0

0
0

文字

分享

0
0
0

“100,000:1”? 銀河系有這麼多行星唱著浪人之歌?

臺北天文館_96
・2012/03/09 ・2052字 ・閱讀時間約 4 分鐘 ・SR值 564 ・九年級

銀河系中的流浪行星(指軌道不繞行任何恆星運轉的行星),總數量有可能比恆星還多嗎?長久以來研究人員就一直在理論中假設這種自由漂浮型的行星的確存在,並且也在去年5月,果然找到了好幾顆正在流浪的行星,不過,2012年2月更新的研究結果表示,銀河系中這種逍遙自在 – 日復一日、年復一年遊蕩著星光大道的行星,數量搞不好最多會是恆星數量的~10萬倍!這可真是個連天文學家聽了都咋舌、名符其實的「天文數字」!

「10萬倍於恆星」的流浪行星總數,數字雖然龐大,不過倒是仍然和銀河系的總質量,以及銀河系中的重元素總量成應有的比例。長遠來看,未來,銀河系中其他行星和「垃圾」的數量,勢必將遠超過我們目前已知的範疇以外。

順帶一提的是,這項最新發現,完全沒有證實那顆名叫Nibiru的流浪行星的任何理論或流言(Nibiru就是為全球帶來「2012末日恐慌」的罪魁禍首)。

先前有些研究認為,我們的銀河系中,光是流浪中的行星可能就有數十億顆,譬如2011年時就有一個研究是運用微重力透鏡技術,對1~2萬光年以外地區進行觀測,結果順利發現了一些大小和木星同等級的「孤兒行星」。根據該研究進行的區域範圍相對應所發現的行星數量之比,再做進一步推論的話,那我們的銀河系中,應該有數量達幾十億的流浪行星,而這類行星與恆星的比例至少應為2:1。

如今,根據卡弗里研究中心(Kavli)最新的研究,又更進一步指出,這些流浪在銀河系中的行星,應該可以比2011年時估計的數量再向上加碼5倍!

該研究是運用了數學模型,以推估的方式加上一些理論上的變數控制,將銀河系重力拉力、可以形成這些天體的物質總量,及這些物質如何分配到各大大小小的各種天體中(小至冥王星,而大如木星),各種因素綜合做成。研究的方式是,把觀測到的「星系由哪些物質構成」、「含有哪些元素」,以及在觀測中得到的「恆星重力拉力」等數據,藉推論法得出「哪裡應有多少質量」等條件,然後全部條件集中拼湊在一起,最後以一般通用的標準界定上限 – 換言之:流浪行星加總起來後的全部質量,既不能比從實際觀測所得的總質量還大,也不能比重元素的總量多(「重元素」指的是在元素週期表上比氫重的那些元素)。

不過,運用這種研究方式,因目前對「行星如何形成」理論尚未完備,自然會受到其限制,難以從理論中據此直接而精確地預測到:銀河系裡究竟有多少數量的流浪行星。事實上,這種方式仍大幅受限於既有的「經驗法則」。研究者是先界定出「應該有多少流浪行星」的框架,然後,在不超過廣為一般所接受的數值門檻下,推估得出一個這類天體「可能存在」的上限值。

就是在這樣的前提下,他們預估出這類天體在銀河系中應有的上限數量是:恆星的10萬倍。

很多時候在科學和天文學領域中,為了得知星系和宇宙的組成物質究竟是什麼,科學家們首先要問的問題反而是,「它們並不是由哪些元素或物質組成的?」因此,他們會先從一個「可能會有多少?」的上限值開始著手,當資料更齊全時再下修這個上限,並再次從符合於經驗法則的觀測中得知更多資料,而理論模型中也繼續容納參考更多的觀測經驗,如此週而復始,越做越好。

因此,換句話說,「10萬顆流浪行星:1顆恆星」的這個比例數字,只是現階段推估的極限值,並非最終定案結論。而如果要認真數算清楚那些更小的天體,恐怕必須等到2020年,等到下一代太空和地面的大型巡天廣角紅外線望遠鏡啟用,才有可能精確實現。

究竟這些流浪行星都是從哪裡來的?第一種理論是,它們和恆星一樣,直接從星際介質、氣體雲塌縮形成。而第二種理論,也就是根據主導本研究的研究員Strigari的說法,有些行星誕生於被它的恆星系統彈出來。許多研究都說明「彈」出來的行星是一種相當普遍的行星形成成因。隨著時間經過,行星傾向於朝著靠近恆星的方向去漸漸遷徙,它們緩緩爬行經過形成了該恆星系統的殘留物質,而此時,有些行星本來位置就在遷徙中行星和其母恆星之間的,這些夾在中間的行星的軌道,在這個過程中會受到一些影響:有些是軌道跟著也偏向恆星,或者被甩而軌道變寬,甚至,有些完全被甩出該恆星系統外,最後這種完全被甩的情景,讓流浪行星們譜出了一首首浪人之歌。

衡量太陽系目前現況,去擔心這些流浪行星會不會突然來敲敲你家大門-未免多慮了。倒是很久很久以前,太陽系或許真的曾發生過這類事件。有些研究就認為,太陽系本來的行星數量是比現在多的,只是,有些後來被踢出去了。

既然聊到行星,各位當然非問不可:「流浪行星」上,可以住人嗎?

答案是,要是這些流浪行星的質量夠大,大氣層夠厚的話,那它們應該也能維持讓細菌可以生存的一定溫度,雖然它們遠離恆星的懷抱,享受不到來自父母的溫暖,不過,卻還是能藉由放射性衰變和構造性的活動,自製出一些熱能。

至於屬性像Nibiru這種「閒晃一族」的阿飄行星,有可能會出現在我們太陽系裡嗎?答案是:不可能。這是一顆完全沒有科學根據的行星,2012年12月21日它即將要拜訪地球?抱歉,影子都沒有!(Lauren 譯)

資料來源:中研院天文網[2012.03.01]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

0
0

文字

分享

0
0
0

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

CASE PRESS_96
1 篇文章 ・ 3 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策