 70 萬份連署書,通過成案門檻。

公投即將於今年(2021)八月底舉行,到目前為止,藻礁生態、能源轉型及迴避開發工程在社會中遲遲未有共識,無論學界還是民間,都需要更多的公共討論,來釐清各項子議題的疑義。

4 月 14 日,由台灣環境資訊協會、荒野保護協會,以及數個民間環保團體主辦三接與藻礁保育、能源轉型關係〈對焦會議〉,邀請各方專業人士,提供研究數據及關鍵資訊,以期促成公共對話的平台,進而在公投之前,尋求能源、生態的雙贏之道。本文整理第三天然氣接收站(以下簡稱三接)與藻礁保育、能源轉型關係對焦會議的生態部分的演說,同時紀錄相關領域專家對民眾普遍的疑慮釋疑。

你說的「保育」是什麼?

生態報告場次的第一位講者,是長期致力於水域生態系研究的林幸助教授。林幸助一開始便表明了生態系服務的兩難,指出人類在開發的過程中,只能經由相對完善的規劃和政策,減少自然資源的耗損。並點出三接各方在爭議時,常常忽略的一個重點:「所謂保育,是保育藻礁礁體,還是保育藻礁生態系?」

-----廣告,請繼續往下閱讀-----

「地質藻礁」指的是由殼狀珊瑚藻歷經千年累積形成的礁體,它是死的、靜態的,要由沙埋才能保護。「生態藻礁」指的是生存於藻礁礁體基質或空隙內的動植物,及其以營養關係為主所形成的藻礁生態系,它是活的、是動態的,也就是所謂的「生態功能」,沙埋會導致它失去功能。

藻礁生態系的現況與三接開發的應變之道

若現在反對開發的原因,是為了保育藻礁生態系,那麼,則需要從藻礁生態系現在正在面對的威脅開始說起。依照林幸助老師團隊的調查結果,以及環保署的公開資料,目前對藻礁生態系最大的影響為工業汙染及漂沙問題,其中又以漂沙對殼狀珊瑚藻的危害最明顯。

林幸助也說明自己的研究團隊使用穿越線調查法,建立桃園藻礁的生物多樣性基礎調查報告,另援引觀塘工業區(港)及鄰近藻礁區域生態調查及監測的工作結案報告書,以辯證大潭藻礁地區的生物多樣性,可能並不如媒體新聞及環團所認為得高。另外,就殼狀珊瑚藻的碳吸存能力議題,林幸助也以數據揭示,台灣地區殼狀珊瑚藻的固碳能力,僅紅樹林的 5%,不但無法稱做藍碳,還可能變成碳釋放[1]

此外,這次公投的內容只說移除三接,但完全沒有提及後續要如何保護[註1]。林幸助認為,如果汙染、漂沙問題若不處理,即便移除三接,環境也不會變好,可能還會更加惡化。若中油採用工程迴避措施開發,承諾改善保育大潭藻礁生態多樣性的問題,有望讓生態系及地質藻礁都獲得保育,也最趨近生態系服務最佳化的方向。

-----廣告,請繼續往下閱讀-----

劃設海洋保護區的原則

第二位演講者溫國彰副教授表示,目前台灣的海洋保護區政策,僅在範圍內禁止漁業活動,但並未對各項污染和廢水進行規範,反觀澳洲對於海洋保護區的政策與規範,制定得更為縝密,操作上也相當細緻。海洋保護區劃設的核心概念是用最小的範圍,保護最大的生物多樣性。將此概念帶入藻礁的議題中,若要根據多樣性設立保護區,永安與大潭 G2 是最優先要劃設的範圍。

人為開發造成不可逆的族群改變

溫國彰的研究團隊針對台灣北部、南部的進行人工海岸線及天然海岸線的魚類組成進行調查與比較,發現人工海岸魚類組成以岩礁魚類為主,天然海岸以珊瑚礁魚類居多。而高珊瑚覆蓋率的人工建物,仍會造成珊瑚和魚類的組成差異。也就是說,人工開發後的海岸,藻礁、珊瑚會再進入棲地,但族群組成與原始組成不同。

觀塘工業區對聲景生態的影響,充滿未知

魚類在求偶或宣示領域等行為上,都會在水下發出聲音,而魚類的幼生(魚苗)也會依循水下聲音,尋找適宜居住的棲地。專精於聲景生態學的林子皓助研究員,正是透過水下聲音的頻譜紀錄,分析水中生物的活動,進而了解生態系的變化與人為衝擊。

林子皓先是說明工業港口與一般水下聲音的差異,在於工業港口的水下聲音充斥各式船隻的引擎聲以及人為噪音。林子皓認為三接開發的人為噪音,可能對當地魚類生態系造成的重大威脅,而人們對水下聲景的研究甚少,這次開發造成的聲景破壞,很可能在瞭解聲音頻譜的重要性前,就先重創了當地的水生環境。

-----廣告,請繼續往下閱讀-----

不只如此,林子皓對於港口建設時的泥沙輸送問題,抱持悲觀態度,目前藻礁已面臨嚴重漂沙問題,若加上堤防與填區的施工,藻礁將面臨不同程度的沙埋與侵蝕,對當前生態系而言,可能是雪上加霜。再者,興建觀塘專用港,必然會導致波浪、水流的改變,這些開發帶來的影響,都將對生態造成可預期的衝擊。

儘管大潭地區的生物多樣性調查,就結果而言,低於附近的觀新藻礁、白玉藻礁,但從聲景的觀點來看,生物多樣性相當高。即便像溫國彰所說,人工開發後的海岸,會有珊瑚重新進入棲地,但魚群組成也可能與原來的生態系組成不同。林子皓透過聲景研究發現當地生態的獨特性,加上考量建港可能會增加的壓力,建議在開發前應更完整釐清生態風險。

用科學呈現客觀事實,爭議前請先回歸原點

最後,許皓捷副教授則表示,科學家面對此類議題時,必須先完整呈現客觀的事實,然後才是價值判斷,因此在各方爭議前,仍須回到「定義」的階段,確認衝突點是否相同。在文獻回顧上,應先從取樣調查的隨機抽樣開始回顧,在援引資料前,也要確認研究是否基於合理假設推論,且結果符合統計學的基本概念。而關於生態學調查的結果,除了種類多樣性之外,同時也需要注意群聚結構的獨特性,以及物種數之於單位面積的關係。

「藻礁議題,是為了保育地質/地景,還是保育藻礁生態?」許皓捷副教授說明,如果兩個問題同時討論,並在不同場合揀選適合自己立場的論述,那聚焦討論時,只會混成一團,無法達到有效的溝通,找出最適合生態系服務的解方。

-----廣告,請繼續往下閱讀-----

許皓捷就沙埋歷史的生態意義多加著墨,近期才露出的大潭藻礁,是否可以根據現有的科學證據,確認其生態系統可承受工程意外的程度?另外,明星物種柴山多杯孔珊瑚的族群,確實存在間斷分布?抑或是根本沒有明瞭牠的分布範圍為何呢?從更根本的問題,回過頭檢驗學者及各方團體的立場,是否建立在客觀合理的前提之下。

各界意見凝聚,試圖找出真正問題

會議最後開放各方,對四位教授提出疑問。在提問環節,普遍對文獻來源、調查方法有較多質疑,並且仍趨向將大潭藻礁還於自然,保留其生態特殊性及地質多樣性。

但也有民眾認同生態多樣性、藻礁生態系的服務價值多元,並提出「人類要如何取捨?」的問題。目前較缺乏輸沙工程對海岸影響的調查,關於這個部分,現有的科學證據似乎還不能提供一個確切的解方。

今年 4 月 1 日於立法院舉行的藻礁保護公聽會,中央研究院生物多樣性研究中心退休研究員邵廣昭在會議上也表示藻礁目前的生態保育狀況良好,且因應國內的關注與未來趨勢,大潭藻礁勢必會受到嚴格的保護。

-----廣告,請繼續往下閱讀-----
影片/民主進步黨 YouTube 頻道

從民眾的提問,及學者們的回應及主張,約略可以看出不同的立場和想法。不過,學界與環保領域的高牆是否有消弭?所謂專業和一般民眾之間,對相同的議題是否有所共識?關於這點,也許未來還值得繼續觀察。

註解

  1. 公投主文:您是否同意中油第三天然氣接收站遷離桃園大潭藻礁海岸及海域?(即北起觀音溪出海口,南至新屋溪出海口之海岸,及由上述海岸最低潮線往外平行延伸五公里之海域)

參考資料

  1. derne, V., Geraldi, N.R., Macreadie, P.I. et al. Role of carbonate burial in Blue Carbon budgets. Nat Commun 10, 1106 (2019). https://doi.org/10.1038/s41467-019-08842-6
所有討論 2