0

0
0

文字

分享

0
0
0

造船的規律?過盡千帆才得到的吃水線與波浪線理論--《物理雙月刊》

物理雙月刊_96
・2017/10/28 ・8967字 ・閱讀時間約 18 分鐘 ・SR值 581 ・九年級

  • 文/Larrie Ferreiro and Alexander Pollara(譯者:林中一 教授,編修:余海峯 博士)

19 世記約翰・史考特・羅素(John Scott Russell)的船舶設計理論承諾了速度、亦表現了優雅。然而,最終證實那個理論並不完整。

今天的船舶設計師們仍運用 1800 年代末期英國工程師威廉・傅如德(William Froude)所發展出的比例定律來預測船舶的速度與動力。但是遠在傅如德之前,船舶設計者與造船者就已經知道,船體架構或船殼比例與形狀會影響船在水中的速度,而且他們已經找出了支配那些關係的規則。

船體架構或船殼比例與形狀會影響船在水中的速度,圖/by Tascalo@pixabay。

在 1500 年代末,一位名叫馬修・貝克(Mathew Baker)的英國造船者曾流傳了出一張讓他出名的素描。在這張素描中,他把一隻有著鱈魚鈍頭和鯖魚錐形尾巴組合的混種魚圖像重疊在一艘伊麗莎白時代的軍艦船殼圖上。在當時缺乏任何科學或實驗的基礎之下,這種「船殼的形狀應該由自然原理來支配」的想法仍然被廣泛接受。

貫穿整個 17 與 18 世紀,科學革命孕育了有關流體力學和阻力的新概念,這些概念定義了船舶在水中行進時所受的阻力。由於想要建造更快的風帆動力戰艦,歐洲各國海軍委託了科學家與發明家們去測試這些概念。1800 年初期,蒸汽動力用於在航海,其財務考量帶來了一個將流體阻力降到最低的額外動機:一艘蒸汽船的煤炭消耗量是直接關係到其運轉成本的,而煤炭的消耗就取決於受到的阻力。早期的蒸汽動力船隻比風帆動力的要快也更為可靠,然而它們的引擎效率並不好。造船者於是尋求快而高效率的船身,使得航行所燒的每一噸煤都能得到最充分的利用。

就在工業革命的那個年代、維多利亞時代的開端,有那麼一位有數學思想工程師約翰・史考特・羅素(圖 1),他開始要尋找一套通用的造船規律:一組能產生最小阻力的船身設計原理。他所完成的理論,被稱為「波浪線理論」(wave-line theory),主導了近半世紀的船舶設計世界。這一套理論不但引導了蒸汽船的設計,還加上得獎遊艇與破紀錄快速帆船。波浪線理論最終不再獲得青睞而被傅如德(Froude)更嚴格的理論所取代;這一段故事,在總是複雜的科學與技術的關係之中,是一課頗具啟發性的歷史。

圖 1. 1847 年的約翰・史考特・羅素 (1808–82)。 圖/by 英國皇家船舶設計研究院(Royal Institution of Naval Architects)。

製造波浪,和決定吃水線?

作為一位廣受尊敬的造船者,羅素於 1821 年到 1825 年間在英國格拉斯哥大學(University of Glasgow)讀數學,隨後藉著製造蒸汽車與船用蒸汽引擎學會了機械貿易。他結合理論與實踐的訓練在當時英國幾乎無人能及[1]。

1835 年,他在尋求方法改善新開發的蒸汽船時開始發展波浪線理論。在當時,科學家們已經確認船舶航行所受的阻力主要來自流體壓力與摩擦。但是,羅素卻正確地主張產生波浪的是另一個重要因素。不過,他錯誤地把波浪的產生只歸因於船身的形狀;實際上,無論任何形狀,物體在水中移動時都會產生波浪。羅素力爭,因為傳統船身的吃水線都是鈍形的——這是指船身前端與水接觸的部分,也就是船頭兩側形狀是凸面的——所以當船必須持續把水推開才能前進時,就一定會產生波浪。羅素相信,一個有適當向內的凹面或窪陷的船頭,會將水向兩側排開而不會產生船頭波。

一個有適當向內的凹面或窪陷的船頭,會將水向兩側排開而不會產生船頭波,圖/by Stan Shebs@wikipedia commons。

羅素在接著的 8 年裡努力的想要決定吃水線到底必須是甚麼形狀。英國科學促進協會(The British Association for the Advancement of Science,簡稱 BAAS),一個新成立的皇家學會(Royal Society)的競爭者,給了他 1132 英鎊——相當於今天的一百萬——讓他研究海浪的本質以及發展能減低波浪產生的船舶設計。這是該協會在那個時候所付出第二大筆的經費[2]。

大小從 3 英尺長的模型到 200 英尺長的遠洋航艦,羅素建造了並測試了超過 100 種船身。透過先前的實驗,他開發了精巧的技術:運用了懸吊自高支架的重物與滑輪系統來拖動船舶模型與運河船。在那些早期的實驗中,較高效率外型的船身自然跑得更快,但是阻力與速度之間的關係卻很難精確量化。羅素沒有單純的只去紀錄懸掛重物的落下時間,他使用了一種相對新穎的「彈簧動力計」直接量測航行受到的阻力,彈簧動力計還可以同時將得到的數據轉換為驅動船隻所需的馬力。在各項試驗之中,羅素甚至觀察到在運河中傳播而不會減速的奇怪「孤波」(solitary waves,後稱soliton)。孤波在光學與通訊裡扮演了重要的角色。

羅素在 1843 年向 BAAS 報告,在歷經幾千次實驗後,他發現了一種後來稱為波動線理論的新物理定律,「在這個理論裡,似乎每一種獨特形式與大小的船身都對應一個速度。」[3] 換句話說,羅素宣稱他發現了一個不論大小、任何船身設計都應該服贋的基本原理[4]。

歷經千次的實驗,羅素終於發展能減低波浪產生的船舶設計,圖/ by FelixMittermeier@pixabay。

什麼是波浪線幾何學?

羅素新定律的前提是,一艘船的船身形狀必須與它產生的波浪形狀一致。他假設有兩種形式的波浪與船所受的阻力有關:船行進時推開的水所產生、在船前方的「正弦移動波」(sinusoidal waves of translation),以及由風所驅動、回填至船通過後所空出來的空間所產生的「擺線船尾波」(cycloidal waves of replacement)。

羅素主要的研究聚焦在移動的波浪。他從實驗得到一個結論,就是正弦波的長度 L 必須遵守公式 L = 2πV2/g,其中 V 是船速、g 為重力加速度。羅素認為若要將阻力降到最小,船頭兩側的形狀就必須是長度為 L 的正弦。他從來沒有完全講清楚過他的論據,只是說這樣的對應關係能在平的水面產生最小的擾動——先別管水面其實沿垂直方向上下振動,而羅素的船身在水平面是正弦形的。所謂的波浪線船頭號稱會劈開迎面來的水,而不是將水向前推開。為了證實這個想法,羅素駕駛了一艘這麼設計的船穿過漂浮著小球的水面,他觀察到那些小球並沒有撞向船頭,而是單純的被向兩側推開[5]。

同樣地,羅素主張船尾的形狀應該做成擺線形以配合回填的水波。由於這種水波的長度是移動波長度的三分之二,所以船尾的長度應該是船頭的三分之二。而船舶的全長可以藉著在中間加進一段平行船身來調整。例如,一艘船以 10 節(每秒 17 英尺)速度行進時所產生的移動波長度是 53 英尺,所以設計一艘以這個速度航行的 100 英尺長的船應該有 53 英尺的正弦形船頭、12 英尺直的中段,以及 35 英尺的擺線形船尾(圖 2)。


圖 2. 依照波浪線理論所訂出船身幾何形狀的三個關鍵元素,圖/物理雙月刊提供。
  • 波浪線理論:船頭形狀必須是正弦的才能與船隻前沿所產生的移動波相匹配;船身後段/船尾必須是擺線形才能與尾隨的替代波相符;船身中段,由於假設沒有波浪,所以必須是直的而且與船身中線平行。船首與船尾的長度各自依據移動波與替代波的長度決定,而船身中段的長度則視船隻的全長來調整。

在這裡我們必須開始注意有甚麼是波浪線理論所沒有顧到的。波浪線理論並沒有提供一個方法來估計「興波阻力」(wave-making resistance,即船隻行進時,推動水面形成波浪所損耗能量對應的阻力);羅素單純的、錯誤的假設依據波浪線設計的船身的興波阻力為零。同時波浪線理論並無物理基礎;儘管羅素宣稱他做了好幾千次的實驗,但能用來闡明興波阻力機制的數據卻很少。

羅素堅持的正弦曲線以及擺線只能說是一種幾何描述性概念,而不太算是一個物理理論。最終,與羅素斷言相反,他的波浪線並無法為每一艘船隻提供保證成功的範本。船舶設計始終必須在速度、穩定性、強度與其他一堆因素之間尋求妥協。就波浪線來說,船身為了支撐其重量必需足夠吃水,往往就表示必須修正羅素原來想像的吃水線。

應用在蒸汽船的情況⋯⋯

羅素由 BAAS 贊助的研究成果發表之後,他的波動線船身設計理論就獲得蒸汽動力船造船者的擁護,而蒸汽動力船舶在那時候已經快速地在英吉利海峽、北海、愛爾蘭海等等貿易航線上取代風帆動力船舶了。在那些水域航行的貿易船隻必須相當快速的完成短程輸運;造船者看到比較尖的船身都認為那是產生速度的理想形狀,以致向內凹進去的吃水線設計在 1845 年之後大為流行。

雖然波浪線設計的汽船一般來說可以令那些船長們滿意,但僅僅使用波浪線公式並無法保證一艘船舶的成功。舉例來說,蘇格蘭的造船者詹姆士・納皮爾(James Napier)依據羅素理論所建造的幾艘在愛爾蘭海航行的汽船,就都通通不及格,這使得納皮爾的每一條船都大虧其錢。

皇家海軍第一艘裝甲戰艦 HMS 勇士號,圖/ by geni@wikipedia commons。

雖然 1895 年時羅素已經是倫敦一位著名的造船者,但是他沒有標到建造皇家海軍第一艘裝甲戰艦「HMS 勇士號」(HMS Warrior)。不過他說服了海軍調查員保德溫・華克(Baldwin Walker)在建造新艦時採用波浪線概念。勇士號的首席造船技師埃撒克・瓦特斯(Isaac Watts)跟隨華克的決定,為戰艦製作了產生波浪線的向內凹陷的吃水線,但是船頭剩下的部分則仍舊依照傳統設計。而且瓦特斯也斷然拒絕了後來羅素要求分享一半勇士號設計功勞的嘗試。

羅素的確運用波浪線建造了他最著名的船——在 1859 年開始營運的「SS大東方號」(SS Great Eastern,圖3)。這船長 600 英尺、排水量 27,000 噸,在那個時代是最大的一艘船,準備從英國載客到澳大利亞。然而儘管是這麼大的船、還加上先進的船身外型,大東方號卻從來沒有去過南半球,她只數次橫渡大西洋,也沒有賺到利潤[6]。

圖 3. 「SS大東方號」(SS Great Eastern),約翰・史考特・羅素最著名的波浪線船。圖/澳大利亞維多利亞州立圖書館(State Library Victoria)同意刊登。

儘管如此,大東方號的乘客之一,朱爾・凡爾納(Jules Verne)由於對大東方號的波浪線船身印象非常深刻,因此給了他靈感在他的著名小說《海底兩萬里》或譯《海底歷險記》(Twenty Thousand Leagues Under the Seas)裡寫了一段。在小說裡他這樣描述他的虛構潛水艇「鸚鵡螺號」(Nautilus):「有線條…足夠長而且她的船尾夠寬,能讓回填的水輕易的流出,而且讓潛艇的行進毫無障礙。」[7]。

如果用在風帆的情況?

雖然波浪線理論原來本是為了蒸汽動力船而發展的,卻在帆船上發揮了最大的功用,特別是在 1800 年中期到末期的快速帆船(clipper)和遊艇(yacht)上。快速帆船是被建造來快速輸運旅客和易腐爛貨物的;遊艇則是被造來贏得比賽中。這些船隻的設計與建造的每一方面都可以說是以快為本。

快速帆船最初是 1840 年代由一位任職於紐約史密斯與戴蒙(Smith and Dimon)造船廠的年青人約翰・葛瑞菲斯(John Griffiths)所發展出的。葛瑞菲斯想設計一款新型的船舶,以便在當時和中國之間快速擴大的茶葉貿易上撈到好處。他精通那時最新的船舶設計理論,也研讀了羅素各種波浪線理論的報告[8]。他最先設計的幾艘快速帆船:1845 年的「彩虹號」(Rainbow)和 1846 年的「海魅女號」(Sea Witch),就是受到羅素向內凹陷吃水線的啟發;這個設計使得往返美國-中國的航程幾乎縮短了近乎兩個月[9]。圖 4(a)所示為海魅女號船頭的波浪線。葛瑞菲斯設計的快速帆船是名列最快船隻之列:1849 年由海魅女號所創下的由紐約到香港的紀錄,一直到 2003 年才被打破!

圖 4.(a)快速帆船「海魅女號」與(b)賽艇「美國號」(America)的船身設計圖。在第一批造出的快速帆船之中,海魅女號在 1849 年創下了往返紐約-香港只花 74 天的紀錄!1851 年,當時吃水線幾乎完全遵守波浪線理論所設計的賽艇美國號,完勝「美國杯」(America’s Cup)帆船賽。

葛瑞菲斯在快速帆船的成功,刺激了一股在紐約與波士頓採用向內凹陷吃水線造船的熱潮。快速帆船造船者羅伯・馬凱(Robert McKay)在一次造訪倫敦時簡潔的向羅素表示:「我有個秘密,就是我在建造我所有的船時都採用了波浪的原理。我最早是在大英協會(British Association)的出版品裡發現了波浪線的說明。[10]」

波浪線成了遊艇社群的一個更加招牌的設備。羅素幫英國鐵路工程師羅伯・史蒂芬森(Robert Stephenson)建造了一艘波浪線遊艇「泰坦尼亞號」(Titania),就是這一艘船讓史蒂文森得以加入那個貴氣十足的「皇家遊艇連」(Royal Yacht Squadron,簡稱RYS)。1851 年的時候,皇家遊艇連的會員邀請他們的同級對手「紐約遊艇俱樂部」(New York Yacht Club,簡稱 NYYC)的伙伴們到英格蘭懷特島的考斯(Cowes, the Isle of Wight)比賽「一百畿尼杯」(Hundred Guinea Cup/£100 Cup)遊艇賽——這是皇家遊艇連舉辦的比賽裡的最高殊榮。(譯者注:畿尼(Guinea)是英國幣值單位,一畿尼等於一英鎊,一百畿尼杯的獎盃價值一百畿尼,大約是今天的十萬英鎊。)

1/4畿尼,圖/wikipedia commons

皇家遊艇連的好手們不知道,來自紐約由喬治・史悌爾(George Steers)所領導的隊伍,已經準備好了他們自己的波浪線遊艇來參賽。史悌爾曾經是葛瑞菲斯的造船伙伴,並而且向葛瑞菲司學會了波浪線理論;他完全遵照了波浪線理論建造了他的「美國號」(America)縱帆船(見圖 4(b))。

  • 美國杯帆船賽原名「一百畿尼杯」(Hundred Guinea Cup),就因為美國號超凡的表現,後來改名為美國杯帆船賽。(改編自 C・G・戴維斯(C. G. Davis)所著《美國快速帆船海魅女號:1846 紐約製造》,1935 船舶製造廠出版(U.S. Clipper Ship Sea Witch: Built at New York, 1846, Ship Studio, 1935)與參考資料[8]。

在 1851 年的 8 月 22 日,美國號在懷特島的帆船大賽裡穩穩的擊敗了由 14 條船所組成的英國船隊。美國號的勝利造成了大轟動,數日之後倫敦日報(London Journal)登載了一幅漫畫,圖中維多利亞女王問道:「那一艘遊艇得到第二名?」她得到唯一的回答是:「啊,女王陛下,這個比賽是沒有第二名的。」一個星期之後,在另一場比賽裡,美國號對上了羅素自己的傑作泰坦尼亞號。再一次,美國號輕鬆獲勝[11]。羅素很有風度的承認對方的勝利並聲稱史悌爾對於波浪線的運用更勝他一籌。

倫敦日報(London Journal),圖/by William Parks@wikipedia commons。

波浪線贏得了國際的名聲而且在美國號大勝之後被廣為模仿[12]。1860 年的時候羅素被任命為「皇家船舶設計學院」(Royal Institution of Naval Architects)的校長。然而並非所有的帆船玩家都相信波浪線理論。一位在麻省理工學院訓練出的工程師,美國人那森諾・賀瑞修夫(Nathanael Herreshoff)明確的摒棄了波浪線以及所有其他所謂的「科學 理論」,在船身設計上只認同出自自身經驗的自家產品。他工程上的直覺被證明幾乎都是對的;自 1893 年到 1920 年,他設計並建造了連續五屆美國杯的衛冕者,這裡面包括了他 1903 年的傑作「信任號」(Reliance)。這幾條船沒有一艘有向內凹陷的吃水線特徵[13]。

對於許多研究船舶設計的科學家與工程師,賀瑞修夫的非凡演出其實也不是那麼令人驚訝。早在十多年前那些人之中有幾個就已經開始發掘波浪線理論的缺點,而並沒有花太久時間就看到那個理論出現了破綻。

波浪線的終結

在那些質疑波浪線理論的諸多科學家與工程師之中,有一位名叫威廉・藍金(William Rankine)。他自 1857 年開始,執行了一個為期十年的船舶阻力研究之後,得到了一個結論,就是船舶行進所遭遇的阻力最重要的來源是散流在整個船身周邊的「摩擦渦流」(frictional eddies);注意,摩擦渦流的作用不只是在船頭與船尾,而在整個船身。但是,藍金用來計算阻力的理論,雖然後來證明大都是對的,用在處理日常的造船工作時就嫌太複雜了[14]。

又有一位大名威廉・傅如德,曾經一起參與建造大東方號,亦熟悉羅素,也加入了船舶阻力的研究。1865 年的時候,他決定要比較一下羅素的尖型波浪線和另一種比較圓的,他說他的想法源自「水鳥的眼光」。他建造了兩組大小不同的模型船,一組是有波浪線的「渡鴉」(Raven),另一組船尾是鈍形的「天鵝」(Swan),然後把這兩種模型船拖在一艘小的工作船後面。實驗結果發現,在高速時天鵝表現出的阻力比渡鴉要小,傅如德也開始確信阻力可以依照比例隨著船隻大小予以預測。

BAAS 協會反對使用縮小版模型的行為來預測全尺寸船隻結果的作法,圖/by F.Lang@wikipedia commons。

1868 年,BAAS 委託了更多船舶阻力的研究案,而藍金和傅如德都參了一腳。在正式的報告裡,協會反對使用縮小版模型的行為來預測全尺寸船隻結果的作法。但是傅如德基於他所做天鵝與渡鴉的實驗結果,並不認同協會的看法。運用了得自皇家海軍(Royal Navy)的資金,傅如德在位於托基(Torquay)、他家附近建造了一個模型測試儲水池,並且在 1871 年開始實驗。經過十年研究,傅如德和他兒子羅伯(Robert)發展出了船舶阻力的比例定律[15]以老爸名字命名。

經過超過一個世紀的理論與實驗的證實之下,傅如德的定律架構裡說明了船舶所受的總阻力來自兩個可視為獨立的因素:

(一)壓力,就是在整個船體全長產生能量耗散波浪系統的壓力
(二)摩擦,就是由水施予船體表面的黏滯阻力。
波浪線理論只有船頭與船尾會產生波浪的前提,被一個更基本的理解所取代。這說明行船時產生的波浪,就是整個船體向其周圍的水所輸送的能量。

到了 1890 年代,蒸汽動力已經超過風帆成為商船推進的主要方式。船主們開始對增進煤及後來的油的效率投資更多的投資。在同一時期,全世界也在紛紛建造傅如德於托基做的實驗所用的縮小版模型測試儲水池,而模型測試的結果都確認了傅如德所建構的定律。船舶設計所涉及的科學很快也成為了在那些實驗設施裡工作的工程師與科學家的研究領域(圖5)。縮小版模型的實驗是相對容易與以及低成本,與傅如德的比例定律相結合後,模型測試對造船者以及海軍而言是有成本效益的方式,如此他們能發展有效率的船體形狀,同時降低燃料開支。

圖 5. 一個現代的模型測試儲水池、一座用來研究小型模型船流體力學的現代牽引水槽。由於那些流體力學服贗定義明確的比例定律,小型模型可以用來估計遠洋航行船隻的速率與動力。圖/史帝文理工學院的戴維森實驗室(Davidson Laboratory, Stevens Institute of Technology)同意刊出。

模型測試也逐漸顯露其他影響船隻速度與動力的因素,包括船身摩擦與流入螺旋槳的水流的形態。這些新考量質疑了所有幾何推導出的吃水線有效性。1906 年一篇刊登在暢銷的《工程學》期刊(Engineering)的論文認為:「早期船舶設計者絞盡腦汁要尋找一個『最小阻力』形狀的問題,除了在這個層次之外是仍未獲得解決的。這個層次就是科學的造船者已經知道,沒有哪『一種』船身的形狀能在『所有』的狀況之下都是最容易駕駛的;所謂『最小阻力』的船身形狀則是對應於不同的速率、長度以及其他船身狀物體的變數,有所不同。而約翰・史考特・羅素先生著名的《最小擾動與可能的最小阻力的波浪線形狀》只是演繹自…他所假設的公理[16]。」

該論文明言,這個主題「只能在測試水槽的輔助之下得到闡明」。確實,在 1893 年由美國造船技師大衛・泰勒(David Taylor)所著的、有影響力的著作《船舶的阻力與螺旋推進器》(Resistance of Ships and Screw Propulsion)中,幾乎完全只專注於模型測試結果,而對羅素的波浪線理論一個字都沒提到。

故事還沒完⋯⋯

雖然羅素的波浪線概念無法存留超過 19 世紀,但是 18 世紀明確的理想——最小阻力的幾何固體——活了下來。儘管被指出並無物理基礎,這種固體可能存在的想法仍繼續支配著一些甚至是 20 世紀的工程師。

在最有名的例子,1934 年美國航空工程師大衛・戴維斯(David Davis)申請了一種低阻力機翼設計專利,設計原理完全只基於擺線形狀的幾何考量。回顧羅素的論點——擺線形是最佳化船尾的形狀,戴維斯的專利宣稱他的「最有利機翼形狀」是「發展自一個公式,該公式是基於一個在流體中同時具有旋轉與平移運動的旋轉翼所產生的馬格努斯效應(Magnus effect)[17]」。

最小阻力的幾何固體理念仍持續影響20 世紀的工程師,圖/by Bluesnap@pixabay。

在這裡把馬格努斯效應扯進來其實是有點曖昧的,因為馬格努斯現象只與自旋的物體相干,而戴維斯的機翼並不旋轉。但是即便如此,戴維斯的機翼仍然受到了「統一飛機公司」(Consolidated Aircraft Corp)的注意,這家公司當時正在發展一種新式的長程轟炸機——就是後來的 B-24。當統一公司測試了戴維斯的機翼之後,發現流經機翼大部分表面的氣流都是非湍流的穩定流線,因此大幅降低了阻力。於是飛機公司就採用「老戴機翼」接續製造後來被視為大成功的 B-24。好幾年之後,大家才瞭解到這個低阻力背後的物理是所謂的「層流機翼」(laminar-flow airfoils),工程師們也就在那個時候才瞭解到戴維斯的擺線碰巧落在幾種層流機翼形狀的其中之一。看來戴維斯發表的機翼比較像是碰巧踩到狗屎般的好運而非出自刻意的設計[18]。

約翰・史考特・羅素與他在造船界半世紀長的主導似乎也頗為相似。然而,即使證據顯示他幾何構想的基礎,事實上只是建築在沙灘上的一段時間之後,他那個「最小阻力形狀」依然風姿不綽。部分魅力可能因為他的理論看來就是那麼簡單。但是另一個隱藏在波浪線和其他幾何導出形狀持久不墜背後的因素,應該是羅素作品的視覺美。這世界事實上沒有多少事物能比那些過去歲月中的快速帆船與賽艇優雅的船身還要漂亮。

  • 本文的另一個更長的版本原本出版於《技術與文化》期刊(Technology and Culture)57, 414 (2016).

參考資料

  1. A. Lambert, Int. J. Hist. Eng. Technol. 81, 60 (2011).
  2. B. Marsden, in Technological Development Between Economy and Administration in Great Britain and Germany (19th/20th c.), E. V. Heyen, ed., Nomos (2008), p. 67.
  3. T. Wright, “Ship hydrodynamics 1710–1880,” PhD thesis, U. Manchester (1983), p. 98.
  4. G. S. Emmerson, John Scott Russell: A Great Victorian Engineer and Naval Architect, John Murray (1977).
  5. J. S. Russell, The Modern System of Naval Architecture, vols. 1–3, Day and Son (1864–65).
  6. D. Griffiths, A. Lambert, F. Walker, Brunel’s Ships, Chatham (1999).
  7. J. Verne, Twenty Thousand Leagues Under the Seas, W. Butcher, trans., Oxford U. Press (1998), p. 82.
  8. J. W. Griffiths, Treatise on Marine and Naval Architecture, or Theory and Practice Blended in Ship Building, 2nd ed., Pudny and Russell (1852).
  9. H. I. Chapelle, The Search for Speed Under Sail, 1700–1855, Bonanza Books (1967).
  10. The Literary Gazette and Journal of Archaeology, Science, and Art for the Year 1857, L. Reeve & Co (1857), p. 980.
  11. J. Rousmaniere, The Low Black Schooner: Yacht America, 1851–1945, Mystic Seaport Museum (1986).
  12. D. Kemp, Yacht Architecture—A Treatise on the Laws Which Govern the Resistance of Bodies Moving in Water; Propulsion by Steam and Sail; Yacht Designing; and Yacht Building, 3rd ed., Horace Cox (1897).
  13. C. Pastore, Temple to the Wind: The Story of America’s Greatest Naval Architect and His Masterpiece, “Reliance,” Lyons Press(2005).
  14. O. Darrigol, Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl, Oxford U. Press (2005).
  15. D. K. Brown, The Way of the Ship in the Midst of the Sea: The Life and Work of William Froude, Periscope (2006).
  16. Engineering 81, 541 (1906).
  17. D. R. Davis, “Fluid foil,” US Patent 1,942,688 (9 January 1934).
  18. W. G. Vincenti, What Engineers Know and How They Know It: Analytical Studies from Aeronautical History, Johns Hopkins U. Press (1990).
  • 本文感謝Physics Today (American Institute of Physics) 同意物理雙月刊進行中文翻譯並授權刊登。原文刊登並收錄於 Physics Today, July/2017 雜誌內(Physics Today 70, 7, 52 (2017); http://dx.doi.org/10.1063/PT.3.3627);原文作者:拉瑞・佛瑞若(Larrie Ferreiro)是一位船舶設計師與歷史學者。他任教於位在美國紐澤西州后伯肯(Hoboken, New Jersey)的史帝文理工學院(Stevens Institute of Technology)的系統與企業學院(School of Systems and Enterprises)及亞歷山大・波拉臘(Alexander Pollara)是一位就讀於史帝文理工學院航海安全中心(Maritime Security Center)的博士研究生 。中文譯稿:林中一教授,國立中興大學物理系。
  • Physics Bimonthly (The Physics Society of Taiwan) appreciates that Physics Today (American Institute of Physics) authorizes Physics Bimonthly to translate and reprint in Mandarin. The article is contributed by Larrie Ferreiro and Alexander Pollara, and are published on Physics Today 70, 7, 52 (2017); http://dx.doi.org/10.1063/PT.3.3627). The article in Mandarin is translated by Prof. Chung-Yi Lin, working on Department of Physics, National Chung Hsing University.

本文摘自《物理雙月刊》39 卷 10 月號 ,更多文章請見物理雙月刊網站

文章難易度
物理雙月刊_96
54 篇文章 ・ 6 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

8
5

文字

分享

0
8
5
來自姊姊的愛:約兒力氣要多大,才能把弟弟的肋骨抱斷?
linjunJR_96
・2022/07/13 ・2836字 ・閱讀時間約 5 分鐘

話題新番 SPY X FAMILY 中的媽媽約兒,是武功高強的職業殺手。力大無窮的她曾因為不小心抱得太用力,導致弟弟的肋骨不幸斷裂。約兒的力量究竟要多大,才能靠抱抱折斷別人的肋骨呢?

約兒的力量究竟有多大,才能靠抱抱折斷別人的肋骨呢?圖/IMDb

肋骨雖然是保護軀幹內重要器官的鎧甲,但比起粗壯的大腿骨等等其實是相對容易發生骨折的區域。除了一些激烈的競技運動可能會導致肋骨出事之外,CPR 過程中的壓胸動作也有一定機率會造成胸骨或肋骨骨折。這樣看來,單靠人力要把肋骨折斷好像並非不可能

除了安妮亞需要擔心這個問題之外,清楚地知道「東西什麼時候會斷掉」也是許多工程師每天會遇到的挑戰。然而這類實驗每做一次就要毀掉一塊材料,大多時候更完全沒有做實驗的可能(例如大型建築結構,或是無辜人類的肋骨)。

接下來我們便可以用一些簡單的估計,來探討人類肋骨究竟會不會在擁抱過程中意外斷裂。

安妮亞擔心跟媽媽抱抱時,肋骨可能會斷掉的這個問題。圖/IMDb

關心安妮亞的肋骨之前,我們先了解什麼是斷裂力學

一般而言,固態材料受到外力時首先會產生正比於外力大小的彈性,外力停止之後便能恢復原狀。硬度(Stiffness)描述的是彈性形變和外力的正比關係,也就是「外力 = 硬度 * 形變量」。在相同的外力之下,硬度越大的材料形變越小。

外力大到某個程度時,會造成不可恢復的塑性形變,此時材料內部的微觀結構通常已經遭到破壞;外力再大一些便會造成巨觀的斷裂。材料在斷裂前能承受的最大應力就是其強度(Strength)。

玻璃這類硬而脆的材料硬度大但強度小,也就是說它不容易形變,但應力一大就裂開;金屬類則通常有較好的強度和較大的彈性範圍,因此彈簧通常以金屬製成。

硬度跟強度是相關但獨立的概念,下面關於斷裂的討論會著重在強度的部分。

作為複雜的有機結構,骨骼的力學性質並不如上述的如此簡單。骨骼遭受外力衝擊時可以透過局部的塑性形變來分散能量,使裂痕不易蔓延。也就是說,是否骨折不只和力的大小有關,也和施力的速度有關。瞬間的重擊會讓能量來不及耗散,材料因此更容易斷裂。

用吸管插手搖杯封膜時一定要快狠準便是這個道理,如果慢慢加壓只會讓塑膠封膜凹一個洞(也就是塑性形變),那不是因為力氣不夠,而是因為施力不夠快。

用吸管插手搖杯封膜,如果慢慢加壓只會讓塑膠封膜凹一個洞。那不是因為力氣不夠,而是因為施力不夠快。圖/Pexels

但骨骼的塑性性質實在不好估計,所以先別管那麼多。一般在實驗室中若要測量骨骼的斷裂強度,應該就是緩慢地對材料加壓直到斷裂,這樣才能獲得完整的「彈性─塑性─斷裂」過程的資料。

我們暫且假設內心溫柔的約兒擁抱親人的動作(相較於出拳攻擊)是緩慢的,只是力氣的高峰值出奇地大,所以肋骨在經歷了充分的塑性形變後才最終斷裂。對於這類相對緩慢的擁抱,我們便可以安心地套用現有的一些測量數據。

一般人擁抱的力量和約兒有什麼不同

骨頭的部分接下來只要交給谷歌就可以了,那擁抱的力量該有多大呢?一般人抱的動作大概不會把雙臂交疊在一起,而是分別放在對方的肋骨上。所以我們只要考慮一隻手的力氣就好,兩隻手就只是斷掉的肋骨數量乘以二而已。

如果健身房有一台以擁抱動作為發想的訓練器材,一般人用一隻手能拉起的槓片數量應該不多,可能最多十五公斤。約兒提到她當時抱斷了弟弟的三根肋骨,意即兩隻手的力量差不多由三根肋骨扛起,也就是一根肋骨要承擔十公斤重的力。換成物理學家用的單位,就是差不多 100 牛頓。

有這樣的姐姐,尤利還能順利活下來也絕非凡人。圖/IMDb

但是知道力的大小還不夠。直覺會認為,較薄的材料比較容易折斷,同樣的材料在斷裂前能承受的力應該跟截面積呈正比。換句話說,真正衡量斷裂強度的是單位截面積所受的力,也就是應力(壓力)的概念。把一根肋骨的截面簡單當成一公分見方的正方形,壓力便等於:

100 牛頓 /1 公分2=106 牛頓/公尺2=1 百萬帕

(最右邊的百萬帕是材料力學常用的應力單位。)

不過彎曲應力不只和截面積有關,還得考慮材料受力的整體結構。

肋骨下方的胸腔相對沒有什麼支撐力,所以肋骨比較像是一根兩端固定,中間懸空的橋樑,如下圖所示。從日常經驗可以知道,這種結構中間懸空的部分 L 越長,或是厚度 d 越薄,彎曲的越嚴重。

肋骨下方的胸腔相對沒有什麼支撐力,所以肋骨比較像是一根兩端固定,中間懸空的橋樑。圖/作者

所以剛剛的應力還要再乘上一個長度對厚度的比值,才是肋骨在結構中承受的彎曲應力。假設肋骨大約 10 公分長,最後的答案就是 10 百萬帕

約兒有「全力」擁抱弟弟嗎?

人類骨骼的彎曲強度取決於年齡、性別、個體發展差異等等,但是普遍的值落在 100 到 200 百萬帕的範圍,一比下來差了十倍以上。雖然我們在計算中做了很多誇張的簡化,可是過程中不太可能有估計的失誤會讓最後結果差到十倍。

因此可以放心地說,一般人的擁抱不太可能將你的肋骨折斷

可以放心地說,一般人的擁抱不太可能將你的肋骨折斷。圖/IMDb

根據維基百科上沒有來源的資料:「第 1 到 3 根肋骨斷裂前能承受大約 180KG 的重量,第 4 根到第 9 根相對脆弱些」。這和我們的粗略估計大致相符,也就是每根肋骨 10 公斤重的擁抱力道距離肋骨骨折大約有十倍的差距。

不過別忘了,上面講的都是一般人的情況。約兒可不是一般人

想要對她的怪力有些概念,我們發現第十集躲避球大戰的特訓畫面中,約兒丟出的躲避球發出了明顯的音爆,表示她的球速至少來到音速 340 m/s。一般人的躲避球速最快不過 120 km/h,也就是 33 m/s 左右。

考慮到手臂長度差不多,手臂力量大致和球的動能成正比,也就是和球速平方成正比。約兒的球速大約是常人的十倍,代表她的力量是驚人的百倍以上。由此可知,約兒對親愛的弟弟已經相當手下留情了。

參考資料

Martin Grigor Abrahamyan. (2017). On the Physics of the Bone Fracture. International Journal of Clinical and Experimental Medical Sciences, 3(3 6) : 74-77. 
https://www.researchgate.net/publication/321489340_On_the_Physics_of_the_Bone_Fracture

linjunJR_96
31 篇文章 ・ 536 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

5
0

文字

分享

0
5
0
當科技介入感官體驗,人類的情感還是「自然」的嗎?——《再.創世》專題
再・創世 Cybernetic_96
・2021/11/05 ・5624字 ・閱讀時間約 11 分鐘

  • 作者/劉育成|東吳大學社會系副教授

後人類學者 Rosi Braidotti 在其著作中提出了一個問題:

「後人類主體的感官與知覺器官,看起來會像什麼樣子?(What is the sensory and perceptive apparatus of posthuman subjects like?)」(Braidotti & Hlavajova, 2018, p. 12)。

或者,換一個問法。人類所擁有的情感、情緒、知覺或感官體驗,都是「自然的」嗎?這樣的論述有多大程度是真實的?以及,科技如何可能改變這樣的真實性?Jordi Vallverdú 提出「後認知時代(Post-Cognitive Era)」一詞,藉此思考以下提問:「情緒或情感是自然的嗎?」「在科技介入後,情緒或情感如何變得不自然?」,或者「如何挑戰情緒或情感是自然的這條界線?」(Vallverdú, 2017)。

換句話說,他的提問是:人造感官如何影響或形塑我們對世界的認識?以及,最終而言,如何形塑我們對自身之認識,以及形塑自身與機器之關係的認識?當然,這也挑戰了自然與技術的關係,也包含了重塑兩者之間原本存在之界線的內涵。

自然與非自然之間的關係

自然與技術(人造物)的關係,從希臘時代便有所論述。在史丹佛哲學百科(SEP)中,Franssen 等人歸納出了四個主題:首先,技術是學習於自然,或是模仿於自然。例如建造房子是模仿自燕子築巢、編織則是模仿自蜘蛛結網等。第二,自然與人造物之間存在著根本上的區別。例如亞里斯多德認為,自然界事物的產生與動作乃是內生的,而人造物是依賴外在的原因。此外,不同於自然,人造物也無法再製自身。第三,亞里斯多德的四因說(物質、形式、效用、目的)對技術哲學的貢獻。第四,柏拉圖與亞里斯多德對技術圖像的大量使用。例如柏拉圖將世界描述為是工匠的作品(the work of an Artisan)以及兩者都認為技術圖像在表達「世界的理性設計」這個信念上是不可或缺的(Franssen, Lokhorst, & Poel, 2015)。

在希臘神話中也經常見到技術如何借鏡於自然,以擴展人類的能力。例如伊卡洛斯與代達洛斯想要透過蠟製成的翅膀逃離克里特島的故事。對於自然與技術(人造物)之間的區別,以人造物無法再製自身為主要觀點,指出了某種對於自然與人造物之間似乎存在著一道無法跨越的鴻溝或高牆。無論是往下走到底或者往上爬,科技都尚未能帶領我們看到是否能成功跨越的終點。

許多技術模仿於自然,例如建造房子是模仿自燕子築巢。圖/Pixabay

從技術的角度來看,自然是可以被征服的。然而,自然卻從未想要征服技術。對人類與社會的演化而言,「自然」不過就是透過技術進行觀察與再現的產物。康德曾經提問,「自然如何可能(How is nature possible?)?」社會學家 Simmel 認為這樣的提問正指出所謂的自然,「只不過是對自然的再現而已(nothing else but the representation of nature)」(Simmel, 2009[1908], pp. 40-41)。此一對自然的再現,原本是透過感官、心智與意識的運作,綜合而來的主體經驗,例如味道、溫度、顏色、情緒等皆然。

對康德而言,自然「就是個特定種類的經驗,一個透過且在我們的知識範疇中所發展出來的圖像」(Ibid.)。Simmel 對康德有關自然的討論,原本是想要回答「社會如何可能?」的這個問題,但將它自身的問題類比於康德的提問,正好提出了當前關於科技與人類發展的重要議題,也就是:在多大程度上,人類其實是技術的產物,且徹頭徹尾就是技術的?以及,隨著科技的介入,人類—身體與心智—在多大程度上仍(會)是自然的?

自然(Nature)可以是資料(Data)嗎?

馬克思在《資本論》第一卷中說道:「人自身作為一種自然力,與自然物質對立。為了在對自己的生活有用的形式上佔有自然物質,人使自身的自然力——手臂和腿、頭和手運動起來。當人透過這種運動,對外在於自身的自然施加作用並改變自然時,也就同時改變他自己的自然/性質(Nature)」(引自,萬毓澤, 2018, p. 56)。

這似乎是說,人透過其原本作為自然界之一部分的自然之力,在改變自然的同時,也改變了自身的屬於自然的那一部分。科技不僅在這個運動過程中給予人的自然力大大的協助,甚至不斷地擴增其力量,更透過大腦的延伸——網際網路以及人工智能等——欲將人類身體的自然性質消除殆盡。儘管可以想見的是,這為人類的日常生活帶來更多的便利與效能,但與此同時,自然卻也成了一個再也回不去的想像。

「是不是自然的?」這件事重要嗎?在自然與技術(非自然或人造物)這兩個端點上,我們很少譴責自然是一個不好或不健康的東西,但是跟技術有關的,卻經常象徵了不健康的事物。當現代社會中出現越來越多諸如「吃得健康」、「吃原型食物」、「回歸自然」等論述,或許也指出了前述馬克思所論述的矛盾。

在科技發展上,將自然——透過各種感測器或演算法等——化約為「資料(data)」並且對透過這些資料以模擬、再現或理解自然的肯定,讓自然離人類越來越遠。Coyne 在探討自然在數位時代中的位置時也說道:「無論自然是什麼,其絕不是資料」(Coyne, 2018, p. 7)。我們之所以能夠區別何謂自然或不自然,前提是我們已經使用了「自然/非自然」的這組區別。對人類以外的有機體而言,這組區別無疑是不存在的。

在科技發展上,將自然透過各種感測器或演算法等化約為「資料」。圖/Pixabay

換句話說,這組區別乃是技術的產物,也正是從技術(人造而非自然)的角度觀之,自然充滿了訊號(signals)或徵兆(signs), 等待著被(技術)解讀。對自然的「認知」——搜集、解讀訊號並賦予意義,一開始雖是透過尚未被技術中介的身體與感官來實現,但如今卻逐漸轉向由人造感官(artificial organs)與演算法來架構出對自然的認識。

歷史上的四種認知階段

廣義而言,「認知」就是對世界或環境的感知與認識。Vallverdú 區分了歷史上的四種認知階段:自然、文化、計算,以及後設統計(meta statistics)(超人類/超智能)(Vallverdú, 2017, p. 194)。這四個階段也可以看作是四種認識世界的方式,而這個過程也標示了那個原本是自然之一部分的身體,在科技介入後如何逐漸消逝的過程。

在前三個階段,那個自然意義下的身體仍是認知發展與主體,感官在其中扮演重要角色。心智的發展也與感官如何感知外部世界有密切關係。因此,至少在這些階段中,知識仍是具身性的(embodied)。假如我們依舊相信科學與科技發展中的奇點(singularity)論述是可能出現的,那麼在奇點之後的人類以及「認知」又會是什麼樣子?這是 Vallverdú 所謂的第四階段:後設統計。他認為,未來的知識在本質上將會是「統計性的」。他稱那些在奇點之後所出現的認知實體為「後認知實體(post-cognitive entities)或「後奇點智能(post-Singularity intelligences)」(Ibid., p. 197)。

這樣的一種後認知實體主要有兩類,其一是「超人類(transhumans)」,其二則是人工智能學家 Nick Bostrom 所謂的「超智能(superintelligences)」(Bostrom, 2014)。超人類或許仍可被認為是人類或具有部分人類的性質,或者所謂的「賽博格(cyborg)」。然而,對於「超智能」——一種具有人類智能特性卻能超越人類智能的演算法,如何定義其是否為活著的或者是有機體等,對某些人而言似乎還是個困擾。

在探討認知的發展與情緒是不可分的前提下,Vallverdú 將這些後奇點智能的情緒系統描述為「para-emotions」,這個系統與當前人類的情緒系統運作會有很大不同,也將會是建立在新的資訊結構之上。如果情感與情緒在某種程度或意義上仍是自然的,那麼我們將要如何理解透過人造感官、各種感測器所蒐集到的數據,並據以形成關於情感與情緒的計算及結果?

另外,假如一個人工智能演算法能夠展現情感與情緒,並以此為基礎發展出對環境的認知與理解,這樣的一種非人的、後奇點實體是否能被視為是具有生命的?這些問題不僅在實務上會帶來各種倫理議題,在知識論上也直接挑戰了自然與技術的界線。

在日常生活中,我們已經可以見到人們透過穿戴式或植入式裝置搜集數據,並以此為了解自身身體的方式。這些人造感官、感測器所獲得之資料,可以單獨運作或與身體感官的運作合併,一同形塑出所謂的認知。人們感知的方式也會形塑其思考與行動的方式與內容。

人們透過穿戴式裝置搜集數據,並以此為了解自身身體的方式。圖/Pixabay

Vallverdú 以「羞恥感(shame)」在社會連結中扮演之角色為例指出,羞恥感這種複雜的社會情緒,乃是透過複雜的社會互動而出現。此外,羞恥感更能夠用來實現人們彼此之間更細緻、複雜的社會互動(Vallverdú, 2017, p. 205)。這樣的情感與情緒如何在人造認知設備中獲得實現,以及對人機互動的影響與啟發等,都還尚待深入探究。

「感覺」可以透過大數據或演算法建構嗎?

「資料並未創造出感覺(data do not create sense)」,Vallverdú說道(Ibid.)。

透過技術能搜集到的資料越多,並不表示對自然或環境的感知或理解就必然會越加正確或適切。更重要的是,透過人造感官為人類或超智能所架構出來的環境特性,是否也是自然的,或自然的一部分?若我們將演算法也視為一種人造感官,當人們越來越依賴演算法來架構認知時,人類大腦是否會受到各種人造感官的影響,而被形塑成一種透過人造的方式來認識其環境,或者甚至,最終為人造大腦所取代?例如,書寫工具的數位化將我們與自然的接觸簡化到手指的固定、簡單的幾個動作,但卻給予與我們探索更多非屬於自然的可能性,而得以讓想像力因為數位化工具而得以更精緻、更多意想不到的方式來實現。其確實為我們帶來了更豐富的世界,但也將我們與自然的關係簡化為僅是手指的幾個動作。

再舉個例子,我們對植物的認識,過去需要到外面,透過觀察、觸摸等方式來認識植物,如今透過智慧型手機中的 APP(例如「形色」或 Google),只要對不知名的植物或花卉等拍攝照片,該程式就會將照片與其雲端上的資料庫進行比對,然後將結果回傳到手機螢幕上,然後使用者就會知道該植物的名稱及特性。在經驗研究中觀察到的是,使用者是在獲得回傳之資料後,再將該資料中對該植物特性的描述與眼前的植物進行比對,也就是透過回傳之資料來認識該植物的特性。

現在透過 APP 就可以顯示不知名植物的資訊。圖/Pexels

在此一過程中,原本一開始是需要透過感官進行仔細觀察、觸摸、尋找資料、比對等都被簡化為一連串數位化的動作,這些動作與所要認識的對象之性質無關,而我們卻越來越習慣於用這樣的方式來認識與接觸自然。當我們意識到時而想要回歸到更多的自然時,我們所需要付出的代價可能更高(一方面是因為我們已經習於技術為我們提供對自然的認識或進用),甚至是一件不太可能或相當困難的事。

Braidotti 認為後人類、後人類中心主義的觀點,乃是茁生於「展露自身於世界,且折疊世界於自身之中的實作」(Braidotti, 2013, p. 193)。對我來說,這就是將人類帶回自然。至於這個「將人類帶回自然」對人類自身而言是一種貶抑或者是提升,或許仍有待討論。若科技是為了征服自然而存在及發展,也就是致力於人與非人(人造物)、自然與技術之界限的消解,那麼這樣的一種後人類論述,或許更像是創造了不存在真正自然的對象物。前述之界線的消解包含兩種意涵。其一是解消而回歸自然,其二是解消但卻是回歸技術。

然而,對這兩種意涵的探究,是否也預設了人與非人這組區別是技術而非自然的產物?這或許也是值得思考的問題。關於後人類與後人類中心主義的提問便會包括,這組區別之解消,帶來的是偏向自然或偏向技術的世界或思維?

《脫稿玩家》中擁有自我意識的 NPC

在最近的一部電影《脫稿玩家(Free Guy)》(2021)中,劇情主要描述一個在數位虛擬世界中的 NPC(Non-Player Character,非玩家角色)在獲得自我意識之後所發生的各種情節。非玩家角色指的是,在角色扮演遊戲中,那些不是由玩家所控制的角色。非玩家角色通常是由電腦程式或人工智能演算法所控制,主要協助真人玩家進行遊戲或豐富遊戲的場景與互動內容。

在該電影中所設定的虛擬遊戲場景裡的 NPC—Guy—突然獲得了自我意識,因此也認識到他跟遊戲中的其他 NPC 角色有所不同。此外,該遊戲的真人玩家也在與 Guy互動的過程中,不僅有真實情感的投入,也引發了對於 Guy 是否應該被視為是「人」或者是「活著的」討論。這也直接挑戰了自然與非自然的界線,以及「什麼是『活著的(alive)』?」、「自然就等於是活著的嗎」等觀點。更進一步提問會是,在這個從自然到非自然的跨越,以及從非自然跨回自然之過程中,到底發生了哪些事?

結語

綜上所述,人類(社會)或許正經歷一個從「科技中介的自然(technologically-mediated nature, or artificial nature」到「科技的自然化(naturalization of technology)」之發展。在此過程中,關鍵的提問將會是,自然如何解消於科技之中,以及這樣的解消為物種帶來何種面對自身的方式及後果?無論是 Vallverdú 稱之的後認知或後奇點實體,還是 Braidotti 的後人類主體,這些都會是「身體主動吸引技術進入其中」的主體,技術不再是輔助身體之用,正常與不正常的身體,都期待技術帶來的好處——也將重塑正常/不正常的界線。

例如我們不只是無法抗拒智慧型手機,在某種意義上,我們歡迎智慧型手機對身體——姿勢、行為、心理與心智——的殖民。感官與知覺設備不再只是指單純的身體感官,也不是如麥克魯漢所言之的身體感官透過技術物而延伸的產物,而是技術物改變感官經驗甚至取代感官以提供資訊給心智(演算法)進行處理,最終帶來的或許正是一個科技就是自然的後認知時代。

參考資料:

  • 萬毓澤. (2018). 你不知道的馬克思. 新北市: 木馬文化.
  • Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford, UK: Oxford University Press.
  • Braidotti, R. (2013). The Posthuman. Cambridge, UK: Polity Press.
  • Braidotti, R., & Hlavajova, M. (Eds.). (2018). Posthuman Glossary. London and Oxford: Bloomsbury Academic.
  • Coyne, R. (2018). Network Nature: The Place of Nature in the Digital Age. London & New York: Bloomsbury Academic.
  • Franssen, M., Lokhorst, G.-J., & Poel, I. v. d. (2015). Philosophy of Technology. In E. N. Zalta, U. Nodelman, & C. Allen (Eds.), Stanford Encyclopedia of Philosophy (pp. 1-55). Stanford, CA: Stanford University.
  • Simmel, G. (2009[1908]). Sociology: Inquiries into the Construction of Social Forms (Volume 1) (A. J. Blasi, A. K. Jacobs, & M. Kanjirathinkal, Trans.). Leidon & Boston: Brill.
  • Vallverdú, J. (2017). The Emotional Nature of Post-Cognitive Singularities. In V. Callaghan, J. Miller, R. Yampolskiy, & S. Armstrong (Eds.), The Technological Singularity (pp. 193-208). Berlin, Heidelber: Springer.
再・創世 Cybernetic_96
11 篇文章 ・ 26 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

3

14
1

文字

分享

3
14
1
從石器時代走到 AI 時代,人類準備好面對「人工生命」了嗎?——《再.創世》專題
再・創世 Cybernetic_96
・2021/10/20 ・7713字 ・閱讀時間約 16 分鐘

  • 作者/黃貞祥 國立清華大學生命科學系助理教授

我們這個物種——智人(Homo sapiens)在大約四百萬年前和黑猩猩分了家後,就沒有好日子過了。

原本是花果山的森林,在非洲大陸逐漸乾旱後,許多地區就成了熱帶莽原(Tropical savanna),我們的祖先不僅沒了隨手可得的果子果腹,也沒了樹木的庇護,隨時面對毒蛇猛獸的偷襲,日子可謂悲涼[1]

博茨瓦纳, 布须曼人, 团体, 收集, 原始人, 传统, 返校节
在乾旱的非洲莽原上,過著原始生活的人們。圖/Pixabay

然而,我們的祖先站了起來,邁步向前。無論直立是為了遠眺猛獸的蹤跡,還是減少非洲無情烈日的曝曬,又或者其他原因,我們的老祖宗,騰出了雙手,經過殘酷的天擇和人亞族(Hominina)各人種的殘忍競爭,越來越懂得使用雙手製作各種各樣的工具。我們的語言本能也愈發進步,不僅能在視野未及之處和一同打獵的同伴互通訊息,也能對後生晚輩更有效率地下指導棋諄諄教誨,讓他們更快學會製作工具和求生知識。在一代又一代人作古往生後,後代子孫仍然能夠繁衍生息。探我們智人一路走來迄今的艱辛,希望不是像《駭客任務》(The Matrix)的「母體」(The Matrix)那樣,一直是在哄騙我們的。 

這上百萬年來,人屬(Homo)其他人種之間互相拼殺得你死我活,除了我們演化成智人的這一支,其餘的都灰飛煙滅了,只留下殘缺的遺骨,偶爾讓古人類學家興高采烈地吵架。僅有尼安德塔人和丹尼察瓦人還留下一些基因體片段在歐亞的人群當中[2]。如果你的祖先來自亞洲或歐洲,你的基因體中可能有 1-4% 來自尼安德塔人。我做過的遺傳檢測告訴我,我的 DNA 中有至少 324 個變異來自尼安德塔人,差不多是 2% 的 DNA。

在我的遠古祖先和尼安德塔人有著情慾流動前,直立人演化出了智人,然後再約二十萬年,我們的智人祖先散布全球。智人,是地表上最遍及所有大陸的單一生物物種,沒有之一。如果你能找到第二、第三個⋯⋯牠們都是搭上人類的便車、便船。地球上,除了深邃的海洋,幾乎沒有人類未曾到過的地方了。現在又有了 Google 地球,我們宅在家也能輕鬆從高空上探訪地表上任何地方。   

尼安德塔人復原模型。圖/Wikipedia

打開 Google 地球吧!瞧一瞧,有趣的是,地表上還有太多地方人煙罕至,我們似乎未曾染指。真是如此嗎?我們人類大方地燃燒化石燃料來取代奴工的勞力,在工業革命後,以史無前例的速度向大氣瘋狂噴灑二氧化碳,用古代陽光留下來的遺產,讓現在遠道而來的更多太陽輻射熱能,在地球大氣流連忘返。我們為了要有更高的生活品質,利用了氟利昂(Freon)作為製冷劑,但揮發到大氣中的氟利昂很不客氣地鯨吞蠶食臭氧層,即使我們已經懸崖勒馬,南極上空的臭氧層仍苟延殘喘。 

科技不僅僅是裝上了護國神山台積電的晶片的玩意兒,當我們人類用雙手改造自然時,就誕生了科技,儘管我們可能對古代的不屑一顧了。我們人類當然是自然的產物,是天擇讓我們有了想像力,能夠虛構出想像的共同體。歷史學家哈拉瑞(Yuval Noah Harari)指出,我們智人在七萬年前演化出這般認知能力後,就往神人的方向演化了,我們的天性就是熱愛科技改造一切吧?只是這個過程難以再稱作是自然的,因為我們人類已想像出了太多大自然不曾存在的事物,並且信以為真[3, 4]。 

大約一萬年前,無論是環境所逼也好,還是心甘情願也好,人類在肥沃月灣開啟了農耕文明,我們就越來越懂得利用工具,並且把一些動植物改造成適合提供人類食物、畜力、交通和娛樂等用途。文明,其實是個特例,在我們遍及全球的人類部落中,僅僅在歐亞大陸和美洲大陸誕生了個位數的古文明,連歷史更淵遠流長的非洲大陸,也僅僅在尼羅河流域誕生了迄今令人嘆為觀止的文明力量。賈德.戴蒙(Jared Diamond)提出破天荒的理論[5],讓我們見識到他非凡的洞見——原來文明誕生與否,決定於少數能夠被馴化的糧食作物和大型哺乳動物,例如大米、小米、大麥、小麥、燕麥、玉米,還有牛、羊、馬、豬、犬。另外,歐亞大陸主要是東西長、南北短,在幸運緯度中,擅長用貿易各取所需的文明,滋養著彼此[6]。人類的主要營養還是來自其中少數動植物呢!儘管我們以為現代科技所向披靡。 

公元前 1422 年,古埃及的農民、小麥和牛。圖/Wikipedia

我們藉著這些馴化的動植物大肆改造了自然,更過份的是還有跨越大洋的物種交換。歷史學者艾弗瑞.克羅斯比(Alfred W. Crosby)首先提出「哥倫布大交換」(Columbian Exchange)的概念,指出東半球與西半球之間,生物、農作物、人種(包括歐洲人與非洲黑人)、文化、傳染病、甚至思想觀念的突發性交流[7]。於是,我們餐桌上的馬鈴薯、番薯、番石榴、木瓜、辣椒、玉米、花生、鳳梨、樹薯、四季豆、南瓜、百香果、酪梨、釋迦、菸草、火龍果等等,就是這樣來的。「哥倫布大交換」帶來的其實也是一場生態災變,在物種、病菌、文化、人種的大混合中,逐漸形塑出我們此時此刻的現代世界[8]

克羅斯比還提出「生態帝國主義」(Ecological Imperialism)的概念,進一步指出歐洲人征服了紐西蘭、澳大利亞後,也改變了它們的自然景觀[9]。當歐洲人開墾了紐、澳,當地的許多生物很快隨之滅絕,連帶生態景觀也「歐洲化」了,現在紐、澳的景觀,已經和歐洲人抵達前大為不同。歐洲人帶來的一些哺乳動物肆虐當地,現在還不斷造成生態破壞。 具體來說,外來的兔子和家貓,在澳州、紐西蘭已經對本土的植物和鳥禽造成了很大的威脅。 

回到我們老祖宗的農田吧!為了追求方便的營養來源,人類居然看上了野草的穀穗。種子是植物演化來有效面對陸地生活的相對乾旱,以及氣候變化無常的機制,讓下一代的生命能夠在種皮的保護之下休養生息,得以延續,還提供了獨立生活前所需要的營養。我們人類不僅從靈長類祖先之前就懂得慷種子之慨[10],還懂得精挑細選,讓更肥美、更多產的野草種子在自己田裡大量繁衍,為它們把屎把尿地施肥、灌溉、除草,驅趕昆蟲、牛羊、鳥禽。擅長此道之人更快速積累財富,剩餘的穀物種子則成為通往權力的貨幣。

我們的老祖宗善用穀物和農耕技術延續生命、積累財富。圖/Pexels

然而,這一切禍福難料。人類從狩獵採集的生活方式進入農耕社會,營養反而因為食物種類變少而更加不良,為了權力而神道設教、為了更多土地四處征戰[11]。密集的人群和牲畜又互通病菌、病毒,我們不必讀歷史教科書,就能活生生地見證,在擁擠的城市中,傳染病擴散得有多厲害,儘管病原體大多來自野生動物。像是 COVID-19 這樣的傳染病,早已困擾我們上萬年,人類的文明史,某程度上就是和瘟疫軍備競賽的歷史,畢竟在田野中,病原體一般只是消滅少數營養不良或嚴重受傷的個體,可是瘟疫成了文明的常態,這是不可避免的代價[12]。我們只有在大部分活下來的人們都有了抵抗力,就是傳說中的群體免疫力時,哀鴻遍野的人間煉獄才會中止,一直到我們懂得免疫力的箇中道理,疫苗才成了救星。

很多人可能以為生活在鄉村田野是更加愛地球的表現,可是美國哈佛大學經濟學家愛德華.格雷瑟(Edward Glaeser)卻提出,從經濟學及歷史發展的角度來看,都市化是更環保和公義的文明發展方式,因為城市生活比鄉村生活更高效[13]。不僅很多智人要適應城市生活,就連許多動植物也要。你可以找到許多案例後,自己在城市裡當個博物學家來好好觀察[14]。有些蚊蟲甚至可能在城市裡演化出新種呢!還有鳥禽利用智人飽食,例如仙台的烏鴉已經學會利用往來的車輛碾碎堅果,英國的山雀則會打開牛奶瓶蓋偷吃奶油。

在農業上,我們改造動植物的力量極為強大,甚至也把我們自己給改造了。我們和我們老祖宗馴化的動植物共同演化,彼此適應。我們人類一些族群的基因體演化出更多澱粉酶基因備份數,讓我們能夠食用飽含大量澱粉的禾本科植物種子,而不至於消化不良,全都遺留給腸道中的菌群。這樣的突變甚至也發生在成天與人為伍的家犬基因體中;另外一些族群,對他們來說,能否在成年消化乳製品,是生死攸關的。一個基因突變讓一些人在成年後仍然能夠消化乳糖,這樣的基因突變至少獨立發生了兩次:一次在北歐,另一次在東非[15]

玻璃, 玻璃, 牛奶, 倒, 浇注, 倒牛奶, 喝, 新鲜牛奶, 投手, 一杯牛奶
人類歷史上至少發生了兩次基因突變,讓一些人在成年後仍能消化乳糖。圖/Pixabay

一萬年的時光對動物來說還是太短暫了。我們的身體很多部分都未能適應文明的生活,我們發生了不少演化失調,原本智人演化上的缺陷都已經讓我們很不好受了[16],我們在文明生活中,還要面對天性使得我們好吃懶作而導致的一系列文明病,諸如肥胖、失眠、青春痘、蛀牙、近視、氣喘、糖尿病等等[17]。我們過度進食精緻食物,減少了腸道微生物的生物多樣性,還用抗生素把上萬年和我們共演化的細菌一併殺掉,一直到近年才發現它們其實無可取代[18-23]。我們自以為是萬物之靈,事實上,我們的喜怒哀樂和行為,甚至道德觀及政治傾向,或多或少還受到細菌、病毒、寄生蟲的影響呢[24, 25]

然而,如果讓我們選擇,難道我們想要回到過去有一餐沒一餐,看似很自然但遠離科技的生活嗎?我們也可能是生活在一個人類史上異常富足的年代[26, 27]。舉個大家都該熟悉的例子——非常現實且殘酷的:要不是我們現在剛好是生活在醫學昌明的年代,否則新型冠狀病毒迄今感染的人數和病死人數,很有可能要再加上至少一個零,畢竟這是一個不依靠聚合酶連鎖反應(Polymerase chain reaction,PCR)就難以正確診斷的呼吸道疾病。

除非我們能夠改造我們的身體,否則要避免文明生活對健康帶來的惡果,只有乖乖學著過得養生一些。除非你相信物理學家加來道雄(Michio Kaku)預測的,我們未來可以用全基因體資訊量身訂做適合自己體質的藥物,利用幹細胞加上 3D 列表機印出完整的人體器官,或是發明出隨時監控癌細胞的晶片[28]。現在,我們把智慧型裝置用手錶、衣著的方式穿戴在身上。先姑且不論爭議性較大的基因改造,我們搞不好會越來越習慣把帶著各種晶片的小裝置,用微創手術植入身體各種器官裡頭,然後用智慧手機 APP 監控資料。

越來越多人配戴智慧型手錶,並且以智慧手機 APP 監控資料。圖/Pexels

我們智人的祖先,因為氣候變化,從花果山被逐出到非洲熱帶莽原後,演化出許多人亞族(Hominina)的人類。或許剛開始,我們面對不同人種之間的競爭、毒蛇猛獸的威脅,以及有一餐沒一餐的溫飽問題時,比拼的是體能、體格等生理解剖特徵和性狀的遺傳基因之優劣,可是漸漸地,能夠勝出的,不再是肌肉的粗壯,而是能否好好學會父輩傳承的生存之道,懂得適時適地用腦中記憶的知識趨吉避兇,以及用創意改良部落慣用的工具,來刀耕火耨、厲兵秣馬、大興土木。

從此之後,分散在世界各地的人類產生了文明,在科技上就步向了殊途同歸的道路。在生物學上,趨同演化的存在意味著,在相似的生態環境下面臨到的相同問題,在生物學上的解決方案大同小異。在科技上,凱文.凱利(Kevin Kelly)也觀察到科技也有類似的現象[29],可是科技更奇妙的是,懂得越多的舊知識,會促進越多的新知識產生;思想的交流會產生更多精進的思想。並且,當我們越清楚事物運作的規律和原理,就越能夠突發奇想,於是科技日新月異的速度也越來越迅速、迅猛。

過去幾百年可能才會有一個重要的發明,幾十年才會有一丁點的改進。沒辦法,畢竟大多數人都因循守舊、懶惰思考,而且演化出的大腦必須節省寶貴的資源[30]。然而,從科學革命到工業革命之後,智人學會掌控的科學與技術的知識,不僅越來越多,重要的是,我們掌握了源源不斷產生新知識的高效方法,也就是科學的方法[31]。千年來,人類的好奇心和求知慾,能把我們帶到哪裡去探索詩和遠方?

人類可能有上萬年的時間,而科技的高下,大多是對能源效率的掌握,或者是機械式地提高效率,以及兩者的組合。從愛迪生和特斯拉的電流大戰後,人類又有了一個方便的能源貨幣,差不多是從以物易物到了貨幣交易這般大躍進吧?然而,在科技史中一一登場的天才和怪傑,讓我們從機械進化到真空管後,再進化到以矽晶元為計算處理器的時代,從此不必受限於機械化固定的設計,可以把各種計算工作用程式來讓晶片運算,速度遠快過人腦太多。拜摩爾定律(Moore’s Law)所賜,無論你是用手機,還是桌機、筆電來讀這篇文章,它們的運算能力都比人類登月計畫時的電腦還強大太多了[32]。 

戴爾(Dell)電腦的主機板和中央處理器。圖/Pexels

我們人類創造出來的科技,甚至有可能有了它們自身的生命。我們人類從發明了有效記載資訊和知識的方法後,寫在紙上或轉換成位元儲存在記憶體中的知識,在千百年來,似乎就是要為一個終極目的服務,那就是設計出取代我們在非洲莽原上彌補自己弱小身軀的所有智力活動。製造出一個和我們的大腦相媲美的通用人工智慧,似乎就是我們人類智慧的最終極目標和目的了。那樣的人工智慧,很有可能就是人類最後一個發明,因為這樣的人工智慧,甚至有比人腦更高效的創意和執行力,來發明出任何人類無法想像的科技,是會自尋出路的新形式生命[33]。至此,我們人類在地表上演化的使命,是否就此圓滿了呢?

若我們將所追求的永恆生命交給人工智慧,是否就是我們人類退場的時刻?我們還願意為如此短暫的生命遭受生、老、病、死、愛別離、怨憎會、求不得、五蘊熾盛的人生之苦的意義是什麼?莫非這就是一切如夢幻泡影的時候?我們來得及瞭解和掌控終將創造出來的科技終極產物——人工生命嗎?

引用文獻:

1. 威廉.歐文(William B. Irvine)。《我們為何存在,又該如何定義自己?從人類起源到生命樹,重新定義你在宇宙中的多重身分》(You: A Natural History)。時報出版。

2. 帕波(Svante Pääbo)。《尋找失落的基因組:尼安德塔人與人類演化史的重建》(Neanderthal Man : In Search of Lost Genomes)。八旗文化。

3. 哈拉瑞(Yuval Noah Harari)。《人類大歷史:從野獸到扮演上帝》(Sapiens: A Brief History of Humankind)。天下文化。

4. 哈拉瑞(Yuval Noah Harari)。《人類大命運:從智人到神人》(Homo Deus: The Brief History of Tomorrow)。天下文化。

5. 賈德.戴蒙(Jared Diamond)。《槍炮、病菌與鋼鐵:人類社會的命運》(Guns, Germs, and Steel: The Fates of Human Societies)。時報出版。

6. 傑佛瑞.薩克斯(Jeffrey D. Sachs)。《全球化的過去與未來:從舊石器時代到數位時代,地理、技術與制度如何改寫人類萬年的歷史 》(The Ages of Globalization: Geography, Technology, and Institutions)。大塊文化。

7. 克羅斯比(Alfred W. Crosby)。《哥倫布大交換:1492 年以後的生物影響和文化衝擊》(The Columbian Exchange: Biological and Cultural Consequences of 1492)。貓頭鷹。

8.  查爾斯.曼恩(Charles C. Mann)。《1493:物種大交換丈量的世界史》(1493: Uncovering the New World Columbus Created)。衛城出版。

9. Alfred W. Crosby (1986). Ecological Imperialism: The Biological Expansion of Europe, 900-1900. Cambridge University Press.

10. 索爾.漢森(Thor Hanson)。《種子的勝利:穀類、堅果、果仁、豆類、核籽如何征服植物王國,形塑人類歷史》(The Triumph of Seeds: How Grains, Nuts, Kernels, Pulses, and Pips Conquered the Plant Kingdom and Shaped Human History)。商周出版。

11. 史賓賽・韋爾斯(Spencer Wells)。《潘朵拉的種子:人類文明進步的代價》(Pandora’s Seed)。天下文化。

12. 麥克尼爾(William H. McNeill)。《瘟疫與人:傳染病對人類歷史的衝擊》(Plagues and Peoples)。天下文化。

13. 愛德華.格雷瑟(Edward Glaeser)。《城市的勝利:都市如何推動國家經濟,讓生活更富足、快樂、環保?(最爭議的 22 世紀都市規畫經典)》(Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier)。時報出版。

14. 曼諾.許特惠森(Menno Schilthuizen)。《達爾文進城來了:新物種誕生!都市叢林如何驅動演化?》(Darwin Comes to Town: How the Urban Jungle Drives Evolution)。臉譜。

15. 李相僖(Lee Sang-Hee)、尹信榮(Yoon Shin-Young)。《人類的起源:最受美國大學生歡迎的 23 堂人類學課,關於你是誰、你從哪裡來又該往哪裡去》(Close Encounters With Humankind: A Paleoanthropologist Investigates Our Evolving Species)。三采文化。

16. 納森.蘭特 (Nathan H. Lents)。《人類這個不良品:從沒用的骨頭到脆弱的基因》(Human Errors:A Panorama of Our Glitches, from Pointless Bones to Broken Genes)。天下文化。

17. 丹尼爾.李伯曼(Daniel E. Lieberman)。《從叢林到文明,人類身體的演化和疾病的產生》(The Story of the Human Body: Evolution, Health and Disease)。商周出版。

18. 羅伯.唐恩(Rob Dunn)。《我們的身體,想念野蠻的自然:人體的原始記憶與演化》(The Wild Life of Our Bodies: Predators, Parasites, and Partners that Shape What We are Today)。商周出版。

19. 艾蘭納.柯琳(Alanna Collen)。《我們只有 10% 是人類:認識主宰你健康與快樂的 90% 細菌》(10% Human: How Your Body’s Microbes Hold the Key to Health and Happiness)。三采文化。

20. 哈諾.夏里休斯(Hanno Charisius)、里夏爾德.費里柏(Richard Friebe)。《細菌:我們的生命共同體》(Bund fürs Leben – Warum Bakterien unsere Freunde sind)。商周出版。

21. 羅布.奈特(Rob Knight)、布蘭登‧波瑞爾(Brendan Buhler)。《微生物的巨大衝擊(TED Books 系列)》(Follow Your Gut:The Enormous Impact of Tiny Microbes)。天下雜誌。

22. 馬丁・布雷瑟(Martin J. Blaser)。《不該被殺掉的微生物:濫用抗生素如何加速現代瘟疫的蔓延》(Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues)。八旗文化。

23. 艾德.楊(Ed Yong)。《我擁群像:栽進體內的微米宇宙,看生物如何與看不見的微生物互相算計、威脅、合作、保護,塑造大自然的全貌》(I Contain Multitudes: The Microbes Within Us and a Grander View of Life)。臉譜。

24.  凱瑟琳.麥考利夫(Kathleen McAuliffe)。《寄生大腦:病毒、細菌、寄生蟲 如何影響人類行為與社會》(This Is Your Brain on Parasites: How Tiny Creatures Manipulate Our Behavior and Shape Society)。木馬文化。

25.  比爾.蘇利文(Bill Sullivan)。《我,為什麼會這樣?:喜歡這些,討厭那些,從生物學、腦科學與心理學解釋我們的喜好、情緒、行為與想法,重啟一趟人類的認識之旅》(Pleased to Meet Me: Genes, Germs, and the Curious Forces that Make Us Who We Are)。臉譜。

26. 麥特.瑞德里(Matt Ridley)。《世界,沒你想的那麼糟:達爾文也喊 Yes 的樂觀演化》(The Rational Optimist:How Prosperity Evolves)。聯經出版。

27. 彼得.戴曼迪斯(Peter H. Diamandis)。《富足:解決人類生存難題的重大科技創新》(Abundance: The Future is Better Than You Think)。商周出版。

28. 加來道雄(Michio Kaku)。《2200 科技大未來:從現在到 2200 年,科技將如何改變我們的生活》(Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2200)。時報出版。

29. 凱文.凱利(Kevin Kelly)。《科技想要什麼》(What Technology Wants)。貓頭鷹。

30. 傑克.路易斯(Jack Lewis)。《墮落的人腦:從神經科學解讀傲慢、貪吃、好色、懶惰、貪心、嫉妒與暴怒,探究我們難免使壞,犯下小奸小惡背後的科學》(The Science of Sin: Why We Do the Things We Know We Shouldn’t?)。臉譜。

31. 雷納.曼羅迪諾(Leonard Mlodinow)。《科學大歷史:人類從走出叢林到探索宇宙, 從學會問「為什麼」到破解自然定律的心智大躍進》(The Upright Thinkers: The Human Journey from Living in Trees to Understanding the Cosmos)。漫遊者文化。

32. 華特.艾薩克森(Walter Isaacson)。《創新者們:掀起數位革命的天才、怪傑和駭客》(THE INNOVATORS: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution)。天下文化。

33. 鐵馬克(Max Tegmark)。《Life 3.0:人工智慧時代,人類的蛻變與重生》(Life 3.0: Being Human in the Age of Artificial Intelligence)。天下文化。

所有討論 3
再・創世 Cybernetic_96
11 篇文章 ・ 26 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。