0

0
0

文字

分享

0
0
0

造船的規律?過盡千帆才得到的吃水線與波浪線理論--《物理雙月刊》

物理雙月刊_96
・2017/10/28 ・8967字 ・閱讀時間約 18 分鐘 ・SR值 581 ・九年級

  • 文/Larrie Ferreiro and Alexander Pollara(譯者:林中一 教授,編修:余海峯 博士)

19 世記約翰・史考特・羅素(John Scott Russell)的船舶設計理論承諾了速度、亦表現了優雅。然而,最終證實那個理論並不完整。

今天的船舶設計師們仍運用 1800 年代末期英國工程師威廉・傅如德(William Froude)所發展出的比例定律來預測船舶的速度與動力。但是遠在傅如德之前,船舶設計者與造船者就已經知道,船體架構或船殼比例與形狀會影響船在水中的速度,而且他們已經找出了支配那些關係的規則。

船體架構或船殼比例與形狀會影響船在水中的速度,圖/by Tascalo@pixabay。

在 1500 年代末,一位名叫馬修・貝克(Mathew Baker)的英國造船者曾流傳了出一張讓他出名的素描。在這張素描中,他把一隻有著鱈魚鈍頭和鯖魚錐形尾巴組合的混種魚圖像重疊在一艘伊麗莎白時代的軍艦船殼圖上。在當時缺乏任何科學或實驗的基礎之下,這種「船殼的形狀應該由自然原理來支配」的想法仍然被廣泛接受。

貫穿整個 17 與 18 世紀,科學革命孕育了有關流體力學和阻力的新概念,這些概念定義了船舶在水中行進時所受的阻力。由於想要建造更快的風帆動力戰艦,歐洲各國海軍委託了科學家與發明家們去測試這些概念。1800 年初期,蒸汽動力用於在航海,其財務考量帶來了一個將流體阻力降到最低的額外動機:一艘蒸汽船的煤炭消耗量是直接關係到其運轉成本的,而煤炭的消耗就取決於受到的阻力。早期的蒸汽動力船隻比風帆動力的要快也更為可靠,然而它們的引擎效率並不好。造船者於是尋求快而高效率的船身,使得航行所燒的每一噸煤都能得到最充分的利用。

-----廣告,請繼續往下閱讀-----

就在工業革命的那個年代、維多利亞時代的開端,有那麼一位有數學思想工程師約翰・史考特・羅素(圖 1),他開始要尋找一套通用的造船規律:一組能產生最小阻力的船身設計原理。他所完成的理論,被稱為「波浪線理論」(wave-line theory),主導了近半世紀的船舶設計世界。這一套理論不但引導了蒸汽船的設計,還加上得獎遊艇與破紀錄快速帆船。波浪線理論最終不再獲得青睞而被傅如德(Froude)更嚴格的理論所取代;這一段故事,在總是複雜的科學與技術的關係之中,是一課頗具啟發性的歷史。

圖 1. 1847 年的約翰・史考特・羅素 (1808–82)。 圖/by 英國皇家船舶設計研究院(Royal Institution of Naval Architects)。

製造波浪,和決定吃水線?

作為一位廣受尊敬的造船者,羅素於 1821 年到 1825 年間在英國格拉斯哥大學(University of Glasgow)讀數學,隨後藉著製造蒸汽車與船用蒸汽引擎學會了機械貿易。他結合理論與實踐的訓練在當時英國幾乎無人能及[1]。

1835 年,他在尋求方法改善新開發的蒸汽船時開始發展波浪線理論。在當時,科學家們已經確認船舶航行所受的阻力主要來自流體壓力與摩擦。但是,羅素卻正確地主張產生波浪的是另一個重要因素。不過,他錯誤地把波浪的產生只歸因於船身的形狀;實際上,無論任何形狀,物體在水中移動時都會產生波浪。羅素力爭,因為傳統船身的吃水線都是鈍形的——這是指船身前端與水接觸的部分,也就是船頭兩側形狀是凸面的——所以當船必須持續把水推開才能前進時,就一定會產生波浪。羅素相信,一個有適當向內的凹面或窪陷的船頭,會將水向兩側排開而不會產生船頭波。

一個有適當向內的凹面或窪陷的船頭,會將水向兩側排開而不會產生船頭波,圖/by Stan Shebs@wikipedia commons。

羅素在接著的 8 年裡努力的想要決定吃水線到底必須是甚麼形狀。英國科學促進協會(The British Association for the Advancement of Science,簡稱 BAAS),一個新成立的皇家學會(Royal Society)的競爭者,給了他 1132 英鎊——相當於今天的一百萬——讓他研究海浪的本質以及發展能減低波浪產生的船舶設計。這是該協會在那個時候所付出第二大筆的經費[2]。

-----廣告,請繼續往下閱讀-----

大小從 3 英尺長的模型到 200 英尺長的遠洋航艦,羅素建造了並測試了超過 100 種船身。透過先前的實驗,他開發了精巧的技術:運用了懸吊自高支架的重物與滑輪系統來拖動船舶模型與運河船。在那些早期的實驗中,較高效率外型的船身自然跑得更快,但是阻力與速度之間的關係卻很難精確量化。羅素沒有單純的只去紀錄懸掛重物的落下時間,他使用了一種相對新穎的「彈簧動力計」直接量測航行受到的阻力,彈簧動力計還可以同時將得到的數據轉換為驅動船隻所需的馬力。在各項試驗之中,羅素甚至觀察到在運河中傳播而不會減速的奇怪「孤波」(solitary waves,後稱soliton)。孤波在光學與通訊裡扮演了重要的角色。

羅素在 1843 年向 BAAS 報告,在歷經幾千次實驗後,他發現了一種後來稱為波動線理論的新物理定律,「在這個理論裡,似乎每一種獨特形式與大小的船身都對應一個速度。」[3] 換句話說,羅素宣稱他發現了一個不論大小、任何船身設計都應該服贋的基本原理[4]。

歷經千次的實驗,羅素終於發展能減低波浪產生的船舶設計,圖/ by FelixMittermeier@pixabay。

什麼是波浪線幾何學?

羅素新定律的前提是,一艘船的船身形狀必須與它產生的波浪形狀一致。他假設有兩種形式的波浪與船所受的阻力有關:船行進時推開的水所產生、在船前方的「正弦移動波」(sinusoidal waves of translation),以及由風所驅動、回填至船通過後所空出來的空間所產生的「擺線船尾波」(cycloidal waves of replacement)。

羅素主要的研究聚焦在移動的波浪。他從實驗得到一個結論,就是正弦波的長度 L 必須遵守公式 L = 2πV2/g,其中 V 是船速、g 為重力加速度。羅素認為若要將阻力降到最小,船頭兩側的形狀就必須是長度為 L 的正弦。他從來沒有完全講清楚過他的論據,只是說這樣的對應關係能在平的水面產生最小的擾動——先別管水面其實沿垂直方向上下振動,而羅素的船身在水平面是正弦形的。所謂的波浪線船頭號稱會劈開迎面來的水,而不是將水向前推開。為了證實這個想法,羅素駕駛了一艘這麼設計的船穿過漂浮著小球的水面,他觀察到那些小球並沒有撞向船頭,而是單純的被向兩側推開[5]。

-----廣告,請繼續往下閱讀-----

同樣地,羅素主張船尾的形狀應該做成擺線形以配合回填的水波。由於這種水波的長度是移動波長度的三分之二,所以船尾的長度應該是船頭的三分之二。而船舶的全長可以藉著在中間加進一段平行船身來調整。例如,一艘船以 10 節(每秒 17 英尺)速度行進時所產生的移動波長度是 53 英尺,所以設計一艘以這個速度航行的 100 英尺長的船應該有 53 英尺的正弦形船頭、12 英尺直的中段,以及 35 英尺的擺線形船尾(圖 2)。


圖 2. 依照波浪線理論所訂出船身幾何形狀的三個關鍵元素,圖/物理雙月刊提供。
  • 波浪線理論:船頭形狀必須是正弦的才能與船隻前沿所產生的移動波相匹配;船身後段/船尾必須是擺線形才能與尾隨的替代波相符;船身中段,由於假設沒有波浪,所以必須是直的而且與船身中線平行。船首與船尾的長度各自依據移動波與替代波的長度決定,而船身中段的長度則視船隻的全長來調整。

在這裡我們必須開始注意有甚麼是波浪線理論所沒有顧到的。波浪線理論並沒有提供一個方法來估計「興波阻力」(wave-making resistance,即船隻行進時,推動水面形成波浪所損耗能量對應的阻力);羅素單純的、錯誤的假設依據波浪線設計的船身的興波阻力為零。同時波浪線理論並無物理基礎;儘管羅素宣稱他做了好幾千次的實驗,但能用來闡明興波阻力機制的數據卻很少。

羅素堅持的正弦曲線以及擺線只能說是一種幾何描述性概念,而不太算是一個物理理論。最終,與羅素斷言相反,他的波浪線並無法為每一艘船隻提供保證成功的範本。船舶設計始終必須在速度、穩定性、強度與其他一堆因素之間尋求妥協。就波浪線來說,船身為了支撐其重量必需足夠吃水,往往就表示必須修正羅素原來想像的吃水線。

應用在蒸汽船的情況⋯⋯

羅素由 BAAS 贊助的研究成果發表之後,他的波動線船身設計理論就獲得蒸汽動力船造船者的擁護,而蒸汽動力船舶在那時候已經快速地在英吉利海峽、北海、愛爾蘭海等等貿易航線上取代風帆動力船舶了。在那些水域航行的貿易船隻必須相當快速的完成短程輸運;造船者看到比較尖的船身都認為那是產生速度的理想形狀,以致向內凹進去的吃水線設計在 1845 年之後大為流行。

-----廣告,請繼續往下閱讀-----

雖然波浪線設計的汽船一般來說可以令那些船長們滿意,但僅僅使用波浪線公式並無法保證一艘船舶的成功。舉例來說,蘇格蘭的造船者詹姆士・納皮爾(James Napier)依據羅素理論所建造的幾艘在愛爾蘭海航行的汽船,就都通通不及格,這使得納皮爾的每一條船都大虧其錢。

皇家海軍第一艘裝甲戰艦 HMS 勇士號,圖/ by geni@wikipedia commons。

雖然 1895 年時羅素已經是倫敦一位著名的造船者,但是他沒有標到建造皇家海軍第一艘裝甲戰艦「HMS 勇士號」(HMS Warrior)。不過他說服了海軍調查員保德溫・華克(Baldwin Walker)在建造新艦時採用波浪線概念。勇士號的首席造船技師埃撒克・瓦特斯(Isaac Watts)跟隨華克的決定,為戰艦製作了產生波浪線的向內凹陷的吃水線,但是船頭剩下的部分則仍舊依照傳統設計。而且瓦特斯也斷然拒絕了後來羅素要求分享一半勇士號設計功勞的嘗試。

羅素的確運用波浪線建造了他最著名的船——在 1859 年開始營運的「SS大東方號」(SS Great Eastern,圖3)。這船長 600 英尺、排水量 27,000 噸,在那個時代是最大的一艘船,準備從英國載客到澳大利亞。然而儘管是這麼大的船、還加上先進的船身外型,大東方號卻從來沒有去過南半球,她只數次橫渡大西洋,也沒有賺到利潤[6]。

圖 3. 「SS大東方號」(SS Great Eastern),約翰・史考特・羅素最著名的波浪線船。圖/澳大利亞維多利亞州立圖書館(State Library Victoria)同意刊登。

儘管如此,大東方號的乘客之一,朱爾・凡爾納(Jules Verne)由於對大東方號的波浪線船身印象非常深刻,因此給了他靈感在他的著名小說《海底兩萬里》或譯《海底歷險記》(Twenty Thousand Leagues Under the Seas)裡寫了一段。在小說裡他這樣描述他的虛構潛水艇「鸚鵡螺號」(Nautilus):「有線條…足夠長而且她的船尾夠寬,能讓回填的水輕易的流出,而且讓潛艇的行進毫無障礙。」[7]。

-----廣告,請繼續往下閱讀-----

如果用在風帆的情況?

雖然波浪線理論原來本是為了蒸汽動力船而發展的,卻在帆船上發揮了最大的功用,特別是在 1800 年中期到末期的快速帆船(clipper)和遊艇(yacht)上。快速帆船是被建造來快速輸運旅客和易腐爛貨物的;遊艇則是被造來贏得比賽中。這些船隻的設計與建造的每一方面都可以說是以快為本。

快速帆船最初是 1840 年代由一位任職於紐約史密斯與戴蒙(Smith and Dimon)造船廠的年青人約翰・葛瑞菲斯(John Griffiths)所發展出的。葛瑞菲斯想設計一款新型的船舶,以便在當時和中國之間快速擴大的茶葉貿易上撈到好處。他精通那時最新的船舶設計理論,也研讀了羅素各種波浪線理論的報告[8]。他最先設計的幾艘快速帆船:1845 年的「彩虹號」(Rainbow)和 1846 年的「海魅女號」(Sea Witch),就是受到羅素向內凹陷吃水線的啟發;這個設計使得往返美國-中國的航程幾乎縮短了近乎兩個月[9]。圖 4(a)所示為海魅女號船頭的波浪線。葛瑞菲斯設計的快速帆船是名列最快船隻之列:1849 年由海魅女號所創下的由紐約到香港的紀錄,一直到 2003 年才被打破!

圖 4.(a)快速帆船「海魅女號」與(b)賽艇「美國號」(America)的船身設計圖。在第一批造出的快速帆船之中,海魅女號在 1849 年創下了往返紐約-香港只花 74 天的紀錄!1851 年,當時吃水線幾乎完全遵守波浪線理論所設計的賽艇美國號,完勝「美國杯」(America’s Cup)帆船賽。

葛瑞菲斯在快速帆船的成功,刺激了一股在紐約與波士頓採用向內凹陷吃水線造船的熱潮。快速帆船造船者羅伯・馬凱(Robert McKay)在一次造訪倫敦時簡潔的向羅素表示:「我有個秘密,就是我在建造我所有的船時都採用了波浪的原理。我最早是在大英協會(British Association)的出版品裡發現了波浪線的說明。[10]」

波浪線成了遊艇社群的一個更加招牌的設備。羅素幫英國鐵路工程師羅伯・史蒂芬森(Robert Stephenson)建造了一艘波浪線遊艇「泰坦尼亞號」(Titania),就是這一艘船讓史蒂文森得以加入那個貴氣十足的「皇家遊艇連」(Royal Yacht Squadron,簡稱RYS)。1851 年的時候,皇家遊艇連的會員邀請他們的同級對手「紐約遊艇俱樂部」(New York Yacht Club,簡稱 NYYC)的伙伴們到英格蘭懷特島的考斯(Cowes, the Isle of Wight)比賽「一百畿尼杯」(Hundred Guinea Cup/£100 Cup)遊艇賽——這是皇家遊艇連舉辦的比賽裡的最高殊榮。(譯者注:畿尼(Guinea)是英國幣值單位,一畿尼等於一英鎊,一百畿尼杯的獎盃價值一百畿尼,大約是今天的十萬英鎊。)

-----廣告,請繼續往下閱讀-----
1/4畿尼,圖/wikipedia commons

皇家遊艇連的好手們不知道,來自紐約由喬治・史悌爾(George Steers)所領導的隊伍,已經準備好了他們自己的波浪線遊艇來參賽。史悌爾曾經是葛瑞菲斯的造船伙伴,並而且向葛瑞菲司學會了波浪線理論;他完全遵照了波浪線理論建造了他的「美國號」(America)縱帆船(見圖 4(b))。

  • 美國杯帆船賽原名「一百畿尼杯」(Hundred Guinea Cup),就因為美國號超凡的表現,後來改名為美國杯帆船賽。(改編自 C・G・戴維斯(C. G. Davis)所著《美國快速帆船海魅女號:1846 紐約製造》,1935 船舶製造廠出版(U.S. Clipper Ship Sea Witch: Built at New York, 1846, Ship Studio, 1935)與參考資料[8]。

在 1851 年的 8 月 22 日,美國號在懷特島的帆船大賽裡穩穩的擊敗了由 14 條船所組成的英國船隊。美國號的勝利造成了大轟動,數日之後倫敦日報(London Journal)登載了一幅漫畫,圖中維多利亞女王問道:「那一艘遊艇得到第二名?」她得到唯一的回答是:「啊,女王陛下,這個比賽是沒有第二名的。」一個星期之後,在另一場比賽裡,美國號對上了羅素自己的傑作泰坦尼亞號。再一次,美國號輕鬆獲勝[11]。羅素很有風度的承認對方的勝利並聲稱史悌爾對於波浪線的運用更勝他一籌。

倫敦日報(London Journal),圖/by William Parks@wikipedia commons。

波浪線贏得了國際的名聲而且在美國號大勝之後被廣為模仿[12]。1860 年的時候羅素被任命為「皇家船舶設計學院」(Royal Institution of Naval Architects)的校長。然而並非所有的帆船玩家都相信波浪線理論。一位在麻省理工學院訓練出的工程師,美國人那森諾・賀瑞修夫(Nathanael Herreshoff)明確的摒棄了波浪線以及所有其他所謂的「科學 理論」,在船身設計上只認同出自自身經驗的自家產品。他工程上的直覺被證明幾乎都是對的;自 1893 年到 1920 年,他設計並建造了連續五屆美國杯的衛冕者,這裡面包括了他 1903 年的傑作「信任號」(Reliance)。這幾條船沒有一艘有向內凹陷的吃水線特徵[13]。

對於許多研究船舶設計的科學家與工程師,賀瑞修夫的非凡演出其實也不是那麼令人驚訝。早在十多年前那些人之中有幾個就已經開始發掘波浪線理論的缺點,而並沒有花太久時間就看到那個理論出現了破綻。

-----廣告,請繼續往下閱讀-----

波浪線的終結

在那些質疑波浪線理論的諸多科學家與工程師之中,有一位名叫威廉・藍金(William Rankine)。他自 1857 年開始,執行了一個為期十年的船舶阻力研究之後,得到了一個結論,就是船舶行進所遭遇的阻力最重要的來源是散流在整個船身周邊的「摩擦渦流」(frictional eddies);注意,摩擦渦流的作用不只是在船頭與船尾,而在整個船身。但是,藍金用來計算阻力的理論,雖然後來證明大都是對的,用在處理日常的造船工作時就嫌太複雜了[14]。

又有一位大名威廉・傅如德,曾經一起參與建造大東方號,亦熟悉羅素,也加入了船舶阻力的研究。1865 年的時候,他決定要比較一下羅素的尖型波浪線和另一種比較圓的,他說他的想法源自「水鳥的眼光」。他建造了兩組大小不同的模型船,一組是有波浪線的「渡鴉」(Raven),另一組船尾是鈍形的「天鵝」(Swan),然後把這兩種模型船拖在一艘小的工作船後面。實驗結果發現,在高速時天鵝表現出的阻力比渡鴉要小,傅如德也開始確信阻力可以依照比例隨著船隻大小予以預測。

BAAS 協會反對使用縮小版模型的行為來預測全尺寸船隻結果的作法,圖/by F.Lang@wikipedia commons。

1868 年,BAAS 委託了更多船舶阻力的研究案,而藍金和傅如德都參了一腳。在正式的報告裡,協會反對使用縮小版模型的行為來預測全尺寸船隻結果的作法。但是傅如德基於他所做天鵝與渡鴉的實驗結果,並不認同協會的看法。運用了得自皇家海軍(Royal Navy)的資金,傅如德在位於托基(Torquay)、他家附近建造了一個模型測試儲水池,並且在 1871 年開始實驗。經過十年研究,傅如德和他兒子羅伯(Robert)發展出了船舶阻力的比例定律[15]以老爸名字命名。

經過超過一個世紀的理論與實驗的證實之下,傅如德的定律架構裡說明了船舶所受的總阻力來自兩個可視為獨立的因素:

(一)壓力,就是在整個船體全長產生能量耗散波浪系統的壓力
(二)摩擦,就是由水施予船體表面的黏滯阻力。
波浪線理論只有船頭與船尾會產生波浪的前提,被一個更基本的理解所取代。這說明行船時產生的波浪,就是整個船體向其周圍的水所輸送的能量。

到了 1890 年代,蒸汽動力已經超過風帆成為商船推進的主要方式。船主們開始對增進煤及後來的油的效率投資更多的投資。在同一時期,全世界也在紛紛建造傅如德於托基做的實驗所用的縮小版模型測試儲水池,而模型測試的結果都確認了傅如德所建構的定律。船舶設計所涉及的科學很快也成為了在那些實驗設施裡工作的工程師與科學家的研究領域(圖5)。縮小版模型的實驗是相對容易與以及低成本,與傅如德的比例定律相結合後,模型測試對造船者以及海軍而言是有成本效益的方式,如此他們能發展有效率的船體形狀,同時降低燃料開支。

圖 5. 一個現代的模型測試儲水池、一座用來研究小型模型船流體力學的現代牽引水槽。由於那些流體力學服贗定義明確的比例定律,小型模型可以用來估計遠洋航行船隻的速率與動力。圖/史帝文理工學院的戴維森實驗室(Davidson Laboratory, Stevens Institute of Technology)同意刊出。

模型測試也逐漸顯露其他影響船隻速度與動力的因素,包括船身摩擦與流入螺旋槳的水流的形態。這些新考量質疑了所有幾何推導出的吃水線有效性。1906 年一篇刊登在暢銷的《工程學》期刊(Engineering)的論文認為:「早期船舶設計者絞盡腦汁要尋找一個『最小阻力』形狀的問題,除了在這個層次之外是仍未獲得解決的。這個層次就是科學的造船者已經知道,沒有哪『一種』船身的形狀能在『所有』的狀況之下都是最容易駕駛的;所謂『最小阻力』的船身形狀則是對應於不同的速率、長度以及其他船身狀物體的變數,有所不同。而約翰・史考特・羅素先生著名的《最小擾動與可能的最小阻力的波浪線形狀》只是演繹自…他所假設的公理[16]。」

該論文明言,這個主題「只能在測試水槽的輔助之下得到闡明」。確實,在 1893 年由美國造船技師大衛・泰勒(David Taylor)所著的、有影響力的著作《船舶的阻力與螺旋推進器》(Resistance of Ships and Screw Propulsion)中,幾乎完全只專注於模型測試結果,而對羅素的波浪線理論一個字都沒提到。

故事還沒完⋯⋯

雖然羅素的波浪線概念無法存留超過 19 世紀,但是 18 世紀明確的理想——最小阻力的幾何固體——活了下來。儘管被指出並無物理基礎,這種固體可能存在的想法仍繼續支配著一些甚至是 20 世紀的工程師。

在最有名的例子,1934 年美國航空工程師大衛・戴維斯(David Davis)申請了一種低阻力機翼設計專利,設計原理完全只基於擺線形狀的幾何考量。回顧羅素的論點——擺線形是最佳化船尾的形狀,戴維斯的專利宣稱他的「最有利機翼形狀」是「發展自一個公式,該公式是基於一個在流體中同時具有旋轉與平移運動的旋轉翼所產生的馬格努斯效應(Magnus effect)[17]」。

最小阻力的幾何固體理念仍持續影響20 世紀的工程師,圖/by Bluesnap@pixabay。

在這裡把馬格努斯效應扯進來其實是有點曖昧的,因為馬格努斯現象只與自旋的物體相干,而戴維斯的機翼並不旋轉。但是即便如此,戴維斯的機翼仍然受到了「統一飛機公司」(Consolidated Aircraft Corp)的注意,這家公司當時正在發展一種新式的長程轟炸機——就是後來的 B-24。當統一公司測試了戴維斯的機翼之後,發現流經機翼大部分表面的氣流都是非湍流的穩定流線,因此大幅降低了阻力。於是飛機公司就採用「老戴機翼」接續製造後來被視為大成功的 B-24。好幾年之後,大家才瞭解到這個低阻力背後的物理是所謂的「層流機翼」(laminar-flow airfoils),工程師們也就在那個時候才瞭解到戴維斯的擺線碰巧落在幾種層流機翼形狀的其中之一。看來戴維斯發表的機翼比較像是碰巧踩到狗屎般的好運而非出自刻意的設計[18]。

約翰・史考特・羅素與他在造船界半世紀長的主導似乎也頗為相似。然而,即使證據顯示他幾何構想的基礎,事實上只是建築在沙灘上的一段時間之後,他那個「最小阻力形狀」依然風姿不綽。部分魅力可能因為他的理論看來就是那麼簡單。但是另一個隱藏在波浪線和其他幾何導出形狀持久不墜背後的因素,應該是羅素作品的視覺美。這世界事實上沒有多少事物能比那些過去歲月中的快速帆船與賽艇優雅的船身還要漂亮。

  • 本文的另一個更長的版本原本出版於《技術與文化》期刊(Technology and Culture)57, 414 (2016).

參考資料

  1. A. Lambert, Int. J. Hist. Eng. Technol. 81, 60 (2011).
  2. B. Marsden, in Technological Development Between Economy and Administration in Great Britain and Germany (19th/20th c.), E. V. Heyen, ed., Nomos (2008), p. 67.
  3. T. Wright, “Ship hydrodynamics 1710–1880,” PhD thesis, U. Manchester (1983), p. 98.
  4. G. S. Emmerson, John Scott Russell: A Great Victorian Engineer and Naval Architect, John Murray (1977).
  5. J. S. Russell, The Modern System of Naval Architecture, vols. 1–3, Day and Son (1864–65).
  6. D. Griffiths, A. Lambert, F. Walker, Brunel’s Ships, Chatham (1999).
  7. J. Verne, Twenty Thousand Leagues Under the Seas, W. Butcher, trans., Oxford U. Press (1998), p. 82.
  8. J. W. Griffiths, Treatise on Marine and Naval Architecture, or Theory and Practice Blended in Ship Building, 2nd ed., Pudny and Russell (1852).
  9. H. I. Chapelle, The Search for Speed Under Sail, 1700–1855, Bonanza Books (1967).
  10. The Literary Gazette and Journal of Archaeology, Science, and Art for the Year 1857, L. Reeve & Co (1857), p. 980.
  11. J. Rousmaniere, The Low Black Schooner: Yacht America, 1851–1945, Mystic Seaport Museum (1986).
  12. D. Kemp, Yacht Architecture—A Treatise on the Laws Which Govern the Resistance of Bodies Moving in Water; Propulsion by Steam and Sail; Yacht Designing; and Yacht Building, 3rd ed., Horace Cox (1897).
  13. C. Pastore, Temple to the Wind: The Story of America’s Greatest Naval Architect and His Masterpiece, “Reliance,” Lyons Press(2005).
  14. O. Darrigol, Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl, Oxford U. Press (2005).
  15. D. K. Brown, The Way of the Ship in the Midst of the Sea: The Life and Work of William Froude, Periscope (2006).
  16. Engineering 81, 541 (1906).
  17. D. R. Davis, “Fluid foil,” US Patent 1,942,688 (9 January 1934).
  18. W. G. Vincenti, What Engineers Know and How They Know It: Analytical Studies from Aeronautical History, Johns Hopkins U. Press (1990).
  • 本文感謝Physics Today (American Institute of Physics) 同意物理雙月刊進行中文翻譯並授權刊登。原文刊登並收錄於 Physics Today, July/2017 雜誌內(Physics Today 70, 7, 52 (2017); http://dx.doi.org/10.1063/PT.3.3627);原文作者:拉瑞・佛瑞若(Larrie Ferreiro)是一位船舶設計師與歷史學者。他任教於位在美國紐澤西州后伯肯(Hoboken, New Jersey)的史帝文理工學院(Stevens Institute of Technology)的系統與企業學院(School of Systems and Enterprises)及亞歷山大・波拉臘(Alexander Pollara)是一位就讀於史帝文理工學院航海安全中心(Maritime Security Center)的博士研究生 。中文譯稿:林中一教授,國立中興大學物理系。
  • Physics Bimonthly (The Physics Society of Taiwan) appreciates that Physics Today (American Institute of Physics) authorizes Physics Bimonthly to translate and reprint in Mandarin. The article is contributed by Larrie Ferreiro and Alexander Pollara, and are published on Physics Today 70, 7, 52 (2017); http://dx.doi.org/10.1063/PT.3.3627). The article in Mandarin is translated by Prof. Chung-Yi Lin, working on Department of Physics, National Chung Hsing University.

本文摘自《物理雙月刊》39 卷 10 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 16 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
科技人才看過來!三門獨家課程 YouTube 免費看!工研院「ITRI lab on-line」特色技術系列數位課程現正放送中
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・2829字 ・閱讀時間約 5 分鐘

本文由 工研院 委託,泛科學企劃執行。

Hey,未來的千萬年薪人才!來一起深入了解那些正在改變我們生活的科技吧!工研院為你精心準備了三堂超有趣的線上課程:從探索醫學界的 PLGA 微米球技術,到揭秘半導體測試的幕後英雄 ATE,再到讓塑膠也能有身分證的創新方法。這不只是學習,更是一場與科技親密接觸的旅程!

第一門 材料檢測與模擬設計之原理與應用系列學習

精選課程:塑膠也有指紋?如何給塑膠「身分證」來驅動循環經濟,減緩地球暖化?你要知道的光譜分選技術-材料光譜分選技術

這堂課將探討如何透過光譜智慧分選技術,為塑膠材料賦予「身分證」,進而推動循環經濟並減緩地球暖化。塑膠標籤的設置主要是為了方便辨識材質,這對於廢塑膠的回收和再利用至關重要。不同號數的塑膠因其分子組成、結構和排列的差異而有不同的特性和應用領域。

-----廣告,請繼續往下閱讀-----

在光譜智慧分選技術中,首先要理解電磁波的概念。電磁波是一種電場和磁場交互變化的波動現象,其不同波長可以用於不同的應用,如手機訊號、微波爐、家用遙控器、X 光攝影等。在塑膠分選中,光譜技術常用的波長範圍落在近紅外到遠紅外光的區域,即 1 微米到 300 微米。這些波段的電磁波能誘發塑膠分子振動,並吸收散射或入射的電磁波能量,從而造成光譜的變化。科學家利用這種振動光譜的變化來獲得塑膠分子的特徵光譜,從而開發出能辨識不同塑膠分子的技術。

舉例來說,最簡單的雙原子分子,如 C-H、O-H 等,會有特定的振動頻率。當結構更複雜的分子(如水分子)被電磁波誘發振動時,會產生更多的振動模式,每種模式對應不同的特徵光譜。塑膠由多種原子組成,因此其特徵振動光譜相當複雜,但這也使得每種塑膠具有獨特的光譜特徵,類似於條碼或指紋,可用於辨識不同類型的塑膠。

本集介紹的光譜技術主要聚焦於紅外線頻譜區段,其波長範圍在 900-2500 納米。在這一範圍內的紅外光能量正好能引起塑膠分子的振動,並在不同波長上產生吸收。透過紅外線感測裝置掃描塑膠分子,可以快速獲得塑膠的材質信息,這不僅有助於塑膠的分類和回收,也對環境保護和資源再利用具有重要意義。


第二門 半導體IC設計與檢測技術系列學習

精選課程:好的良率就是好的利率!考試交卷前都會再檢查、確認了,IC 生產才不會忘記你-半導體測試簡介

-----廣告,請繼續往下閱讀-----

在這堂課中,我們將探討自動化測試機台(ATE)在半導體測試領域中的關鍵作用。自動化測試機台是一種專為測試集成電路(IC)而設計的設備,它可以大幅降低手動測試的人力需求,並減少測試成本。每種IC根據其規格,都需要特定的測試項目。針對這些項目,專門編寫的測試程式被用於自動化測試機台,以自動檢測和篩選出不合格的 IC。

不同種類的 IC 需要不同的測試機台。例如,數位 IC 需要使用專門的數位測試機台,而記憶體 IC 則需要使用演算法來進行測試。類比 IC 和混合訊號 IC 則涉及電性測試,因為它們不是像數位IC那樣僅依賴固定的 0 和 1。

隨著系統晶片(SoC)的出現,測試機台的複雜性也隨之增加。SoC 整合了數位、記憶體、混合訊號甚至 RF IC 於一個晶片中,因此其測試機台必須同時具備上述所有種類機台的功能。這種SoC測試系統非常昂貴,每台造價可能高達數千萬。

最近,模組化測試系統成為了一種趨勢。這種系統的主要特點是其靈活性,能夠根據不同類型的IC進行不同模組的組裝,以進行測試。例如,對於數位IC,可以使用數位模組;對於類比或混合訊號IC,則可以使用相應的類比測試模組,如示波器或任意波型產生器。對於RFIC,則可以插入RF模組,如VNA等網路分析儀。模組化測試系統通常基於PXIE或LXI這樣的系統,其中PXIE是基於PCIE的擴展,加入了與儀器相關的電路;而LXI則是在LAN基礎上加入儀器相關電路。

-----廣告,請繼續往下閱讀-----

總結來說,自動化測試機台在提高半導體製造過程中的良率和效率方面發揮著不可或缺的作用。無論是傳統的ATE還是新興的模組化測試系統,它們都在確保IC品質和性能方面扮演著關鍵角色。


第三門:解密醫材醫藥產品開發攻略系列學習

精選課程:藥不💊隨便你~但少了「它」,藥就不能發揮最大功效!製劑的分類與開發

在這堂課中,我們將深入探討 PLGA 微米球技術及其在長效針劑開發中的重要性。PLGA,全稱為聚乳酸甘醇酸,是一種被廣泛應用於藥物釋放系統的生物相容性高分子材料。自 1989 年日本武田藥廠開發出第一款使用 PLGA 的產品 Lupron Depot® 以來,這種技術已被用於多種藥物的開發,涵蓋了小分子藥物和胜肽類藥物。

PLGA 的關鍵特性,包括乳酸與甘醇酸的比例、分子量及高分子末端基團,對藥物的釋放速率和持續時間有著顯著影響。在製程技術方面,溶劑揮發法和溶劑萃取法是兩種主要的製備方法,它們對於親水性和疏水性藥物的包覆都至關重要。這些製程不僅決定了微米球的形成,也影響著藥物在微米球內的分布和最終的藥物釋放行為。

-----廣告,請繼續往下閱讀-----

此外,微米球製程的工藝還包括乳化、coacervation 過程、溫度、攪拌速度、微米球固化和乾燥速度等因素,這些都對藥物包覆效率、微米球的粒徑大小分佈及藥物在微米球中的分佈位置產生影響。而不同的製程設計往往會導致藥物釋放行為的顯著差異,這對從實驗室到試量產階段的轉換是一大挑戰。

在台灣,工研院在經濟部的支持下建立了一個無菌製劑試製工廠,該工廠配備了微米球製程設備、高壓均質機、in-line均質機、噴霧乾燥機等關鍵製程設備。這些設備不僅能夠支持微米球的生產,還包括了關鍵的分析儀器,如液相層析儀、氣相層析儀、微米/奈米粒徑分析儀等。工研院的團隊擁有豐富的特殊製劑開發經驗,能夠提供從製劑配方研發、分析方法開發、放大製程開發到客製化產線設計的全方位服務。這些資源和專業知識使得工研院能夠有效地支持新藥的臨床前開發和商業化進程。

總的來說,PLGA 微米球技術在藥物釋放系統的開發中扮演著關鍵角色。透過精確的材料選擇和製程控制,這項技術有望為醫藥界帶來更多創新和有效的長效針劑產品。


還想看更多?不用掏出信用卡,三門線上課都在 ITRI Lab on-line 的 YouTube 頻道獨家放送中,手機打開就能看。但……雖然不用急,但是科技進步也是不等人的,快跟上吧!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
最硬核線上課程來了!工研院不藏私開課的原因是?
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・1114字 ・閱讀時間約 2 分鐘

本文由 工研院 委託,泛科學企劃執行。

「ITRI Lab on-line」線上學習平台,讓複雜的科技原理簡單學! 圖/envato

你有沒有想過,是什麼驅動著今日產業的創新與變革?答案就在工研院的「ITRI lab on-line」特色技術系列數位課程中!這是一個與眾不同的學習機會,讓你深入了解並參與到台灣產業創新的核心。

首先,來說說「環構計畫」的緣起。這個計畫是為了配合國家創新產業政策而生,它的目標是建置和維護創新技術與服務平台。這不僅幫助企業開發新產品和服務,推動新興產業和新創公司,還能加速創新技術的產業化,促進企業的轉型升級。為此,工研院不斷擴建新研發場域,涉及各主要技術領域,實驗室分為檢測/認驗證、試量產/試營運、軟體與硬體設施服務等類別。

工研院的目標是推動台灣產業的創新優化與轉型,幫助業界把握新契機,布局自主創新和產業韌性所需的基礎設施。為此,工研院提供「ITRI lab on-line」特色技術系列數位課程,這些免費的線上學習資源將幫助你快速掌握產業新趨勢,增強企業技術升級與轉型的意願。

-----廣告,請繼續往下閱讀-----
對於晶片生產來說,必須借助科技力量除錯。 圖/envato

這系列課程包括三大主題:「永續高值材化」、「智能晶片」和「精準健康」。每個主題都有專門的課程,總共22支數位課程影片,涵蓋從技術原理到應用範圍的各方面知識。這些課程不僅介紹了工研院實驗室的專業技術,也為企業提供了學習和轉型的寶貴資源。想先試看嗎?點這裡看看我們推薦的三堂課吧

無論你有興趣的是材料檢測與模擬設計、半導體IC設計與檢測技術,還是醫材醫藥產品開發,這些課程都會給你全新的視角和知識。每個課程都是精心設計,旨在幫助企業和個人掌握關鍵技術,並在低碳化與智慧化的時代中保持領先。

現在,只需點擊下方的連結,就能免費加入這個精彩的學習旅程。快來發掘和學習那些塑造當代產業未來的關鍵技術吧!

材料檢測與模擬設計之原理與應用系列學習
半導體IC設計與檢測技術系列學習
解密醫材醫藥產品開發攻略系列學習

-----廣告,請繼續往下閱讀-----

【ITRI Lab on-line】系列影片可在工研院產業學院YouTube頻道觀看:點我前往

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia