3

2
0

文字

分享

3
2
0

為愛與夢想燃燒的はやぶさ-隼鳥號(上篇)

活躍星系核_96
・2012/10/11 ・3107字 ・閱讀時間約 6 分鐘

文 / 台南隊長

之前曾看過一些資料,提到日本在外太空有顆充滿傳奇的研究衛星,該衛星發射後就開始前往3億公里外的目的地進行樣本採集。後來這顆衛星在遙遠的外太空故障了,在地球上的工程科學家們很努力地用各種方法想修好她。但最終還是無法把她救回來。最後科學家們決定,在這顆衛星生命結束之前,讓她轉向地球,再看地球一眼;並拍下最後的一張照片… 這顆衛星叫「はやぶさ」(HAYABUSA)隼鳥號。隼鳥號的誕生是源自於日本宇宙航空研究開發機構(JAXA)的小行星探測計劃,任務是前往距離地球3億公里外,一顆會穿越火星軌道的阿波羅小行星25143採集行星上的樣本,並將樣本送回地球。

要前往的行星25143 又名叫「糸川」( Itokawa );該行星的名字是為了紀念日本火箭之父-糸川英夫。而糸川英夫也是太平洋戰爭期間,中島九七式戦闘機一式戦闘機 隼二式単座戦闘機 鍾馗的設計師之一。

若隼鳥號成功地採集到了小行星「糸川」的樣本,也成功飛回到地球,那麼她就是第一顆前往月球、彗星以外的陌生地區探勘;並帶回樣本的太空飛行器。而JAXA也將完成了一件連美國太空總署(NASA)都做不到的事情!因為JAXA每年的研究預算只有NASA的1/10,在這樣的經費下,連拍一部《阿凡達》都辦不到!而選擇小行星「糸川」的原因是:科學家相信這是一顆在太陽系形成之時所遺留下來的原始地區;未來將可透過研究分析;了解太陽系早期歷史、星球如何誕生,並協助降低未來隕石撞擊地球的威脅。 這顆起初連日本國民自己都沒人看好的衛星,在2003年5月9日13時29分25秒經由M-V 5號火箭從鹿兒島内之浦宇宙空間観測所發射升空,飛往位於地球和火星之間的「糸川」,開始了一段三億公里的長程旅行…

MVロケット.ハヤブサ搭載 經過6個月在太空的孤單漫長飛行,隼鳥號在2003年11月遭遇到人類觀測史上最大規模的(X28)太陽黑子風暴!而這風暴或許也在隼鳥號的身上埋下了未來任務的不確定性…

隔年5月19日,隼鳥號成功完成了〝世界上第一次〞合併離子推進器的地球重力助推飛行;並在2個月後捕捉到小行星「糸川博士」的身影!但沒想到就在看到糸川博士的2天後,隼鳥號的三組姿態控制器中其中有一組發生故障。

同年9月12日,隼鳥號在糸川上空20公里處靜止成功與行星軌道銜接!可惜隼鳥號的另一組姿態控制器此時也發生故障,這使得隼鳥號無法改變飛行姿態。在地球上的科學工程師們花了1個多月的時間研究、並修復後,隼鳥號在11月20日成功降落糸川;並且進行最重要的成分採集任務。

不料6天後,隼鳥號在又再次降落在不同地區進行採集時,不幸發生燃料外洩的事故,接著隔日又發生飛行姿態調整失敗、電瓶不明漏電等問題…。後續更遇到收集塵土用的揚塵砲無法發射、12組化學火箭故障、離子推進器無法啟動、操作指令失效、太陽能板無法蓄電、通訊天線偏離地球導致失去連絡將近7周…等一連串不在任務計畫中的故障意外。

當外界開始認為計畫失敗;隼鳥號將無法返回地球的時候,某日突然接收到來自隼鳥號斷斷續續的微弱訊號!工程人員意外驚喜;趕緊把握短短的時間傳送訊號檢測並嘗試修復。

雖然隼鳥號曾二度降落在糸川行星上;但科學家們內心其實也不確定是否有完整收集到小行星上的物質。但想著降落在糸川上的時間總計也有30分鐘以上,科學家們認為在降落的時候多少揚起的塵土應該會收集到一些灰塵,因此努力修復隼鳥號令其返航…隼鳥號的返航過程仍是大小故障不斷,只能用遍體麟傷,跌跌撞撞來形容這段歷程。

2010年3月,返航的第二期軌道切換完畢,已經確定進入地球軌道,隼鳥號即將締造歷史的消息在日本本土與宇宙科學界之間傳開,這振奮人心的消息,也爲隼鳥號贏得了〝不死鳥〞的封號。但在振奮人心的同時,也帶了些感傷。隼鳥號原本的計畫是將採集到的行星樣本裝入小型耐熱密封艙投送回地球後,便轉身加速再前往宇宙進行其他探測計畫!

但因為姿態系統故障頻頻,隼鳥號的密封艙投射準度無法被精確掌控;因此得在更接近地球的地方投送密封艙,這也意味隼鳥號將無法掙脫地球引力;面臨墜入大氣層燃燒殆盡的命運。

消息傳出,日本各界開始為隼鳥號祈福;同時有許多人寫信給JAXA請他們想想辦法別讓她墜落地球…。

 

某日JAXA似乎收到了一位名叫明日香的女孩寄來的信:

「ハヤブサさんお疲れ様でした。でも死んじゃうんだね。帰ってこないほうがいいよ….。」(譯:隼辛苦你了。不過也真是累死你了吧,我建議你最好不要回來比較好喔….。)

那女孩的父親在下面附記了一段話…

「今この子はポロポロと泣きながらこの手紙を書いています。」(譯:現在這個孩子眼淚在眼睛打轉邊哭著寫著這封信要給你。)

2010年6月,密封倉與隼鳥號分離,朝南半球的澳洲沙漠降落,6月13日晚間。隼鳥號收到來自控制中心的最後一道命令…

 

『隼,請迴轉機身180度,並請好好欣賞自己的故鄉。』

在隼鳥號傳送出最後一張地球的照片後…
2010年6月13日晚間約11點,澳洲上空出現了一道璀璨的流星…

這是隼鳥號以每秒12公里的速度奔向地球的景象;這段時間長達7年,來回60億公里的旅行終於結束了。

隼鳥號用燃燒的亮光告訴日本的科學家們與在遠方的糸川博士:

『ただいま…我回來了!』

 

快歌版歌詞中文翻譯與說明註釋

隼鳥號…從07年4月再次執行返航任務,到2010年6月13日回到地球的懷抱為止,已經整整慢了原定計畫3年,感謝這段時間以來一直堅持不放棄的科學家們!

註1:本文主體引用下列網站資料:

  1. Wikipedia-はやぶさ (探査機)
  2. [奇蹟的不死鳥][辛苦了!歡迎回家!隼鳥號][初音ミク- はやぶさ]
  3. JAXA小惑星探査機「はやぶさ」物語
  4. 小惑星イトカワへの長い旅
  5. はやぶさよ、目を覚ませ!
  6. 祝・はやぶさ帰還録画
  7. めざせバッグ職人!修行日記
  8. はやぶさ イトカワ微粒子確認 「500点満点」の成果

註2:本文明日香寄給JAXA之日文信件翻譯由Kaoru協助翻譯,誠心感謝!
註3:本文漫畫翻譯出自[奇蹟的不死鳥][辛苦了!歡迎回家!隼鳥號][初音ミク- はやぶさ]
註4:本文部分圖片來自Google,如有侵權請來信告知,謝謝。

為愛與夢想燃燒的はやぶさ-隼鳥號(下篇)

轉自《台南海軍航空隊》,作者台南隊長授權刊載。

文章難易度
所有討論 3
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

4
0

文字

分享

0
4
0

整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域

CASE PRESS_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

參考資料

CASE PRESS_96
207 篇文章 ・ 1122 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策