Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

2020 年不能錯過的七個天象

htlee
・2020/01/01 ・1435字 ・閱讀時間約 2 分鐘 ・SR值 489 ・五年級

-----廣告,請繼續往下閱讀-----

2020 年的星空非常精彩,台灣可以看見日環食、火星衝、土星合木星,連流星雨發生時的月相都不會太差!希望 2020 年有個好天氣,讓天文迷大飽眼福!

1 月 4 日(農曆初十),象限儀座流星雨

根據國際流星組織的預測,今年象限儀座流星雨的極大期發生在台灣時間 16:20。象限儀座流星雨的特性是極大期發生時間非常短暫,只有短短幾個小時,錯過高峰期,流星數就會非常稀少,所以 1 月 4 日入夜後就可以等待流星出現。這次的象限儀座流星雨預估每小時最多可以看見 120 顆流星!

2001 年的獅子座流星雨,攝影:李昫岱

整理一下 2020 年三大流星雨的極大期時間、當天的月相及每小時最多可見的流星數。

三大流星雨 極大期時間(台灣時間) 每小時最多可見的流星數
象限儀座 1 月 4 日(農曆初十),16:20 120
英仙座 8 月 12 日(農曆廿三),21:00-24:00 110
雙子座 12 月 14 日(農曆三十),9:00 150

2 月 20 日(農曆廿七)木星合月、土星合月

今年土星和木星一直相當靠近,所以土星和木星常常在同一天合月,同時看見三個天體出現在一小小的範圍,是相當有趣的經驗!

-----廣告,請繼續往下閱讀-----

加碼:木星與土星合月:4 月 15 日、6 月 9 日、7 月 6 日、8 月 2 日、10 月 23 日、11 月  19 日和 12 月 17 日。火星與木星合月:3 月 18 日。

3 月 20 日(農曆廿七)春分,木星合火星

春分日的清晨,可以在東方看見木星合火星,這時木星和火星的亮度分別是 -2.1 等和 0.9等,兩顆行星都相當亮,而且在天空中相距只有 0.8 度!

加碼:3 月31 日,土星合火星,土星和火星的亮度分別是 0.7 等和 0.8 等,兩顆行星亮度相當,相距約 1 度。

3 月 24 日(農曆初一),水星西大距

水星平時相當不容易看見,水星西大距是日出前最容易看見水星的好時機。3 月 24 日是水星西大距,當天的清晨有機會同時看見水星、土星、火星和木星出現在東南方!

3 月 24 日,日出前的水星西大距。Stellarium 軟體製作。

加碼:7 月 22 日(農曆初二),水星西大距,日出前有機會可以看見五顆行星同時出現在天空,從東方地平線上的水星、金星、火星、土星到西方地平線上的木星!五顆行星在天空中形成一道弧線,不過當天水星和木星都相當靠近地平線,要同時看見五顆行星有點難度。

6 月 21 日(農曆初一),夏至日環食

這次的環食帶通過金門、澎湖、雲林、嘉義縣市、台南、南投、高雄、花蓮和台東,環食帶上的人可以看見日環食,環食帶以外則只能看見日偏食。環食帶正中央的人大約可以看見 1 分鐘的日環食現象。

這次日環食發生時,太陽在天空中的直徑只比月亮稍大,所以可以看見太陽形成一細細的圓弧。下一次要在台灣看到月球與太陽的中心重合,就得等到 2070 年的日全食!

-----廣告,請繼續往下閱讀-----
夏至日環食的模擬影像,細細的亮環是太陽,中間的月亮只比太陽稍小。Stellarium 軟體模擬。

10 月 14 日(農曆廿八),火星衝

火星衝是指太陽、地球和火星在軌道上排成一線,這時火星差不多是最靠近地球的時候,火星看起來最亮。火星衝大約每兩年會發生一次,這次火星衝時,火星最亮會達到 -2.6等,比同在天空中的木星(-2.3 等)和土星(0.5 等)還亮。

加碼: 7 月 14 日木星衝和 7 月 21 日土星衝

12/21(農曆初七),土星合木星

木星和土星在天空中的位置會愈來愈靠近,12 月 21 日時兩顆行星間會最接近,只有 6 角分,也就是月亮直徑的 1/5。

12月21日土星合木星,兩顆行星相距只有6角分。Stellarium軟體模擬。

土星合木星大約 20 年才會發生一次,不要錯過了這個難得的聚會!

感謝收穫滿滿的 2019 年,期盼精彩的 2020 年到來!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

7
1

文字

分享

1
7
1
致我們青澀的初戀——踏入晴道、也英的火星世界
Mia_96
・2022/12/26 ・1800字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「也英,你還好嗎?但願你沒有感冒,今年的火星看起來特別亮,是本世紀火星距離地球最近的時候,當我看到明亮的星星時,就覺得你彷彿在我身旁。」晴道在少年時寫給也英的信中這麼說道。

接近人生半百,當晴道再次與也英相遇後,這麼恰好的,火星再次接近地球,劇中晴道與也英於札幌天文台享受著天文景象,究竟在望遠鏡中,他們看到的景象為何會產生?

晴道與也英的人生彷彿都與天文現象班暗示性的相像,也都與天文現象彼此相關。圖/IMDb

揭開接近地球的火星之時——火星衝

太陽系中的八大行星皆繞著恆星太陽公轉,但因各行星距離太陽的遠近不同,造成公轉軌道路徑長度差異,而行星的公轉軌道與速度進一步影響著其公轉週期。八大行星中每一顆行星的公轉週期皆不一樣,也因此,造成每天行星與恆星、行星與行星間的相對位置也都有所差異。

「衝」在天文現象中意指行星(地球軌道外)與太陽、地球,連成一直線的現象。當衝發生時,代表此顆行星整夜可見,且在天空中的亮度極亮!但正如同上文所述,因每顆行星之公轉週期有所差異,所以並非每一年都會發生衝。例如劇中晴道與也英所觀測的「火星衝」,週期約為 780 天,大約每經過 2 年 49 天便會發生一次。 

衝(opposition)為太陽、地球與外行星連線之位置,若太陽、內行星與地球連線時則會稱為合(conjunction)。圖/Wikipedia

長大後的晴道、也英所觀測的火星衝發生在 2018 年,亮度極亮的火星配上恰好的觀測時間,便是觀測火星的最佳時間點!

-----廣告,請繼續往下閱讀-----
火星公轉太陽一圈約需 687 個地球日,代表在火星上度過的一年接近於地球的兩年(代表如果在火星上等待下一次跨年的時間會更長!)圖/Pixabay

而在 2022 年 12 月初時,也發生了一次火星衝!這次火星的視星等亮度達到 -1.9 等,預測將會是未來十年內最亮的火星衝,但如果錯過這次也沒有關係,在 2033 年時會發生亮度更亮的火星衝,目前預估視星等亮度可以達到 -2.5 等呢!(星等值越小越亮!)

因火星公轉太陽軌道並非正圓形,故每一次的火星衝亮度也皆會稍有不同。圖/臺北市立天文科學教育館

滿載希望的希望號

除卻火星衝外,日本 1998 所發射的希望號探測器(のぞみ)也是年少的也英殷切期待的天文任務。當時日本為促使國民對於火星產生興趣與探索,舉辦於希望號中搭載姓名的活動,也英的名字也跟著希望號一起進行宇宙探索。

希望號原本的目標與任務是觀察火星上大氣層,與火星受太陽風作用的影響。但在 1998 年發射後,希望號的推進器出現故障,不只大量消耗燃料,還造成希望號進入火星軌道的時間延長,後又於 2002 年受到太陽劇烈活動的影響電力系統受到破壞。最終,希望號於 2003 年 12 月失聯,未能順利完成火星的探測任務。

希望號未能順利完成任務,彷彿暗示著也英的人生也同樣遇到瓶頸與挫折。圖/IMDb

未完待續的火星之旅

火星因其醒目的紅色外觀一直為人們所關注與追尋的星球(西方更將其取名為 Mars,即為羅馬神話中的戰神),且因火星具有與地球相似的環境條件,科學家一直將火星作為移居星球的選項之一,也設想過將火星「地球化」,使其更加適合人類居住。

-----廣告,請繼續往下閱讀-----

但人們是否有改變火星的權利,又或者我們對於火星是否有足夠的了解,或許等到未來更多次嘗試的火星任務後才能知曉答案,正像是晴道說的:「要想知道是不是命中註定,你必須全心投入進去。」

-----廣告,請繼續往下閱讀-----
所有討論 1

1

0
0

文字

分享

1
0
0
2020 年不能錯過的七個天象
htlee
・2020/01/01 ・1435字 ・閱讀時間約 2 分鐘 ・SR值 489 ・五年級

-----廣告,請繼續往下閱讀-----

2020 年的星空非常精彩,台灣可以看見日環食、火星衝、土星合木星,連流星雨發生時的月相都不會太差!希望 2020 年有個好天氣,讓天文迷大飽眼福!

1 月 4 日(農曆初十),象限儀座流星雨

根據國際流星組織的預測,今年象限儀座流星雨的極大期發生在台灣時間 16:20。象限儀座流星雨的特性是極大期發生時間非常短暫,只有短短幾個小時,錯過高峰期,流星數就會非常稀少,所以 1 月 4 日入夜後就可以等待流星出現。這次的象限儀座流星雨預估每小時最多可以看見 120 顆流星!

2001 年的獅子座流星雨,攝影:李昫岱

整理一下 2020 年三大流星雨的極大期時間、當天的月相及每小時最多可見的流星數。

-----廣告,請繼續往下閱讀-----
三大流星雨 極大期時間(台灣時間) 每小時最多可見的流星數
象限儀座 1 月 4 日(農曆初十),16:20 120
英仙座 8 月 12 日(農曆廿三),21:00-24:00 110
雙子座 12 月 14 日(農曆三十),9:00 150

2 月 20 日(農曆廿七)木星合月、土星合月

今年土星和木星一直相當靠近,所以土星和木星常常在同一天合月,同時看見三個天體出現在一小小的範圍,是相當有趣的經驗!

加碼:木星與土星合月:4 月 15 日、6 月 9 日、7 月 6 日、8 月 2 日、10 月 23 日、11 月  19 日和 12 月 17 日。火星與木星合月:3 月 18 日。

3 月 20 日(農曆廿七)春分,木星合火星

春分日的清晨,可以在東方看見木星合火星,這時木星和火星的亮度分別是 -2.1 等和 0.9等,兩顆行星都相當亮,而且在天空中相距只有 0.8 度!

加碼:3 月31 日,土星合火星,土星和火星的亮度分別是 0.7 等和 0.8 等,兩顆行星亮度相當,相距約 1 度。

3 月 24 日(農曆初一),水星西大距

水星平時相當不容易看見,水星西大距是日出前最容易看見水星的好時機。3 月 24 日是水星西大距,當天的清晨有機會同時看見水星、土星、火星和木星出現在東南方!

3 月 24 日,日出前的水星西大距。Stellarium 軟體製作。

-----廣告,請繼續往下閱讀-----

加碼:7 月 22 日(農曆初二),水星西大距,日出前有機會可以看見五顆行星同時出現在天空,從東方地平線上的水星、金星、火星、土星到西方地平線上的木星!五顆行星在天空中形成一道弧線,不過當天水星和木星都相當靠近地平線,要同時看見五顆行星有點難度。

6 月 21 日(農曆初一),夏至日環食

這次的環食帶通過金門、澎湖、雲林、嘉義縣市、台南、南投、高雄、花蓮和台東,環食帶上的人可以看見日環食,環食帶以外則只能看見日偏食。環食帶正中央的人大約可以看見 1 分鐘的日環食現象。

這次日環食發生時,太陽在天空中的直徑只比月亮稍大,所以可以看見太陽形成一細細的圓弧。下一次要在台灣看到月球與太陽的中心重合,就得等到 2070 年的日全食!

夏至日環食的模擬影像,細細的亮環是太陽,中間的月亮只比太陽稍小。Stellarium 軟體模擬。

10 月 14 日(農曆廿八),火星衝

火星衝是指太陽、地球和火星在軌道上排成一線,這時火星差不多是最靠近地球的時候,火星看起來最亮。火星衝大約每兩年會發生一次,這次火星衝時,火星最亮會達到 -2.6等,比同在天空中的木星(-2.3 等)和土星(0.5 等)還亮。

-----廣告,請繼續往下閱讀-----

加碼: 7 月 14 日木星衝和 7 月 21 日土星衝

12/21(農曆初七),土星合木星

木星和土星在天空中的位置會愈來愈靠近,12 月 21 日時兩顆行星間會最接近,只有 6 角分,也就是月亮直徑的 1/5。

12月21日土星合木星,兩顆行星相距只有6角分。Stellarium軟體模擬。

土星合木星大約 20 年才會發生一次,不要錯過了這個難得的聚會!

感謝收穫滿滿的 2019 年,期盼精彩的 2020 年到來!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

0

5
0

文字

分享

0
5
0
看不見的歐若拉——物理學家解釋火星上極光的成因
Ash_96
・2022/07/05 ・4548字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

極光。圖/envato elements

形成極光的要素有三,其中之一就是磁場。地球具有覆蓋全球的磁場,可以在兩極地區生成北極光和南極光;然而,火星沒有覆蓋全球的磁場,因此火星上的極光並非出現在兩極,只能在特定區域生成。

近期,愛荷華大學領導的研究團隊,根據美國航空暨太空總署(NASA)火星大氣與揮發物演化任務(MAVEN)探測器的數據,確認了火星離散極光是由太陽風和火星南半球地殼上空殘存的磁場相互作用所生成

極光三要素:大氣、磁場、高能帶電粒子

在介紹火星前,讓我們先把鏡頭轉到地球,談談地球上的極光在哪裡形成,以及如何形成。

地球極光出現的區域稱為極光橢圓區(auroral oval),涵蓋北極與南極地區,但並非以兩極為中心;換句話說,極光橢圓區也涵蓋了極圈以外的部分高緯度地區。另外,極光橢圓區的寬度與延伸範圍,會隨著太陽黑子 11 年的循環週期而變動。

-----廣告,請繼續往下閱讀-----

當太陽風和地球磁層的高能帶電粒子被地球磁場牽引,沿著磁力線加速往高緯度地區移動,最後和大氣中的原子碰撞時,就會形成多采多姿的極光。

綜合以上所述,可以得知極光的三個要素是:大氣、磁場、高能帶電粒子。

地球上這些「指引我們美妙未來的魔幻極光」,若屬於可見光波段,就能用肉眼觀測,並以相機記錄這夢幻舞動的光線。

極光橢圓區與地理北極、地磁北極相對位置圖。其中紅色實線表示極圈範圍,綠色區域則為極光橢圓區。圖/National Park Service

-----廣告,請繼續往下閱讀-----

火星的大氣層、磁場以及離散極光

在介紹離散極光之前,得先介紹它的幕後推手——行星際磁場(Interplanetary Magnetic Field,IMF)。IMF就是太陽風產生的磁場,在行星際空間主導著太陽系系統內的太空天氣變化,並阻擋來自星際間的高能粒子轟擊。

那麼 IMF 是如何產生的呢?當太陽風的高能帶電粒子從太陽表面向外傳播,會同時拖曳太陽的磁力線一起離開;太陽一邊自轉一邊拋射這些粒子,讓延伸的磁力線在黃道面上形成了螺旋型態的磁場。

以蛋糕裝飾來說明的話,太陽就像是在轉盤上的蛋糕,太陽風粒子就是擠花裝飾;而當蛋糕一邊以固定速度自轉,擠花逐漸向外擴散的同時,就會在蛋糕產生螺旋狀的軌跡。

因為太陽一邊自轉,一邊拋射太陽風的關係,IMF的磁力線會扭曲呈現如圖的螺旋狀。圖/維基百科
蛋糕的螺旋狀擠花。影片/Youyube

對太陽風和 IMF 有基本認識之後,讓我們把鏡頭轉向火星,談談火星的大氣層和磁層和地球有什麼不同。

-----廣告,請繼續往下閱讀-----

相較地球來說,火星的大氣層非常稀薄。這是因為太陽風的高能粒子轟擊火星大氣層,強大的能量將大氣層的中性原子解離為離子態,導致大氣層的散失;該過程稱作濺射(sputtering),發生在火星大氣層的濺射主要透過兩種方式達成—–第一,在 IMF 的作用之下,部分的離子會環繞磁力線運動,隨著 IMF 移動而被帶離火星;另外一部份的離子則像撞球一般,撞擊其他位於火星大氣層頂端的中性原子,引發連鎖的解離反應。 

MAVEN 任務的領銜研究員 Bruce Jakosky 說明,根據團隊研究的成果,太陽風的濺射效應會將火星大氣層中的惰性氣體氬解離,並將這些氬離子從大氣層中剝離。火星大氣層內氬的同位素(質子數相同,但是質量不同的元素)以氬-38 以及氬-36 為主,後者因為質量較小而較容易發生濺射。

藉由氬- 38 和氬-36 的佔比,Jakosky 的團隊推估火星約有 65% 的氬已經散逸至外太空。基於該研究結果還可以推算出火星大氣層中其他氣體的散逸情形;其中又以二氧化碳為焦點,畢竟行星需要足夠的溫度才能維持液態水的存在,而二氧化碳在溫室效應有很大的貢獻。

火星的大氣層因為太陽風的濺射效應逐漸被剝離。圖/NASA

接著,讓我們一探究竟火星磁場與地球有何不同。地球能形成全球磁場的奧秘是什麼呢?這要先從行星發電機理論開始說起,該理論指出行星要維持穩定的磁場有三個要件——導電流體、驅動導電流體運動的能量來源、科氏力。

-----廣告,請繼續往下閱讀-----

以地球為例,地核內部保留了地球形成初始的熱能,約有 4000°C 至 6000°C 的高溫。位於地核底層的高溫液態鐵,因為密度下降而上升至地核頂端,接觸到地函時,這些液體會喪失部分熱能而冷卻,因為溫度比周圍環境低,密度變高而下沉;如此不斷的熱對流循環下,讓帶有磁力的流體不斷運動,進而形成電磁感應。另外,科氏力的作用讓地球內部湧升的流體偏向,產生螺旋狀的流動效果,有如電流通過螺旋線圈移動的效果。

在火星所發現的地殼岩石證據顯示,火星在數十億年前曾經和地球一樣具有全球的磁場。科學家對火星磁場消失的原因還不是很清楚,其中一種假說認為可能跟火星質量較小有關,在火星形成之初散熱較快,造成火星外核液態鐵短時間內就凝固,無法像地球一樣,保留高溫地核使液態的鐵和鎳因為密度的變化,不斷從地核深處上升至地函,再冷卻下降,持續進行熱對流。

火星地核內部缺乏驅動導電流體的原動力,導致火星內部的發電機幾乎停止運轉,無法形成全球的磁場。話雖如此,火星仍然具備小區塊的磁場,主要分布在火星南半球留有殘存磁性的地殼上空。

行星發電機理論中科氏力影響行星地核內熱對流的導電流體偏向。圖/Wikipedia

磁層與大氣層相互依存,火星在太陽風不斷吹襲之下,大氣層愈趨稀薄;火星內部又缺乏發電機的動力,無法形成完整的磁層。火星缺乏厚實的大氣層保護,就難以阻擋外太空隕石的猛烈攻勢,因此如今呈現貧瘠乾燥又坑坑疤疤的外貌。

-----廣告,請繼續往下閱讀-----

既然這樣,看似缺乏極光形成要素的火星,又是如何形成極光的呢?

雖然火星沒有覆蓋全球的磁層作為保護,但火星南半球仍帶有區域性的磁場。在那裡,磁性地殼形成的殘存磁場與太陽風交互作用,滿足了極光生成的條件。這種極光被稱為「離散極光」,與地球上常見的極光不同,有些發生在人眼看不見的波段(比如紫外線),所以也更加提升了觀測難度。

那麼,研究團隊是怎麼發現這種紫外線離散極光的呢?那就是藉由文章首段提到的 MAVEN 探測器所搭載的紫外成像光譜儀(Imaging Ultraviolet Spectrograph,IUVS)!

該團隊的成員 Zachary Girazian 是一位天文及物理學家,他解釋了太陽風如何影響火星上的極光。

-----廣告,請繼續往下閱讀-----

火星離散極光的發現

研究團隊根據火星上離散極光的觀測結果,比較以下數據之間的關係——太陽風的動態壓力、行星際磁場(IMF)強度、時鐘角和錐角[註 1] 以及火星上極光的紫外線,發現在磁場較強的地殼區域內,極光的發生率主要取決於太陽風磁場的方向;反之,區域外的極光發生率則與太陽風動壓(Solar Wind Dynamic Pressure)關聯較高,但是太陽風動壓的高低則與極光亮度幾乎無關。

N. M. Schneider 與團隊曾在 2021 年的研究發表提到,在火星南緯 30 度至 60 度之間、東經 150 度至 210 度之間的矩形範圍內,當 IMF 的時鐘角呈現負值,如果正逢火星的傍晚時刻,較容易觀測到離散極光;也就是說在火星上符合前述的環境條件很可能有利於磁重聯(Magnetic Reconnection)——意即磁場斷開重新連接後,剩餘的磁場能量就會轉化為其他形式的能量(如動能、熱能等)加以釋放,例如極光就是磁重聯效應的美麗產物。

未來研究方向:移居火星

因為火星上離散極光的生成與殘存的磁層有關,而磁層又關乎大氣的保存。所以觀測離散極光的數據資料,也能作為後續追蹤火星大氣層逸散情形的一個新指標。愛荷華大學的研究成果,主要在兩個方面有極大的進展——太陽風如何在缺乏全球磁層覆蓋的行星生成極光;以及離散極光在不同的環境條件的成因。

人類一直以來懷抱著移居外太空的夢想,火星是目前人類圓夢的最佳選擇;但是在執行火星移民計畫之前,火星不斷逸散的大氣層是首要解決的課題。缺乏覆蓋全球的大氣層保護,生物將難以在貧瘠的土壤存活。或許透過火星上極光觀測的研究成果,科學家們將發掘新的突破點;期許在不久的將來,我們能找到火星適居的鑰匙。

-----廣告,請繼續往下閱讀-----
  • 註1:IMF 的時鐘角(Clock Angle)與錐角(Cone Angle)

如何判定 IMF 的角度呢?因為磁場空間是立體的關係,我們測量 IMF 方向切線與 X、Y、Z 軸之間的夾角——也就是運用空間向量的概念,來衡量 IMF 的角度。時鐘角是指 Y、Z 軸平面上,IMF 方向與 Z 軸的夾角;而錐角則是在 X、Y 平面上,IMF 方向與 X 軸之間的夾角。

IMF 時鐘角和錐角示意圖。圖/ResearchGate

參考資料

  1. Science Daily. Physicists explain how type of aurora on Mars is formed.
  2. Z. Girazian, N. M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. K. Jain, J.-C. Gérard, L. Soret, J. Deighan, C. O. Lee. Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, Volume 127, Issue 4.
  3. Michelle Starr. Mars Has Auroras Without a Global Magnetic Field, And We Finally Know How. ScienceAlert.
  4. Michelle Starr. For The First Time, Physicists Have Confirmed The Enigmatic Waves That Cause Auroras. ScienceAlert.
  5. Southwest Research Institute. SwRI Scientists Map Magnetic Reconnection In Earth’s Magnetotail.
  6. 呂凌霄。太空教室學習資料庫
  7. 頭條匯。火星上的「離散極光」是如何形成的?物理學家有新發現,帶你揭秘
  8. Wilson Cheung。【北極物語】承載北極文化──極光。綠色和平
  9. 大紀元。火星上的極光是如何形成的? 科學家解謎
  10. BBC News 中文。北極光:美國科學家首次在實驗室驗證北極光產生原理
  11. 明日科學。科學團隊藉由 NASA 的太空船所收集的資料得知火星大氣層的流失可能肇因於強烈的太陽風
  12. 台北天文館。NASA 首次繪製火星周圍電流分布圖,證實火星有磁場。科技新報。
  13. 交通部中央氣象局太空天氣作業辦公室。太空天氣問答集
  14. Denise Chow. In an ultraviolet glow, auroras on Mars spotted by UAE orbiter. NBC News.
  15. NASA. NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere.
  16. NASA Goddard. NASA | Mars Atmosphere Loss: Sputtering.
-----廣告,請繼續往下閱讀-----
Ash_96
2 篇文章 ・ 2 位粉絲
外交系畢業,很多人看成外文(是不是又回頭看一次? ) 常常在外向與保守的極端之間擺盪;借用朋友說的詞彙,我屬於營業式外向。 喜歡踩點甜點店和咖啡廳,大概是嚮往那種文青都會女子的感覺,或是純粹愛吃。 喜歡k-pop ,跳舞的時候會自動設定為開演唱會模式,自我催眠現在我最帥。