0

0
0

文字

分享

0
0
0

系外行星,發現!|科學史上的今天:11/5

張瑞棋_96
・2015/11/05 ・946字 ・閱讀時間約 1 分鐘 ・SR值 499 ・六年級

浩瀚宇宙中,地球是唯一具有生命的星球嗎?會不會在銀河系內的某顆星球上,也有個高度文明在凝視著我們?望著繁星點點的夜空,總不免會興起這樣的念頭吧?然而我們看到的星星,除了幾顆是系內行星與人造衛星之外,其實都是像太陽這樣的恆星,上面本來就不可能有生命。要尋找外星生命,我們得把目標放在繞著恆星轉的行星。

圖片來源:nasa

問題是,行星本身不會發亮,我們如何看見太陽系外的行星?

的確,即使行星會反光,若非過於微弱,就是被恆星的光遮蔽。因此長久以來,天文學家普遍相信我們不可能發現系外行星。但是1995年,瑞士日內瓦大學的梅爾(Michel Mayor)與奎羅茲(Didier Queloz)卻宣稱在51光年外的飛馬座51恆星發現一顆行星。這是怎麼做到的?

原來行星繞著恆星公轉時,恆星會因行星的重力作用拉扯而產生輕微擺動,影響恆星朝向地球與遠離地球時的速度,而產生不同的光譜偏移。從偏移程度可以推知恆星相對於地球的運動速度,如果速度呈現週期性變化,就表示有行星存在,而且還能推算出行星的質量大小。

-----廣告,請繼續往下閱讀-----

不過這個方法除了質量,對行星仍一無所知。不過,1999年11月5日,美國加州大學柏克萊分校在飛馬座中距離地球約150光年處,發現一顆繞行恆星HD 209458的行星,除了知道它的質量是木星的0.7倍(相當於地球的220倍),還知道體積是木星的2.5倍、大氣成分含有氧和碳。

這顆編號為HD 209458b,別名「歐西里斯」(Osiris)的行星是首度以「凌日法」觀測到系外行星。凌日法的原理是:行星軌道若介於母恆星與地球之間,當它橫過恆星表面時會擋住一小部分的光,我們就可以根據恆星發光的減少程度推算行星的體積。而且恆星的光穿過行星的大氣層時,會被其中所含的元素吸收特定頻率的光,而改變光譜,因此可以得知行星的大氣成分。

歐西里斯的發現是尋找系外行星的重要里程碑,因為知道大氣組成有助於更有效率地發現適合居住的星球。至2014年為止已經發現了約一千顆系外行星,而在質量略大於地球的「超級地球」中,擁有大氣層與一定溫度以上的系外行星更被視為尋找外星生命的優先對象,就讓我們拭目以待吧。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
1

文字

分享

0
8
1
造訪危險鄰居:歐西里斯的貝努採樣返回任務
EASY天文地科小站_96
・2023/09/23 ・3760字 ・閱讀時間約 7 分鐘

  • 謝承安/現就讀臺大物理系,因喜愛動畫《戀愛小行星》而喜好小行星
  • 林彥興/現就讀清大天文所,努力在陰溝中仰望繁星

2016 年 9 月 8 日,歐西里斯探測器(OSIRIS-REx)由擎天神五號火箭發射升空,追隨著前輩們 ── 隼鳥號隼鳥二號 ── 的腳步,前往近地小行星貝努(101955 Bennu),執行人類史上第三次的小行星取樣任務。

經過兩年多的飛行,歐西里斯號於 2018 年底成功抵達貝努,並在幾個月後成功採集樣本,預計在今年 9 月 24 號返回地球。透過採集小行星上的原始樣本,科學家將能夠推論 46 億年來太陽系的演變歷史,但除此之外,歐西里斯探測器也在環繞貝努的過程中進行了眾多觀測,也為小行星研究貢獻許多,現在就讓我們回顧歐西里斯號的浩瀚之旅!

歐西里斯基本介紹

歐西里斯想像圖。圖/NASA’s Goddard Space Flight Center Conceptual Image Lab

要了解歐西里斯號的觀測目標,我們只需要把他的英文全名攤開來看:

Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer

翻譯作太陽系起源、光譜解析、資源識別、安全保障、小行星風化層探索者。其縮寫歐西里斯,是埃及神話中的冥神。儘管你可能無法了解各個專有名詞,但在看過那麼長的名字後,應該也能知道歐西里斯探測器的任務可不僅是採集樣本而已。

-----廣告,請繼續往下閱讀-----

歐西里斯號的目標是小行星 101955 號「貝努」。

這是一顆於 1999 年由林肯近地小行星研究小組(LINEAR)發現的近地小行星。之所以選擇貝努作為觀測目標,是因為貝努的軌道與地球十分接近,有撞擊地球的潛在風險,另一方面距離近,也可以讓探測器在較短的時間內抵達。

值得一提的是,「貝努」這個名字源自古埃及神話的神鳥,同時也是引領前往冥界的諸神之嚮導。同時,貝努小行星上的各式地形或是地點,也都是以不同神話中的鳥類來命名。

貝努的表面地圖,圖中的地名皆與鳥類神話有關。如 Strix 來自羅馬神話中的條紋鳥、Simurgh 則來自波斯神話中的西摩格鳥。圖/NASA/Goddard/University of Arizona

在發射後過了兩年,2018 年,歐西里斯號逐漸接近貝努,並以相機模組中的 8 吋望遠鏡(Polycam)不斷進行觀測,直至十二月成功抵達貝努。

-----廣告,請繼續往下閱讀-----

而抵達後的第一項任務,就是詳細繪製全小行星的地圖,過去科學家曾經透過金石太陽系雷達來(GSSR)來探測貝努的模樣,但地面上的雷達雖然可以看到貝努的大致形狀,解析度卻仍不足以窺見小行星上詳細的地形起伏,也就無法事先決定採集樣本的地點但藉由探測器上攜帶的雷射測高儀(OSIRIS-REx Laser Altimeter, OLA),歐西里斯號得以透過發射雷射訊號與接收的時間差, 像是測量海底深度的聲納一樣,繪製全小行星的地形高度圖。另外其配載的高解析度相機(MapCam),也可以讓科學家一覽高解析度的貝努影像。

雷射測高儀測量過程示意圖。圖/NASA/Goddard/University of Arizona
NASA 哥達德太空中心以歐西里斯號製作的貝努表面導覽。影/Youtube

除了解地形以外,決定採樣地點時,另一項重要的考量是採樣地礦物或化學組成。正如同地球上各處的岩石化學組成不盡相同,不論是含水量、顆粒粗細程度以及有機物的有無,皆是採樣任務執行時需要考量的情況。於是,歐西里斯號使用了三種方法來探測小行星表面上的礦物。

第一種方法是透過風化層 X 射線成像光譜儀(Regolith X-Ray Imaging Spectrometer, REXIS)來觀測 X 射線光譜。讀者或許會想,X 射線多用來觀測高能天體的輻射,像是黑洞、超新星爆發等事件,並且小行星本身也不會發出 X 射線,為何要攜帶這樣的探測儀器?

事實上,當元素吸收到宇宙射線或太陽所發出的 X 射線時,內層的電子會吸收能量並游離,而外層的電子便會向下躍遷,補上原本內層電子的位置,更外層電子又再補上外層電子的位置。在這一連串的過程中,便會發出 X 射線。而由於每個元素的能階都是獨一無二的,藉由觀測X射線的光譜,我們便能了解小行星上各處的元素豐度。

-----廣告,請繼續往下閱讀-----

這樣的分析方式被稱作 X 射線螢光分析(X-ray fluorescence, XRF),是一種非破壞性的元素鑑定方式,地質考察、考古甚至是博物館文物鑑定都常利用此方式進行探測。

REXIS 儀器。圖/REXIS Team / The planetary society

另外,歐西里斯號上還配戴可見光與紅外線分光儀(OVIRS),也能夠獲取小行星可見光與紅外線波段的光譜來辨別來辨別礦物或是有機物的種類。並且由於不同礦物的熱導率差異,歐西里斯還可以藉由熱輻射光譜儀(OSIRIS-REx Thermal Emission Spectrometer, OTES)掃描全小行星的熱輻射地圖來了解礦物與化學豐度。

熱輻射儀也可以更進一步用於研究小行星上的熱量傳輸問題。當小行星吸收太陽光後將以輻射的方式將能量釋放時,其光壓會給予小行星一個微小的作用力。在經年累月的作用下,便會對其軌道產生改變,此現象稱之為亞爾科夫斯基效應(Yarkovsky effect)。

由於亞爾科夫斯基效應的強弱會受到小行星的反照率、表面材質甚至是地形而影響,如果對小行星不夠了解,那預測小行星軌道的難度將大幅提升。因此歐西里斯號的近距離探測,對精準預測貝努的軌道非常重要。

-----廣告,請繼續往下閱讀-----

樣本採集:歐西里斯與貝努的零距離接觸

在近兩年的搜集數據後,歐西里斯號便開始執行此次任務的最終目標:採集樣本。

一開始,科學家們有四個候選地點:夜鷺(Nightingale),此處位於年輕的隕石坑上,且具有最細顆粒的礦物;翠鳥(Kingfisher)為新的隕石坑並具有豐富的含水量;魚鷹(Osprey)具有較低反照率的岩石樣本;鷸(Sandpiper)位於兩個隕石坑之間,可能含有水合礦物。

在科學家掙扎的選擇後,最終決定在名為「夜鷺」的地點進行採樣。因為此處較年輕的地質特性,能夠讓我們採集到貝努更原始的樣本,以此探討貝努在太陽系闖蕩時所遺留的痕跡,再加上較細的礦物也能讓執行任務時能有較高的成功率。至於其他候選地點,只能說後會有期了。

NASA所選定的四個樣本採集地點之照片。圖/NASA/Goddard/University of Arizona

2020年10月20號,歐西里斯號伸出他的機器手臂,名為 Touch-And-Go Sample Acquisition Mechanism(TAGSAM),顧名思義便是碰一下小行星表面後便離開。其運作原理,是在碰觸到小行星表面時釋放加壓氮氣產生爆炸,再搜集飛散出來的碎屑樣本。

-----廣告,請繼續往下閱讀-----

說起來雖然簡單,但降落在微小重力的且未知內部構造的小行星上其實非常困難,科學家們需要考量到所有可能影響的作用力,甚至是太陽光所造成的輻射壓都必須考慮進去。

現在,想像你是個科學家,坐在任務的控制室中,透過相機模組中的 SamCam,望著歐西里斯號逐漸靠近小行星,3,2,1⋯⋯,碰!(狀聲詞,事實上,太空中是沒有聲音的。)

Touch-And-Go任務的執行過程。圖/NASA/Goddard/University of Arizona

採集任務看似十分成功,歐西里斯號將 TAGSAM 的頂端放入樣品返回艙(Sample Return Capsule, SRC)中,SRC 也使用了眾多隔板將散落在太空中的碎屑放入其中,兩天後,歐西里斯號回傳了樣本採集艙的影像,確認歐西里斯號已搜集足夠的樣本,但此時卻發現了些意外,由於採集的樣本太大顆,艙門無法完全緊閉,導致有部分樣本散逸至太空中,還好這不影響任務的完成,算是有驚無險。

小行星的樣本從樣品返回艙中散逸。圖/NASA/Goddard/University of Arizona

2021 年 4 月 7 日,歐西里斯號展開他的最後一次飛越任務,此次他以超近距離(約 3.5 公里)觀測「夜鷺」在採集後的模樣,可以清楚看見採樣任務前後的區別,中心區域產生了一個深度超過45公分的凹痕! 周圍的岩石也因此錯位。

-----廣告,請繼續往下閱讀-----

過去天文學家們透過眾多觀測數據推論,大多數的小行星比起堅硬的石頭,更像是散亂的碎石堆。後來科學家們也透過此次採樣任務確認貝努表面並非像是地殼般的堅硬固體,而比較像是流體般,才產生如此大的凹痕。

「夜鷺」在採樣任務前後的差異。圖/NASA/Goddard/University of Arizona

在做完惜別任務後,2021 年 5 月 10 號,歐西里斯號啟動了他的主引擎,開始返回地球的旅程。預計在今(2023)年 9 月 24 號,裝載著貝努樣本的樣本返回艙將與歐西里斯號脫離,並以秒速 12 公里的高速衝入地球大氣層,並著陸於猶他州的沙漠中,由研究人員回收後取出樣本進行更近一步的分析。

然而歐西里斯號的旅程仍尚未結束。

接下來它將在 2029 年對另一個有潛在撞擊地球風險的小行星 99942 阿波菲斯(APophis)進行觀測。就讓我們歡迎冥神與他所攜帶的樣本歸來,以及期待未來科學上的重大發現吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

EASY天文地科小站_96
23 篇文章 ・ 1438 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
如何運用 Google AI的機器學習,發現新的系外行星 Kepler-90i ?
PanSci_96
・2017/12/19 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 476 ・五年級

-----廣告,請繼續往下閱讀-----

  • 作者| Chris Shallue,Google人工智慧研究員 / Andrew Vanderburg,德州大學奧斯汀分校天文學家

幾千年來,人們仰望星星,記錄、觀察天文現象,並從中發現其運行模式。第一批天文學家所認定的天體是行星,由於行星在夜空中看似不規則的移動,因此也被希臘人稱之為「planētai」或「漫遊者 (wanderers)」。經過幾個世紀以來的研究,人們已經了解太陽系的運行模式,是地球和其他行星圍繞著太陽公轉,而太陽是一個恆星,就如同我們肉眼所看見會發光的星星一樣。

Image credit: NASA

如今,在望遠鏡光學(telescope optics)、太空飛行、數位相機和電腦等技術的幫助下,我們得以將對宇宙的了解擴展到太陽系之外,偵測並探究其他恆星周圍的行星。這些圍繞在其他恆星周圍的行星也稱之為「系外行星(exoplanet)」,而研究系外行星能幫助我們更深入探索宇宙與人類的奧秘。太陽系之外的宇宙是什麼樣子呢?外太空還有像太陽系一樣的其他行星恆星嗎?

雖然技術的進步有助於我們探索宇宙,但尋找系外行星仍不容易。與火熱的恆星相比,系外行星是冷的、小的、沒有光亮的,這就像要從幾千英里的地方,看見探照燈旁邊飛來的螢火蟲一樣困難。

-----廣告,請繼續往下閱讀-----

不過藉助機器學習(Machine Learning),我們在最近有了一些新的進展。

克卜勒任務與 Google AI 的相遇

天文學家搜尋系外行星的方式,其中一個是分析來自NASA 克卜勒任務(Kepler Mission)中的大量資料數據,並透過自動化軟體和手動方式來執行。克卜勒任務用了四年的時間觀察近20萬顆恆星,每30分鐘拍一次照片,並創造了近140億個資料點。這140億個資料點相當於大約2千兆個可能的行星軌道。這個龐大的資料量即使用最強大的電腦來分析也是非常耗時、費力的。為了讓這個分析的過程可以更有效率,我們導入機器學習來加速分析時程。

圖/Google台灣

凌星法是指,當一顆運行中的行星擋住了恆星的光線時,恆星的亮度會減小。我們以此概念為基礎,將其特徵訊號用來辨識周圍運行的行星,並運用克卜勒天文望遠鏡,在四年之間觀察並分析了20萬顆恆星的亮度。

機器學習能夠訓練電腦認識運作模式,而這對於分析大量數據來說尤其有用。機器學習技術的重點在於讓電腦從範例中學習,而不是透過編寫特定的規則。

我是Google人工智慧團隊的機器學習研究員,對於宇宙的世界相當感興趣。因此,我善用「20%計畫」(在Google,你可以利用20%的時間來做你喜歡或感興趣的事情)來開始執行這個專案。我和德州大學奧斯汀分校的天文學家 Andrew 接洽,共同執行這個專案。我們將機器學習技術應用在宇宙探索,並教導機器學習系統如何識別遙遠恆星周圍的行星。

我們利用超過 15,000 個被標記的克卜勒訊號,創造一個 TensorFlow 模組來辨別行星與非行星。為此,這個模型必須能辨認出真正的行星所形成的圖像,與其他天體如 星斑(starspots)雙星(binary stars)所形成的圖像。當我們讓 TensorFlow 模組辨識從未見過的訊號時,它能以96%的準確率辨認出哪些訊號是行星,哪些是非行星。因此,我們知道這個模組成功了!

克卜勒90i,發現!

有了可行的模組後,我們拍攝恆星,並利用這個模組在克卜勒數據中尋找新的行星。為了縮小搜尋範圍,我們研究了 670個已知可容納兩顆或更多的系外行星的恆星。在這樣的過程中,我們發現兩顆新行星:克卜勒80g 和克卜勒90i。其中值得注意的是,克卜勒90i 是第八個被發現圍繞著克卜勒90的行星,這使它成為除了太陽系之外,第一個已知的八大行星系統。

圖/Google台灣

我們利用15,000個被標示的克卜勒訊號,來訓練機器學習模組去辨認行星訊號,並利用這個模組,從670顆恆星的數據中發現新的行星,且成功發現了兩個先前被忽略的行星。

另外也發現了一些有趣的事:這個行星比地球大了30%;擁有大約華氏800度的地表溫度,絕對不是你下一趟旅行的好選擇;它以14天的週期繞著恆星公轉,這代表你每兩個星期就會過一次生日喔。

圖/Google台灣

克卜勒 90是太陽系以外第一個已知的八大行星系統。在這個星系中,行星運行的軌道更靠近恆星,而克卜勒90i每14天公轉一次。(請注意,行星的大小,以及行星與恆星的距離不在測量範圍內。)

當我們運用科技來嘗試了解宇宙時,會以為已經可以一窺一二,但其實不然。目前為止,我們只用TensorFlow 模組搜尋了20萬個恆星當中的670個,而克卜勒的數據中可能還有更多系外行星尚未被發現,未來機器學習的新思維和技術將能幫助人類進行宇宙探索,發現更多未知的領域!

PanSci_96
1219 篇文章 ・ 2193 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
系外行星,發現!|科學史上的今天:11/5
張瑞棋_96
・2015/11/05 ・946字 ・閱讀時間約 1 分鐘 ・SR值 499 ・六年級

-----廣告,請繼續往下閱讀-----

浩瀚宇宙中,地球是唯一具有生命的星球嗎?會不會在銀河系內的某顆星球上,也有個高度文明在凝視著我們?望著繁星點點的夜空,總不免會興起這樣的念頭吧?然而我們看到的星星,除了幾顆是系內行星與人造衛星之外,其實都是像太陽這樣的恆星,上面本來就不可能有生命。要尋找外星生命,我們得把目標放在繞著恆星轉的行星。

圖片來源:nasa

問題是,行星本身不會發亮,我們如何看見太陽系外的行星?

的確,即使行星會反光,若非過於微弱,就是被恆星的光遮蔽。因此長久以來,天文學家普遍相信我們不可能發現系外行星。但是1995年,瑞士日內瓦大學的梅爾(Michel Mayor)與奎羅茲(Didier Queloz)卻宣稱在51光年外的飛馬座51恆星發現一顆行星。這是怎麼做到的?

-----廣告,請繼續往下閱讀-----

原來行星繞著恆星公轉時,恆星會因行星的重力作用拉扯而產生輕微擺動,影響恆星朝向地球與遠離地球時的速度,而產生不同的光譜偏移。從偏移程度可以推知恆星相對於地球的運動速度,如果速度呈現週期性變化,就表示有行星存在,而且還能推算出行星的質量大小。

不過這個方法除了質量,對行星仍一無所知。不過,1999年11月5日,美國加州大學柏克萊分校在飛馬座中距離地球約150光年處,發現一顆繞行恆星HD 209458的行星,除了知道它的質量是木星的0.7倍(相當於地球的220倍),還知道體積是木星的2.5倍、大氣成分含有氧和碳。

這顆編號為HD 209458b,別名「歐西里斯」(Osiris)的行星是首度以「凌日法」觀測到系外行星。凌日法的原理是:行星軌道若介於母恆星與地球之間,當它橫過恆星表面時會擋住一小部分的光,我們就可以根據恆星發光的減少程度推算行星的體積。而且恆星的光穿過行星的大氣層時,會被其中所含的元素吸收特定頻率的光,而改變光譜,因此可以得知行星的大氣成分。

歐西里斯的發現是尋找系外行星的重要里程碑,因為知道大氣組成有助於更有效率地發現適合居住的星球。至2014年為止已經發現了約一千顆系外行星,而在質量略大於地球的「超級地球」中,擁有大氣層與一定溫度以上的系外行星更被視為尋找外星生命的優先對象,就讓我們拭目以待吧。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
NASA湊齊七龍珠:TRAPPIST-1星系有七顆與地球大小相近的系外行星
PanSci_96
・2017/02/23 ・2032字 ・閱讀時間約 4 分鐘 ・SR值 525 ・七年級

TRAPPIST-1 星系中,其中一顆代號 TRAPPIST-1f 的星球表面模擬圖。科學家利用史匹哲太空望遠鏡和地面上的天文望遠鏡發現了 TRAPPIST-1 星系中有七顆近似地球大小的星球。

文 / 泛科學編輯部(據說是 j 編、k 編、v 編、y 編合寫的)

美國太空總署的「史匹哲太空望遠鏡」(Spitzer Space Telescope)發現了人類首知、第一個由七顆近似地球大小的行星環繞著一顆恆星的星系(TRAPPIST-1)。目前七顆行星中有三顆被確信位於「適居帶」,也就是與恆星的距離適中,而且很可能有液態水。(延伸閱讀:科學家是怎麼找系外行星的?

這是人類首次在太陽系外發現一個星系同時擁有這麼多顆位於適居帶的星球。這個星系中的七顆星球都很可能有著人類生存所必要的液態水和適宜的大氣層,其中又以在適居帶內的三顆星球機會最高。

-----廣告,請繼續往下閱讀-----

任職於 NASA 科學任務理事會(Science Mission Directorate)的朱伯肯(Thomas Zurbuchen)說,這是一個非常有意義的發現,我們獲得了回答「宇宙中是否有其他生物」這個重大科學問題的一大線索;一次找到這麼多顆在適居帶的星球讓我們朝問題的解答往前邁進了值得紀念的一大步。

「TRAPPIST-1」星系位在水瓶座,離我們不算很遠,如果你能飛的跟光一樣快,從地球出發大概 40 年(約 378 兆公里)就能抵達這群系外行星囉。

TRAPPIST-1 星系的名字來自於位在智利的 TRAPPIST 望遠鏡。2016 年 5 月, TRAPPIST 望遠鏡的研究員就發現這個星系中的三顆行星。在其他地面大型望遠鏡的幫助下,史匹哲望遠鏡不只確認其中兩顆的存在,還發現了其他五個,讓星系家族的行星成員一口氣增長到七個。研究結果發表在今(2017)年 2 月 22 日的期刊《自然》(Nature)。

美國時間 2017 年 2 月 23 日刊登在《自然》(Nature)期刊的封面,七顆近似地球大小的行星環繞著紅矮星 TRAPPIST-1 。圖/NASA

-----廣告,請繼續往下閱讀-----

根據史匹哲太空望遠鏡的觀測資料,研究團隊準確量出這七顆行星的尺寸,並初步推算其中六顆的質量和密度。研究員根據密度推測這群行星都是岩石硬漢,但還需要進一步觀察它們是否有豐富的水?地表有沒有液態水?而最遠,也是唯一沒被推測出質量的第七顆行星則可能是冰球。

研究報告的主要作者,比利時烈日大學 TRAPPIST 系外研究團隊的主研究員吉倫(Michael Gillon)解釋,這是我們首次發現七顆類似地球大小的行星,又繞著此等規模恆星轉的星系,「這也是有史以來研究規模近似地球的潛在移居星球的最好材料!」

根據觀測資料(星球的大小、質量、軌道距離)所繪製而成的示意圖,顯示 TRAPPIST-1 星系中每顆行星的大小比例還有與恆星之間的相對位置。

與太陽不同的是,TRAPPIST-1 星系的恆星是一顆極低溫紅矮星(ultra-cool dwarf),亮度比太陽還暗兩千倍,即便行星們離恆星很近,仍有可能保有液態水。TRAPPIST-1 星系的七顆行星的軌道離恆星的距離,比太陽系中水星與太陽的距離還要近。甚至這七顆行星間的距離也非常靠近,NASA 指出如果一個人站在其中一顆行星上,他們可能可以看到鄰近的另一顆行星上的地貌或雲。

-----廣告,請繼續往下閱讀-----

不過這些行星可能被母恆星潮汐鎖定(Tidal locking),像月球一樣只有一面固定面向恆星,所以會造成行星上有一半是永晝、一半是永夜的狀態。而 NASA 推測這個現象,行星上的氣候會與地球完全不同,例如會出現強風不斷從永晝面吹向永夜面,或是極端溫度變化等。

史匹哲太空望遠鏡於 2016 年秋季連續 500 小時持續觀測 TRAPPIST-1 星系。科學家藉由探測 TRAPPIST-1 恆星發出的紅外線,以及行星從恆星前經過的動態,藉此分析 TRAPPIST-1 星系的結構。

這張海報是人類利用太空旅行前往 TRAPPIST-1e 星球的想像圖。圖/NASA

2016 年 5 月哈伯團隊也觀察了 TRAPPIST-1 星系最內側的兩顆行星,並沒有發現它們有蓬鬆大氣的證據,更加強了這些行星的本質很有可能是岩石。哈伯研究的共同主持人、巴爾的摩太空望遠鏡科學研究所天文學家尼科爾.路易斯(Nikole Lewis)說:「TRAPPIST-1 星系提供了很好的機會,讓科學家能在接下來的十年中去研究地球尺寸行星的大氣。」

-----廣告,請繼續往下閱讀-----

另外,NASA 尋找系外行星的行星獵人計畫中,克卜勒太空望遠鏡也正在研究 TRAPPIST-1 系統,藉由測量恆星由於行星經過時的亮度微小的變化,觀察其凌星現象。

那這就是追尋系外行星的最高峰了嗎?

之前也有眾多的系外行星被點名為「地球 2.0」,在適居帶的系外行星其實也多不勝數(延伸閱讀:Kepler-452b 真的是「地球2.0」?),而這次的發現雖然是「人類首知、第一個由七顆近似地球大小的行星環繞著一顆恆星的星系」,這或許讓我們對於移民、外星生命、藉此探索地球和生命的起源……等眾多地想像又前進了一步;但只要追尋系外行星的計畫仍在持續進行(2018 年還會有更高性能,可以檢測水、甲烷、氧氣、臭氧和其他大氣組成份,還能分析行星溫度以及表面壓力的 Webb 太空望遠鏡加入戰場喔!),這樣令人興奮的發現就不會停止!

資料來源

-----廣告,請繼續往下閱讀-----