0

0
1

文字

分享

0
0
1

二氧化硫:上年貨大街前先漂白一下

行政院環境保護署毒物及化學物質局_96
・2018/02/13 ・2615字 ・閱讀時間約 5 分鐘 ・SR值 529 ・七年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/林宇軒

每到過年必出現的年貨新聞總會「驚傳」食安問題,背後有什麼故事呢?圖/pixabay

南市查獲黑心白瓜子 二氧化硫殘量達標準10倍」、「嘉市抽驗年節食品 1件酸菜二氧化硫超標」看到這些新聞、你也開始緊張起來了嗎?年貨抽驗「驚傳」食安問題,已經是見怪不怪每年必出現的報導了,之前我們聊到了乾貨中的防腐劑「苯甲酸」,這次讓我們也一起來看看年貨裡的另一位常客「二氧化硫」到底是誰吧!又為什麼有些食品會需要二氧化硫漂白呢?

二氧化硫是什麼?為什麼會出現在食物裡?

首先要先破解一個很重要的迷思,雖然二氧化硫具有漂白的能力,但並不是「直接使用二氧化硫來漂白食品」。食品中的二氧化硫是來自於合法的食品添加物:亞硫酸鹽類,如亞硫酸鈉(Na2SO3)、亞硫酸鉀(K2SO3),以及低亞硫酸鈉(Na2S2O4)等等(這些可以產生二氧化硫的合法添加物總共有 8 種:第四類漂白劑食品添加物使用範圍及限量)。

-----廣告,請繼續往下閱讀-----

這些添加物具有「還原性」可以漂白食品,也能夠防止食物中的分子變質、腐敗,導致顏色、味道改變,因此還有防腐的功能。瓜子、開心果、竹筍、竹笙、金針、蝦仁、香菇、酸菜乾等等,幾乎大部分常見的年貨都有這類添加物,以確保其保存效用以及讓食物更美觀。

這幾種亞硫酸鹽類的添加物,在食品這樣富含水分的環境中,有一部分的分子會轉變為二氧化硫,可以在食物中被檢測到。所以檢驗單位就利用食品中所含二氧化硫的量,來回推添加劑的使用量,並且做出限制規範。

生活中還有哪些食品含有亞硫酸鹽類?

人類以亞硫酸鹽作防腐其實源遠流長,自從古羅馬時代至今,葡萄酒在釀造的過程中,都會加入二氧化硫或亞硫酸鹽,不只利用其還原性來防止葡萄酒變酸、也有抑制微生物生長的功能。

即使不主動加入這類的添加物,在釀造葡萄酒的過程中其實也會自然地產生非常微量的二氧化硫。舉例來說,白酒含有比紅酒稍高一些的二氧化硫濃度(McCarthy & Ewing-Mulligan, 2015)。

-----廣告,請繼續往下閱讀-----
  • 關於葡萄酒中所含的二氧化硫,這裡有更多說明。

其他的加工食品,像是前面提到過的瓜子、開心果;乾貨類像是果乾或蔬菜乾等常見年貨,也會添加亞硫酸鹽來協助保存和保色(國家環境毒物研究中心)。不過,這些亞硫酸鹽類的食品添加物都不能使用於生鮮食品。

瓜子開心果等常見的年貨裡幾乎都會添加亞硫酸鹽來協助保存和保色。圖/pixabay

亞硫酸鹽類在人體如何代謝

一般來說,進入人體的亞硫酸鹽類,都會被亞硫酸鹽氧化酵素(Sulfite Oxidase)代謝,變成硫酸根之後,會隨尿液排出體外,不會蓄積在人體內。雖然人體有穩定的代謝流程,成人如口服超過 250 毫克的亞硫酸鈉,還是有可能會導致急毒性反應,譬如呼吸困難、腹瀉、嘔吐等症狀。(詳見食藥署資料)根據聯合國糧農組織與世界衛生組織的食品添加物聯合專家委員會(The Joint FAO/WHO Expert Committee on Food Additives, JECFA)的建議,以一個體重60公斤的成人計算,亞硫酸鹽每日容許攝取量為 42 毫克(以二氧化硫計)。如果攝取的是合法添加的瓜子(0.03g/kg),成年人約可每天吃到 1.4 公斤都還在安全範圍內。

雖然對於體內缺乏亞硫酸鹽氧化酵素的人來說,由於他們無法將亞硫酸鹽氧化成硫酸鹽而排出體外,就有可能會損害腦、神經系統等等的器官。但缺乏亞硫酸鹽氧化酶是種基因缺陷的罕見疾病(亞硫酸鹽氧化酶缺乏/胱氨酸尿症),目前世界上僅有 50 個案例,是連發生率都很難計算的罕見疾病。

年貨泡泡水,輕鬆移除二氧化硫

經典年菜佛跳牆就使用了許多乾貨作為食材。圖/SunSuke [CC BY-SA 2.5] via wikipedia

如前面所說的,如果食用的是合法的加工食品,加上人體的代謝機制,吃年貨、嗑瓜子的時候其實大可不用太過擔心。但是如果還是希望減少食品中的亞硫酸鹽類與二氧化硫的話,可以利用這類分子都易溶於水的特性,在料理或食用前,先將醃漬或乾燥蔬菜以清水沖洗浸泡處理。以目前添加容許量最高的金針(4 g/kg)為例,在烹煮之前將金針在 45 ℃溫水中浸泡至少 20 分鐘,或在 25 ℃冷水中浸泡至少 60 分鐘(詳見食藥署週報),就可以有效減少這些化學物質的含量,做出鮮美的料理。

-----廣告,請繼續往下閱讀-----

至於一開始怎樣挑選合法添加的年貨呢?我們又要回到本系列的老生常談了,在選購醃漬或乾燥蔬菜等產品時,應該儘量避免購買顏色過白的食品、或是有刺激性氣味的商品;選擇有可靠標示、有商譽的商家,讓大家可以快快樂樂購物、安安心心享用美食與假期囉!

延伸閱讀:

  1. 吊白塊:讓潤餅皮常保美白、不易腐敗的壞東西? – PanSci
  2. 香腸與亞硝酸鹽的那些事 – PanSci
  3. 食品添加物是商人的陰謀,還是成本?—「PanSci Talk:天然ㄟ尚好?添加物都是商人的陰謀?」 – PanSci

參考資料:

  1. 第四類漂白劑食品添加物使用範圍及限量
  2. McCarthy, Ed, and Mary Ewing-Mulligan. Wine for dummies. John Wiley & Sons, 2015.
  3. 國家環境毒物研究中心 食品安全資訊網-[新聞解讀]-亞硫酸鹽
  4. Sulfite Oxidase – Wikipedia
  5. 亞硫酸氧化酶缺乏 Sulfite Oxidase Dificiency – 罕見疾病基金會
  6. >乾燥金針「泡、洗、煮」 減少二氧化硫殘留 – 衛生福利部藥物食品安全週報
  7. Sulfite – Wikipedia
  8. Sulfur dioxide – Wikipedia
  9. Sulfur dioxide (SO2) in wine _ Wine From Here
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 9 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

16
3

文字

分享

0
16
3
隱藏在大氣裡的神祕訊息!用氣象衛星監測火山爆發產生的氣象波動與環境汙染
Ciao True_96
・2022/01/30 ・4193字 ・閱讀時間約 8 分鐘

  • 作者/邱麒豪(國立中央大學大氣物理研究所博士候選人)、劉千義(中央研究院環境變遷研究中心副研究員)

咦!地球彼端的火山爆發和我們有什麼關係?

距離臺灣八千多公里的東加王國發生了前所未有的火山爆發,當太平洋周遭國家開始擔心海底火山噴發引起海嘯的同時,卻有更多不為人知的事情正悄然發生。到底火山噴發的同時除了引發海嘯還造成什麼樣影響呢?讓我們一同來瞭解!


看不見也摸不著的氣象波動——大氣重力波

大氣的重力波現象並不罕見,通常是垂直方向上的氣塊受到擾動,在浮力(作為恢復力)與重力的雙重影響下而在水平面上形成振盪式的波動。

常見的氣流流經山峰並在背風處產生圓盤狀的雲系(莢狀高積雲),以及晴朗穩定天氣下出現的波狀高積雲即為大氣重力波在自然這張畫布下最好的圖繪。而火山爆發,同樣有機會引起大氣重力波。

西元 2022 年 1 月 15 日,臺灣時間下午 12 時 20 分(事發當地時間下午 5 時 20 分)左右,位於西南太平洋島國——東加王國首都努瓜婁發(Nuku’alofa)北方65公里的洪加湯加-洪加哈派(Hunga Tonga-Hunga Ha’apai)海底火山大規模爆發,伴隨而來的地震與引起的海嘯引發世界的關注。

這場可能是 21 世紀以來最大規模的火山噴發,其一連串的後續效應不僅被地震儀及海象儀器記錄下來,當天下午 8 時左右,臺灣的氣象站也陸續觀測到海底火山噴發造成的氣壓變化,根據觀測資料顯示,這次的海底火山噴發事件在臺灣造成的氣壓變化量約 1 至 2 百帕(hPa),這大約是日常標準大氣壓力的千分之一至千分之二的變動(圖一)。

-----廣告,請繼續往下閱讀-----
【圖一】中央氣象局 222 個自動氣象站氣壓擾動動畫。
圖/中央氣象局第二組;資料來源:中央氣象局

若將地面氣壓資料的解析度提高到每分鐘,並將中央氣象局109個局屬測站由東南向西北排列,繪製成臺灣高密度測站氣壓擾動的二維時間序列圖(圖二),火山噴發由東南向西北傳遞的能量作用於大氣中最先於臺灣東南方的蘭嶼測站測量到,時間上和最晚被觀測到的馬祖測站相差約 25 分鐘。其次,火山噴發造成的大氣波動除了氣壓變化最為劇烈的主波外,尚有前導波與數次的餘波產生。

【圖二】中央氣象局 109 個局屬測站氣壓擾動二維時間序列圖。
圖/黃椿喜博士;資料來源:中央氣象局

綜觀全球的大眼睛——從氣象衛星看見大氣重力波

從上圖可以觀察到,這些波動的週期約為 10 到 15 分鐘,不容易從 10 分鐘的觀測資料中發現。目前在西太平洋與東太平洋地區監測的地球同步衛星向日葵八號(Himawari-8)與 GOES-17,可分別提供 2.5 分鐘與 1 分鐘高解析度的衛星觀測,對於高頻的大氣波動將有比過往更好的解析能力。

不只是地面氣象觀測站,位於地球上空 3 萬 6 千公里的地球同步衛星同樣也捕捉到火山噴發的證據。日本氣象衛星 Himawari-8 觀測到火山噴發後產生的陣陣漣漪(圖三),以火山噴發口為中心產生的漣漪即為大氣的重力波現象。

【圖三】火山噴發造成雲頂高度變化的重力波振盪。
圖/邱麒豪;資料來源:Himawari-8

東加王國所在的區域不僅位於向日葵八號的觀測網內,也涵蓋在美國的地球同步衛星 GOES-17 監測之中。下圖(圖四)為 GOES-17 氣象衛星紅外線水氣頻道每 10 分鐘的亮度溫度差,藉由對流層中層的水氣頻道雲圖可以明顯看到火山爆發產生的內重力波由火山口為圓心向外傳遞。

【圖四】火山噴發造成的重力波振盪。
圖/CIMSS / UW-Madison;資料來源:GOES-17

火山噴發引起快速上升的氣流與火山灰造成的重力波現象在學理上是可行的,但在觀測上實屬少見,特別是海底火山能將大量的火山灰與氣體穿過海洋快速釋放至大氣中,並造成如此壯觀的大氣波動並不是件容易的事。

-----廣告,請繼續往下閱讀-----

這場大氣波動產生的雲系高度深,範圍廣,觀測到的雲頂紅外線亮度溫度達 -105.18ºC 可能打破了自 20 世紀末有雲頂溫度的監測以降,最低溫的紀錄(圖五)。

【圖五】火山噴發產生的重力波雲,雲頂亮度溫度達 -105.18ºC。
圖/CIMSS / UW-Madison;資料來源:GOES-17

除了上述的兩顆地球同步衛星,搭載於美國國家航空暨太空總署(NASA)之 Aqua 衛星上的大氣紅外探空儀(Atmospheric Infrared Sounder,AIRS)也同時發現了此一現象(圖六)。德國尤利希超級運算中心的大氣科學家——霍夫曼博士(Dr. Lars Hoffmann)說:「AIRS 自 2002 年 5 月開始觀測以來,從未在過往的火山噴發個案中發現過類似的情況」,這也意味著這次的海底火山噴發事件是前所未有的劇烈。

【圖六】AIRS/Terra 觀測到數量極為龐大的同心圓狀重力波雲。
圖/Dr. Lars Hoffmann;資料來源:AIRS/Terra

英國牛津大學物理系大氣、海洋與行星物理組的氣候科學家 Scott Osprey 博士也表示:「這次噴發可能會干擾熱帶地區風向週期性的逆轉,長遠看來或許會造成歐洲地區天氣型態的改變,必須非常小心地關注它造成的變化」,可見整個地球系統都可能因為這次的火山爆發造成巨大的影響。

雲圖之外——衛星於汙染物探勘之應用

衛星不僅僅能夠監測雲層的移動與大氣中的水氣分佈,近年來較為廣泛的應用是使用衛星針對大氣中的汙染因子做大範圍的遙測。舉凡工業污染排放之氣溶膠、交通源排放之二氧化氮,以及生質燃燒產生之煙塵與黑碳微粒,均可藉由衛星的觀測進而推估汙染程度,並搭配氣象模式的模擬進行短期的預警。

下圖(圖七)為 NASA 的 Suomi-NPP 衛星觀測到的氣膠垂直剖面分佈與雲頂高度,可以清楚看到伴隨火山噴發的氣膠粒子衝破對流層進入平流層,高度可達 30 公里。這些氣膠粒子在平流層中不易沉降至地表,長期下來可能會對氣候造成重大影響。舉例而言,氣膠依照光學特性的不同可粗略分為散射能力較強與吸收能力較強的兩大群體,散射能力較強的氣膠進到平流層中將造成更多的太陽短波輻射被反射回外太空,進而降低地球平均溫度(氣膠直接效應);反之吸收能力好的氣膠則是會讓地球溫度上升。

【圖七】Suomi-NPP 探測到火山噴發的氣膠粒子可衝破對流層進入平流層。
圖/Dr. Ghassan Taha;資料來源:Suomi-NPP

而對流層中的氣膠對氣候的影響更為複雜,會進一步改變雲的微物理狀態,在特定條件下吸濕性高的氣膠容易成為雲的凝結核,若大氣中的水氣含量不變,這些新形成的雲凝結核有可能與大氣中既有的雲滴競爭原先的水氣,進而致使雲滴數目增加且雲滴平均的粒徑降低,進而散射截面積增加,反射更多太陽光而達到降溫的效果。但也因為雲滴粒徑變小後,變得不利於雲滴粒子間的碰撞合併過程而形成為雨滴,使得地表降水減少與雲的生命週期增加,此謂氣膠間接效應。

-----廣告,請繼續往下閱讀-----

不管是氣膠的直接效應或是間接效應都非常複雜,會受到氣膠種類、氣膠數量、氣膠粒徑分佈、大氣條件等影響,也正因為充滿了各種不確定性,氣膠的氣候效應預測非常困難,目前還需要更多的觀測,特別是用大範圍的衛星觀測加以驗證與評估。

火山噴發除了氣膠粒子的污染以外,對環境造成的另一個衝擊是大量的氣體被釋放到大氣中。常見的火山氣體有:水氣(H2O)、二氧化碳(CO2)、二氧化硫(SO2)、硫化氫(H2S)與氮氧化物(NOx)等。

以二氧化硫為例,評估大氣中微量氣體多寡的單位為杜布森(Dubson, DU),指的是一大氣壓的空氣柱中,該氣體分子累積起來的厚度(垂直積分)多寡。若將氣柱中的二氧化硫全部累積在一起相當於 10 微米厚,稱為 1 DU 的二氧化硫。SO2 氣候平均值約略低為 0.5 DU,歐洲氣象衛星開發組織(EUMETSAT)的 MetOP-B 與 MetOP-C 觀測到的峰值高達 50 DU 以上,高於氣候平均值 100 倍。(圖八)

【圖八】MetOP-B 與 MetOP-C 發現火山噴發的二氧化硫濃度超過氣候平均值 100 倍。
圖/Dr. Simon Carn;資料來源:MetOP-B & MetOP-C

氣象與環境衛星遙測之展望

近年隨著科技的發展與遙測技術的精進,氣象衛星能提供的不僅僅是精美的天氣雲圖,還有許多從雲圖看不出來的科學議題可加以探討。這些科學議題不單只存在於象牙塔內,更多且更重要的是生活上的應用。社會大眾關心的是:下午的聚會會不會下雨?明天空氣汙染有多糟?或是下禮拜一晚上會多冷?

衛星掩星觀測技術的發展(如:福衛三號、福衛七號、Sentinel-6 等)補足了廣大洋面探空資料的缺失以及人力施放的不足,蒐集偏折角資訊與折射率變化推估出的大氣垂直溫溼度剖面,藉由數值預報模式的資料同化系統改善天氣預報的誤差

汙染物濃度的監測也可以藉由衛星的觀測進行評估,不論是民眾在乎的近地表懸浮微粒濃度抑或是工業燃燒造成的空氣汙染,皆可藉由衛星的探測第一手掌握(如文章提到的 MetOP-B、MetOP-C 以及 Sentinel-5P)。

-----廣告,請繼續往下閱讀-----

降雨來自天空中的雲,若能對雨的前驅物—雲有更深的瞭解,降雨的推估也能做得更準確。以我們所處的東亞地區而言,像是以 Himawari-8 觀測而開發的雲微物理科學資料,或是國際上整合多重衛星觀測的日本 GSMaP 、美國 NASA IMERG 等衛星推估的地面降水資料就是很好的例子

當然,科學的發展並不是單純為民生服務,但在發展科學的同時能兼顧民眾的福祉相信也是社會大眾所樂見的。

延伸閱讀

  1. Liu, C.-Y., C.-H. Chiu, P.-H. Lin, and M. Min (2020), Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, J. Geophys. Res., Vol 125.
  2. Lin, C.-A., Y.-C. Chen, C.-Y. Liu, W.-T. Chen, J. H. Seinfeld, C.-K. Chou (2019), Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens., Vol 11, 1738.
  3. Explosive eruption of the Hunga Tonga volcano” in CIMSS Satellite Blog.
  4. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere” in nature’s news article.
  5. 中央氣象局預報中心副主任黃椿喜博士臉書
  6. 報天氣-中央氣象局」臉書粉絲專頁
Ciao True_96
1 篇文章 ・ 3 位粉絲
主修大氣科學,參加天文社。 年輕的外表下住著古老的靈魂,喜歡看老電影,也喜歡拿著底片相機記錄生活中的點點滴滴。 是個科學工作者但對藝術、音樂、歷史與文化也稍有涉略,畢竟「什麼都略懂一點,生活就多采一些!」

0

0
0

文字

分享

0
0
0
吊白塊:讓潤餅皮常保美白、不易腐敗的壞東西?
行政院環境保護署毒物及化學物質局_96
・2017/12/28 ・2772字 ・閱讀時間約 5 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/林宇軒│自由寫手

大家應該還記得寒食節吃潤餅的小故事吧?春秋時代晉文公為了感念在過去流亡的時候幫助自己的介之推,打算冊封他於綿山,可是介之推不願意做官、避不下山,晉文公一怒之下下令放火燒山,卻意外燒死了恩人介之推。懊悔不已的晉文公設立了「寒食節」,規定此節期間都不可生火煮食,民間因此衍生出以餅皮包著食材吃的食物。

編按:根據《每日一冷》的介紹,其實「晉文公燒山」的故事並無史籍紀載證明,很可能是野史附會,卻成為後人傳頌的民俗故事。

到了現代,寒食節已與清明節合併,「吃潤餅過清明」可說是一種民俗風尚,每年到了這個時候,很多人家裡都會準備上一些來享用。

-----廣告,請繼續往下閱讀-----

然而如此美味可口的潤餅也曾發生過食安事件,2015 年宜蘭縣政府衛生局就曾查出有不肖業者為了要讓潤餅皮維持白色、擁有 Q 彈口感,並且防腐保鮮,竟在潤餅皮中加入非法的食品添加物「吊白塊」。究竟,吊白塊是什麼東西,竟然可以達到這麼多驚人的功效?這麼「好用」的物質,又為什麼要被禁止添加進食品中呢?

「吊白塊」是有什麼神奇能力可以讓潤餅皮變得又白又Q彈,甚至防腐呢?這麼「好用」的物質,又為什麼會被禁止添加入食物中? 圖/By Kguirnela via Wikimedia Commons

吊白塊的正確使用方法:破壞結構使顏色消失

吊白塊其實是「甲醛次硫酸氫鈉」的俗名,時常在紡織品的染色步驟中擔任「還原劑」的角色。因為布料印染大多用的是偶氮類染料,因此使用次硫酸氫鈉這種強還原劑,能把染料分子偶氮雙鍵打斷,結構被破壞而使得顏色消失,這樣的步驟稱為「拔染」或「雕印」,因此被稱為「雕白粉」或「吊白塊」。

吊白塊的外型為半透明白色的結晶或小塊,易溶於水,合法的主要用途是工業用的漂白劑。它是甲醛結合亞硫酸氫鈉後再還原製成,因此分子本身比較不穩定,遇到酸性環境或加熱超過 60°C 就會分解,變成甲醛和次硫酸氫鈉,而次硫酸氫鈉還會再進一步分解出二氧化硫

-----廣告,請繼續往下閱讀-----

吊白塊在高溫下也有很強的還原性,因此可以漂白食品(但是不合法喔!);除此之外,分解之後產生的二氧化硫氣體,同樣也具有還原力,也能達到漂白潤餅皮的效果 ── 這件事大家應該不陌生,例如某些製造商為了維持免洗竹筷的顏色,也會添加二氧化硫以漂白產品[1]。

另外,吊白塊的還原性也會破壞食品中的蛋白質結構,讓蛋白質分子互相連接變成凝膠狀,使食品產生 Q 彈、有嚼勁的口感。

圖/Wikimedia Commons, CC0

這麼好用,為什麼要禁止呢?

前面有提到,不肖廠商之所以把吊白塊加入潤餅皮,還因為看上了它「防腐」的功能。那麼明明是漂白劑的吊白塊,為什麼能夠防止食物腐敗呢?這是因為吊白塊會分解出甲醛,甲醛容易氧化成甲酸,其還原性能夠協助食物保存,讓潤餅皮保成品存放更久。而這邊也補充甲醛更深一層的應用:濃度 30-40% 的甲醛水溶液就是俗稱的「福馬林」,可是標本或屍體防腐的好幫手呢!

-----廣告,請繼續往下閱讀-----

吊白塊既可以改良外觀與口感又能防腐,聽起來很讚啊!為什麼要禁止人們加入食品中呢?問題仍然出在甲醛身上!

人若接觸過多的甲醛,呼吸道或結膜等黏膜區域容易被刺激而過敏,甚至可能引起腸胃不適、噁心或嘔吐;加上甲醛已經被國際癌症研究中心 IARC 列為「對人類有明確致癌性」的第一類致癌物,因此縱然吊白塊對改善產品有不少好處,仍然不適合被人類吃下肚。

甲醛水溶液「福馬林」可防腐的特性,讓它成為許多標本製作者的好夥伴。圖/LoKiLeCh@wikimedia BY CC 3.0

如何避開吊白塊潤餅皮?觀察外觀、低溫保存

因為其對健康的危害風險,吊白塊在許多國家都不被允許添加到食品中,今年(2017),化學局更將吊白塊列入需要從源頭控管流向的化學品,希望能降低其流入食品的風險。

-----廣告,請繼續往下閱讀-----

如果你還是很擔心所吃的潤餅皮可能含有被吊白塊成分,根據我們剛聊到的幾個添加吊白塊會產生的特色:「漂白」、「Q 彈與嚼勁」、「防腐」,你可以在挑選潤餅皮的時候注意以下幾點:

  1. 避免挑選顏色過白,甚至白得有點不自然。
  2. 避免挑選過脆或太軟 Q、韌性過高。
  3. 聞聞看有無異味。
  4. 業者宣稱常溫下可保存多時的不要購買。

最後,購買後也應儘量趁新鮮食用,否則要放冰箱冰存,可別避開了吊白塊,結果吃到腐敗的食物鬧肚子痛啦!

註解:

[1] 根據衛福部公告的「免洗筷衛生標準」,免洗筷中二氧化硫殘留量應為 500ppm 以下,過氧化氫及聯苯則為不得檢出。

-----廣告,請繼續往下閱讀-----

參考資料:

  1. (新聞) 潤餅皮違法添加吊白塊 新北驚爆製作商已使用20年 – 東森新聞雲
  2. (新聞) 不肖業者”吊白塊” 潤餅皮Q彈又防腐 – 公視新聞
  3. 認識吊白塊 – 健康主題網, 彰化縣衛生局
  4. 吊白塊是什麼?其成分、用途及危害為何? – 食品生活網-台灣食品科學技術學會
  5. 甲醛次硫酸氫鈉 Wikipedia
  6. 甲醛次硫酸氫鈉Sodium Formaldehydesulfoxylate – 國家衛生研究院
  7. 國家環境毒物研究中心-甲醛
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 9 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
1

文字

分享

0
0
1
二氧化硫:上年貨大街前先漂白一下
行政院環境保護署毒物及化學物質局_96
・2018/02/13 ・2615字 ・閱讀時間約 5 分鐘 ・SR值 529 ・七年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/林宇軒

每到過年必出現的年貨新聞總會「驚傳」食安問題,背後有什麼故事呢?圖/pixabay

南市查獲黑心白瓜子 二氧化硫殘量達標準10倍」、「嘉市抽驗年節食品 1件酸菜二氧化硫超標」看到這些新聞、你也開始緊張起來了嗎?年貨抽驗「驚傳」食安問題,已經是見怪不怪每年必出現的報導了,之前我們聊到了乾貨中的防腐劑「苯甲酸」,這次讓我們也一起來看看年貨裡的另一位常客「二氧化硫」到底是誰吧!又為什麼有些食品會需要二氧化硫漂白呢?

-----廣告,請繼續往下閱讀-----

二氧化硫是什麼?為什麼會出現在食物裡?

首先要先破解一個很重要的迷思,雖然二氧化硫具有漂白的能力,但並不是「直接使用二氧化硫來漂白食品」。食品中的二氧化硫是來自於合法的食品添加物:亞硫酸鹽類,如亞硫酸鈉(Na2SO3)、亞硫酸鉀(K2SO3),以及低亞硫酸鈉(Na2S2O4)等等(這些可以產生二氧化硫的合法添加物總共有 8 種:第四類漂白劑食品添加物使用範圍及限量)。

這些添加物具有「還原性」可以漂白食品,也能夠防止食物中的分子變質、腐敗,導致顏色、味道改變,因此還有防腐的功能。瓜子、開心果、竹筍、竹笙、金針、蝦仁、香菇、酸菜乾等等,幾乎大部分常見的年貨都有這類添加物,以確保其保存效用以及讓食物更美觀。

這幾種亞硫酸鹽類的添加物,在食品這樣富含水分的環境中,有一部分的分子會轉變為二氧化硫,可以在食物中被檢測到。所以檢驗單位就利用食品中所含二氧化硫的量,來回推添加劑的使用量,並且做出限制規範。

生活中還有哪些食品含有亞硫酸鹽類?

人類以亞硫酸鹽作防腐其實源遠流長,自從古羅馬時代至今,葡萄酒在釀造的過程中,都會加入二氧化硫或亞硫酸鹽,不只利用其還原性來防止葡萄酒變酸、也有抑制微生物生長的功能。

-----廣告,請繼續往下閱讀-----

即使不主動加入這類的添加物,在釀造葡萄酒的過程中其實也會自然地產生非常微量的二氧化硫。舉例來說,白酒含有比紅酒稍高一些的二氧化硫濃度(McCarthy & Ewing-Mulligan, 2015)。

  • 關於葡萄酒中所含的二氧化硫,這裡有更多說明。

其他的加工食品,像是前面提到過的瓜子、開心果;乾貨類像是果乾或蔬菜乾等常見年貨,也會添加亞硫酸鹽來協助保存和保色(國家環境毒物研究中心)。不過,這些亞硫酸鹽類的食品添加物都不能使用於生鮮食品。

瓜子開心果等常見的年貨裡幾乎都會添加亞硫酸鹽來協助保存和保色。圖/pixabay

亞硫酸鹽類在人體如何代謝

一般來說,進入人體的亞硫酸鹽類,都會被亞硫酸鹽氧化酵素(Sulfite Oxidase)代謝,變成硫酸根之後,會隨尿液排出體外,不會蓄積在人體內。雖然人體有穩定的代謝流程,成人如口服超過 250 毫克的亞硫酸鈉,還是有可能會導致急毒性反應,譬如呼吸困難、腹瀉、嘔吐等症狀。(詳見食藥署資料)根據聯合國糧農組織與世界衛生組織的食品添加物聯合專家委員會(The Joint FAO/WHO Expert Committee on Food Additives, JECFA)的建議,以一個體重60公斤的成人計算,亞硫酸鹽每日容許攝取量為 42 毫克(以二氧化硫計)。如果攝取的是合法添加的瓜子(0.03g/kg),成年人約可每天吃到 1.4 公斤都還在安全範圍內。

-----廣告,請繼續往下閱讀-----

雖然對於體內缺乏亞硫酸鹽氧化酵素的人來說,由於他們無法將亞硫酸鹽氧化成硫酸鹽而排出體外,就有可能會損害腦、神經系統等等的器官。但缺乏亞硫酸鹽氧化酶是種基因缺陷的罕見疾病(亞硫酸鹽氧化酶缺乏/胱氨酸尿症),目前世界上僅有 50 個案例,是連發生率都很難計算的罕見疾病。

年貨泡泡水,輕鬆移除二氧化硫

經典年菜佛跳牆就使用了許多乾貨作為食材。圖/SunSuke [CC BY-SA 2.5] via wikipedia
 

如前面所說的,如果食用的是合法的加工食品,加上人體的代謝機制,吃年貨、嗑瓜子的時候其實大可不用太過擔心。但是如果還是希望減少食品中的亞硫酸鹽類與二氧化硫的話,可以利用這類分子都易溶於水的特性,在料理或食用前,先將醃漬或乾燥蔬菜以清水沖洗浸泡處理。以目前添加容許量最高的金針(4 g/kg)為例,在烹煮之前將金針在 45 ℃溫水中浸泡至少 20 分鐘,或在 25 ℃冷水中浸泡至少 60 分鐘(詳見食藥署週報),就可以有效減少這些化學物質的含量,做出鮮美的料理。

至於一開始怎樣挑選合法添加的年貨呢?我們又要回到本系列的老生常談了,在選購醃漬或乾燥蔬菜等產品時,應該儘量避免購買顏色過白的食品、或是有刺激性氣味的商品;選擇有可靠標示、有商譽的商家,讓大家可以快快樂樂購物、安安心心享用美食與假期囉!

-----廣告,請繼續往下閱讀-----

延伸閱讀:

  1. 吊白塊:讓潤餅皮常保美白、不易腐敗的壞東西? – PanSci
  2. 香腸與亞硝酸鹽的那些事 – PanSci
  3. 食品添加物是商人的陰謀,還是成本?—「PanSci Talk:天然ㄟ尚好?添加物都是商人的陰謀?」 – PanSci

參考資料:

  1. 第四類漂白劑食品添加物使用範圍及限量
  2. McCarthy, Ed, and Mary Ewing-Mulligan. Wine for dummies. John Wiley & Sons, 2015.
  3. 國家環境毒物研究中心 食品安全資訊網-[新聞解讀]-亞硫酸鹽
  4. Sulfite Oxidase – Wikipedia
  5. 亞硫酸氧化酶缺乏 Sulfite Oxidase Dificiency – 罕見疾病基金會
  6. >乾燥金針「泡、洗、煮」 減少二氧化硫殘留 – 衛生福利部藥物食品安全週報
  7. Sulfite – Wikipedia
  8. Sulfur dioxide – Wikipedia
  9. Sulfur dioxide (SO2) in wine _ Wine From Here
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 9 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/