Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

才、才不是在裝文青呢,在咖啡廳工作真的能激發創造力!──《哇賽心理學》

哇賽心理學_96
・2018/03/20 ・2080字 ・閱讀時間約 4 分鐘 ・SR值 493 ・六年級

-----廣告,請繼續往下閱讀-----

作者/潘怡格 主編/蔡宇哲(哇賽心理學 創辦人兼總編輯)

隨著暢銷小說《哈利波特》迅速風靡全球,書迷們也非常關心作者J.K.羅琳到底是從哪裡來的靈感,可以寫下這麼生動的故事。根據羅琳的自我介紹,她常在英國愛丁堡的一間咖啡館寫作,慢慢的勾勒出霍格華茲這個充滿想像力的奇幻世界。

其實不只羅琳,還有許多的文學家,例如波特萊爾、海明威、沙特、西蒙波娃等,都喜歡聚集在咖啡館。這到底是一種時尚潮流?還是咖啡館真的有一種魔力,可以提供人們創作的靈感?

source:Pexels

根據心理學和神經科學家對創造力的研究,發現光線和空間是很重要的影響因素,許多咖啡館的環境確實蠻符合研究中所提到的幾個條件。

-----廣告,請繼續往下閱讀-----

實驗一:光線越昏暗,越有創意

德國心理學家安娜.史泰德爾(Anna Steidle)與她的團隊想知道「調整房間的明暗程度,會不會讓人們有更好的創造力與工作表現。」

因此,他們設計了一個實驗,邀請40個大學生,並依照房間燈光將其分成「明亮組」與「昏暗組」,在進入實驗之前會跟學生說「你正前往一個未知的星球,即將面對的是一個與地球截然不同的世界」,接著給他們 7 分鐘的時間畫出一個外星人的圖案。

評分者會依據圖案整體的創新程度,跟地球生物的相似程度、特徵的非典型程度(例如:有五隻腳、眼睛會發出雷射光)等三個面向給予分數。

實驗結果發現,昏暗組的那些人所畫的外星人有較多的非典型特徵,也比較不像一般的地球生物,因此在整體的創新程度比明亮組表現得更好。研究者認為適當的昏暗可以激發人們創意潛能,尤其是在執行需要靈感的工作時。

-----廣告,請繼續往下閱讀-----

但是,為什麼昏暗的燈光可以激發創意呢?

安娜.史泰德爾為了找到答案,又進行了一系列的實驗,他們利用調整房間的明暗度,請參與者評估自己感到自由的程度。評估結果發現,昏暗容易讓人有一種不被拘束的感覺,而且昏暗組在答題時,比起正確率反而更在乎速度快慢,暗示著昏暗的環境讓人有更想探索的欲望而較不擔心犯錯,這樣的心態能使創造力更容易發揮出來。

這樣聽起來,太明亮的地方是不是不好呢?雖然明亮的光線對創造力沒有明顯影響,卻有利於我們做分析和評價的相關思考,因為不同於昏暗組,明亮組更在乎的是答題正確率的表現。

圖/作者提供。

實驗二:天花板越高,思考越自由

除了燈光之外,行銷學家瓊.麥爾斯李維(Joan Meyers-Levy)和朱瑞(Rui Zhu)也做了一個實驗,想瞭解空間高度會不會影響人們的思考和行動方式。

-----廣告,請繼續往下閱讀-----
source:pxhere

研究者將實驗的參與者依照房間天花板的高度,分為「挑高組」(3.1公尺)與「一般組」(2.48公尺),在實驗室的天花板掛上燈籠,目的是為了引導參與者的視線往上看,以便讓他們有機會目測天花板的高度,接著開始進行解字謎的遊戲。

結果發現,「挑高組」在解答與「自由」相關的字詞(例如:解放、不設限)上速度快得多;但是,一旦字謎是與「限制」相關的字詞時(例如:約束、矜持),情況恰恰相反,會變得比較慢。

另一個實驗則要求參與者從10項不同的運動清單中,找出相同之處。結果,挑高組比一般組舉出更多的共同點,且這些共同點本質也較為抽象。因此研究者認為:「挑高的天花板讓參與者的心裡感受比較自由,使得思考能更抽象且具有創意。」

圖/作者提供。

心理學給你的建議:利用昏暗與挑高的天花板,激發創作靈感

綜合上述研究,可以發現人的思考多少會受到環境影響,適當的昏暗與挑高的天花板,會讓我們的思考更自由,進而激發創作靈感,明亮的燈光則適合處理需要高度專心的任務。

-----廣告,請繼續往下閱讀-----

由此可知,咖啡館的盛行不是沒有原因的,除了滿足飲食的生理需求及流行的追求外,挑高的天花板及昏黃的光線,不知不覺中也能滿足需要創意與靈感人士的需求。

在家中,我們很難擅自調整天花板的高度或是燈光明暗,因此心理學給你的建議是,下次需要靈感的時候,不妨找一間空間寬敞、燈光朦朧昏暗的咖啡館,慢慢累積創意的養分,培養靈感的來源。

原來咖啡館在不知不覺中能滿足需要創意與靈感人士的需求了呢。圖/Neo_II@flickr
  • Freedom from constraints: Darkness and dim illumination promote creativity. Journal of Environmental psychology, 2013;35 67-80.
  • The influence of ceiling height: The effect of priming on the type of processing that people use. Journal of Consumer Research. 2007;34(2), 174-186.

想了解更多哇賽!心理學嗎?
3月 25 日(日)於金石堂城中店
免費心理學講座等你來參加,活動細節搶搖滾區由此去

 

 

本文轉載自泛科學 2018 年 3 月選書《哇賽心理學》,格子外面出版

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
哇賽心理學_96
45 篇文章 ・ 11 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
創意藏在夢裡?引導夢境助你突破創作瓶頸,解決生活難題——《我們為何會做夢》
PanSci_96
・2024/11/03 ・2262字 ・閱讀時間約 4 分鐘

從惡夢到創意靈感的奇妙旅程

1987 年,美國塔夫茨大學醫學院(TuftsUniversitySchoolofMedicine)的恩尼斯特・哈特曼(ErnestHartmann)帶領了一項深入研究,比較了十二名終身受惡夢所擾的人、十二名夢境生動的人,和十二名既非惡夢受害者也不是夢境生動的人。每位受試者均接受了結構式訪談、心理測驗和其他措施,以評估他們的性格。研究人員發現,受惡夢困擾的人比起其他兩組受試者,具有更強烈的藝術和創作傾向。換言之,在夢中想像邪惡或危險力量的心智,清醒時也可用其豐富的想像力發揮創意。

惡夢曾為許多知名作家的作品提供靈感。聞名全球的恐怖小說作家史蒂芬・金(StephenKing)在飛機上睡著,夢見了一名瘋狂女子囚禁並殘害了她最喜愛的作家,結果成了《戰慄遊戲》(Misery)一書的靈感來源。

《鬼店》(TheShining)的構思也來自於一個夢。史蒂芬・金和妻子是一山中度假飯店僅有的兩位客人,當時飯店由於季節即將關閉。他在夜裡夢見自己三歲的兒子尖叫著跑過大廳,被消防水管追趕。他從惡夢中驚醒,滿頭大汗。史蒂芬・金回憶,當時他點了一支菸,望向窗外:「菸抽完時,這本書的架構已經在我的腦海裡成形。」

傑克·尼克遜(Jack Nicholson)名場面之一,即出自於《鬼店》(TheShining)。圖/wikimedia

我們如何看待法國和其他處的史前洞穴壁畫及其他古代文物?世界各地所描繪的許多生物,都是人獸混合的動物形象,使得考古學家不禁心想,這些奇特的圖像是否可能是受到了夢境的啟發?惡夢既是人最容易記住的夢境,這些會不會是最早對惡夢的藝術描繪?我同意此種看法。我們有理由認為,說故事本身也許源自於分享夢和惡夢的渴望。

-----廣告,請繼續往下閱讀-----

如何引導夢境來激發創意?

古埃及人建造了睡眠神廟,讓人可以在此處睡覺,希望能誘發夢境,幫助他們治癒疾病或做出重要決定。古希臘人也會去特殊的神殿祈禱,希望做一個能解決問題的夢。希臘人稱此作法為「孵夢」。現今研究顯示,孵夢不僅僅是建立在信仰上的古老方法,它背後有真正的科學依據。

研究人員發現,做夢的人可以透過暗示來影響夢境發展。雖說這不是萬無一失的過程,但他們發現,光是表達你想夢見某個人或特定主題的意圖,通常就能將夢境推向此方向。透過此種方式,我們也許能引導自己的夢境,來幫助激發創意、思考社交難題和考慮重大決定。哈佛大學夢境心理學家芭瑞特要求她的學生在睡前十五分鐘思考一個情感相關的問題。結果,半數學生表示,他們做了與此問題有關的夢。

由於夢境如此視覺化,所以,入睡時在腦海裡設想某個人、想法、地點或問題,將有助於你孵夢成功的機率。正如我們在關於惡夢的章節中所了解,我們可以運用意象預演療法改寫反覆出現的惡夢,重新編排夢境情節,使其變得無害,甚至給它更好的結局。這種方法聽來雖然簡單,但相信你也記得,研究也證明此法常常能成功幫助人們擺脫惡夢。孵夢也一樣,聽來雖像是一廂情願的想法,但嚴謹的研究已證實了此種方法引導夢境的效用。

入睡時設想特定情境有助於引導夢境,研究證實了這種方法的效用。 圖/unsplash

MIT 前沿科技助力夢境設計

麻省理工學院媒體實驗室(MediaLab)的研究人員,一直致力於開發睡眠和夢境設計技術,希望藉此大幅提升創造力。研究裝置會感知受試者進入睡眠的情況,並提供口頭提示,詢問受試對象在想什麼,然後記錄對方的反應。如我們將在第8章所見,現今還有其他方法可利用感官來設計夢境內容。

-----廣告,請繼續往下閱讀-----

正如我們探討如何減輕惡夢時的方法,你也可以在紙上寫下自己的意圖,放在床邊,或將希望夢見的事物相關圖片、物件放在床邊。這不僅僅是某種象徵儀式,而是人們見證能啟發他們夢境的有效方法,就好比我們將原料放進鍋裡,等待夢境以全新、意想不到的方式將它們混合。

當解決方案能在腦海以視覺呈現時,孵夢最容易成功,原因是視覺皮質在快速動眼睡眠期間十分活躍。睡前請回顧一下你想夢見的問題或主題,想像自己夢見了這個問題後醒來,然後在床邊的紙上寫下夢境。

芭瑞特的學生選擇了學術、醫療和個人方面的問題,並記錄哪些夢境為他們的問題提供了潛在的解決辦法。其中一名學生搬到了一間較小的公寓,無法找到不顯雜亂的家具擺放方式,結果他夢見將五斗櫃搬到客廳,這名學生實際嘗試了一下,果真有效。另一名學生在選擇麻州或其他地方的學術課程時陷入兩難,他夢見自己乘坐的飛機需要緊急降落,夢裡飛行員說降落在麻州太過危險,做夢的學生一想到這個夢,便意識到了選擇其他地方課程的決定。

即便不記得自己的夢,它們也能影響你清醒時的想法。你也許會突然靈光一閃、腦海瞬間蹦出想法或沒來由地想到解決辦法,這些靈感很可能來自於我們的夢境。不論記不記得,我們每晚都會做夢,而我們的夢夜夜都在為我們從事創意工作。

-----廣告,請繼續往下閱讀-----

——本文摘自《我們為何會做夢:睡夢中的大腦如何激發創造力,以及更好地改善清醒時的生活》,2024 年 11 月,悅知文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。