Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

學會少而美的藝術和科學──《閒散的藝術與科學》推薦序

Gene Ng_96
・2018/12/08 ・3267字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

台灣工時之高,世界有名。根據勞動部和經濟合作暨發展組織(OECD)公布的資料,去年全球四十個主要國家中,全年工時最長的榜首為新加坡 2,392 小時,其次為墨西哥 2,228 小時、哥斯大黎加 2,216 小時,台灣以 2,134.8 小時居第四、南韓 2,124 小時排第五,過勞死的發源地日本則以 1,729 小時排名第 23。

從這些數字來看,台灣人真的很拚,比經濟實力更強的日韓還要拚,果然很崇尚「愛拚才會贏」的精神。可是,在知識經濟主導的時代,創意比蠻幹更重要,這種拚命三郎的精神,真的有利可圖嗎?再拚,拚得過電腦嗎?現在連圍棋高手都不是電腦的對手了,在很多工作可以自動化的情況下,我們難道要加長工時、減少薪資來跟電腦或機器人對著幹嗎?

從小,台灣人的時間就被塞滿了

台灣的高工時,可能是農村文化留下來的遺產。探討東亞經濟發展的好書《成與敗:亞洲國家的經濟運作之道》How Asia Works: Success and Failure in the World’s Most Dynamic Region)指出,過去農村時代,台灣的自耕農,把家庭的勞力發揮到極致,居然創造出比大莊園的規模經濟更高產值的詭異現象,而小農辛勤耕種收獲後的豐碩成果,後來投資在工業之上,這是造就台灣的經濟奇蹟的主因之一(請參見〈東亞的成與敗〉)。

我來自馬來西亞悠閒的小鎮。來台灣念大學時,最感到驚訝的是,台灣的高中生為了升學,甘願付出的時間和代價異常的高,幾乎把所有的下課時間全用在寫作業和補習上面了,這麼做完全搾乾了學生的精力,讓他們成為讀書和考試的機器。很多學生在整個求學過程中,被嚴格禁止與異性接觸、戀愛,可是一出社會,家長就會一直逼問什麼時候要結婚。

-----廣告,請繼續往下閱讀-----

台灣高中生的平均素質肯定在歐美之上,可是台灣大學生學習動機之薄弱,卻和程度完全不成正比,這令很多外國教師感到驚訝不已。很多人出社會後,就對知識不感興趣了,幾乎完全沒有閱讀的習慣,讓出版業哀鴻遍野。可見台灣在中小學,不太重視學生自主學習的能力,很多考試成績極為優異的學生,並非因為興趣而讀書。這個時代講求的是創意和創新,而這些都不是靠長時間當乖寶寶寫作業上補習班就能培養出來的。

台灣人能夠忍受高工時,除了是農村辛勤文化影響,可能還有因為從小學、中學開始,就已經習慣被作業和補習班塞滿了時間,所以出了社會,也任由資方隨意控制。反正下了課不是寫作業就是去補習,這和自動加班有什麼差別呢?因為已經習慣到麻木了吧?每個上班族都忙死了,怎麼還有時間、精力去關心國家大事,只會拚命完成老闆指派下來的工作。

台灣近年來雖然高工時、高生產力,可是卻深陷入窮忙的危機之中,因為絕大多數人在上班時,僅能應付眼前的狀況,沒有時間、精力和心力放眼未來。不僅錯過產業轉型的契機,被過去落後的韓國快速超越;大量適婚人口不是沒有對象,就是結了婚卻不生小孩,這已經嚴重動搖了國本。雖然如此,台灣許多政策卻還僅是頭痛醫頭、腳痛醫腳,甚少做出長遠的規劃。

面對產業轉型的契機,台灣需要的可能不再是血汗的環境。我自己不知道算不算得上是工作狂,可是,有時假日出去透透氣,心裡的罪惡感讓玩樂的行程淪為走馬看花,也不是什麼罕見的事情。我更是有個工作狂朋友,只要一天沒去工作,而是休閒逛街,居然會因為罪惡感而嘔吐!

-----廣告,請繼續往下閱讀-----

無所事事是創意更上層樓的必需品

難道稍作休閒就等於糟蹋生產力嗎?這本好書《閒散的藝術與科學:從腦神經科學的角度看放空為什麼會讓我們更有創意?》Autopilot: The Art & Science of Doing Nothing)就是要告訴我們,事實上正好相反,如果我們想要更有創意和投入工作,我們其實不該只學會如何高效地工作,也該學會如何適度地放空。無所事事並非奢侈品,而是更上層樓的必需品。放空不僅有益身心健康,還可以是提高生產力的關鍵,所以請放心的放空吧。

《閒散的藝術與科學》作者安德魯‧斯馬特(Andrew Smart)表示,他的論述不是自以為是的管理學理論,而是有科學根據的。他提出腦神經科學的研究證據,說明無所事事的放空其實會提高腦活動。神經科學家用核磁共振造影術來研究腦中血液的流量和血氧濃度,發現當我們進行特定工作時,一些腦區如:海馬回、內側前額葉皮質、前扣帶皮質和楔前葉的活動其實是被抑制的。反之,當人沒有在處理特定工作時,這些區域反而是活躍的,神經科學上稱之為「靜息狀態網絡」(RSN;resting-state network)或稱「預設模式網絡」(DMN;default mode network)。這時腦可能是處在更快樂、更健康和更有創意的狀態。

這項發現也意味著,當我們放空時,腦中並非無所事事,有些腦區反而是更努力地幹活。為何會如此呢?作者打了個比方,他說:我們的腦和飛機一樣,有自動駕駛系統,當我們休息時,就等於從手動模式切換過去。許多藝術和科學上的靈感,並非產生在拚命工作時,而是在偷閒之時。我們的腦從來不曾真的偷閒,我們在休息時,腦搞不好消耗了更多能量。我們的意識沒在幹活時,並不代表我們的下意識也在打混摸魚。

安德魯‧斯馬特大力抨擊許多一味要我們成為高效人士的管理學書籍,他也唾棄六標準差的管理法則。他表示,六標準差降低組織流程中的變異,這跟癲癇對神經元做的事很類似,癲癇發作時,神經元間的變異全都會下降,造成大腦的嚴重破壞。

-----廣告,請繼續往下閱讀-----

不僅企業緊盯著生產力,社會上也如此。無所事事就像是文化罪行,打從工業革命以來,遊手好閒就被污名化了。我們害怕被晾在一邊無所事事,生怕被貼上懶惰的標籤,忙碌成了身分象徵,彷彿愈忙對世界就愈有用。雖然我們演化來是為了能混水摸魚,因為勞碌命太耗能,不利於生存;可是現代社會卻逆其道而行,所以安德魯‧斯馬特要我們相信科學,不需為健康的閒散感到內疚。

放空品質和睡眠品質一樣重要

忙碌不僅對大腦不利,也會造成嚴重的健康問題。短期而言,忙碌會導致壓力,會破壞創造力、自我認知、情感幸福、社交能力,也會造成心血管疾病和增加癌症風險,他認為那些教人工作和時間管理的書籍作者,事實上沒搞懂人類實際上該如何幹活的。要恢復精力的辦法不是做更多工作和時間管理,而是抽離去偷閒放空。

過勞會造成決策失誤。如果無法集中精神,大腦就得要休息了,疲累就像饑餓一樣,是身體給我們的明確訊息,我們難道不該聽從嗎?把身體操到極限,預設模式網絡就會出現赤字。忙裡偷閒反而會增加效率和創造力,我們對預設模式網絡的重視,該像想要睡個好覺一樣。

我念博士班時,老闆就曾跟我強調,一個優異的遺傳學家,其實是個想盡方法能夠減少工作量的科學家。為了達成打混的目標,就得想辦法用實驗方法抄捷徑。他在課堂上給的作業,是要我們利用各種遺傳學工具,把要做的實驗時間和精力減少,誰能減到最低,誰就做出了最佳的解答。他更是身體力行閒散的藝術,常趁遊客較少的週間去滑雪、爬山。

-----廣告,請繼續往下閱讀-----

無獨有偶,有本行為經濟學的好書《匱乏經濟學:為什麼老是在趕deadline?為什麼老是覺得時間和金錢不夠用?》Scarcity: Why Having Too Little Means So Much)也明確地指出,把班排得滿滿而缺乏餘裕,是非常有害的。該書指出,匱乏的感受會窄化眼界、扭曲判斷,所以只是管理時間還不夠,我們應當有效管理我們的認知頻寬。別把時間表排得太滿,允許一定的彈性和寬鬆是有益的(請參見〈多多才益善的匱乏經濟學〉)。

不管是不是勞碌命,在現代生活中,我們不斷被 LINE 和臉書等訊息轟炸、淹沒,剝奪了我們放空的片刻,占滿了認知頻寬,影響了我們工作的決策、效率和創意,我們更該學會少而美的藝術和科學。別再為無所事事而感到罪惡了,科學證據證明我們真的需要閒散,放空品質就和睡眠品質一樣重要,適當的放空在某種程度上,可謂有病治病、無病強身的良藥!

本文為《閒散的藝術與科學:從腦神經科學的角度看放空為什麼會讓我們更有創意?》Autopilot: The Art & Science of Doing Nothing)推薦序。

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

0
0

文字

分享

0
0
0
創意藏在夢裡?引導夢境助你突破創作瓶頸,解決生活難題——《我們為何會做夢》
PanSci_96
・2024/11/03 ・2262字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

從惡夢到創意靈感的奇妙旅程

1987 年,美國塔夫茨大學醫學院(TuftsUniversitySchoolofMedicine)的恩尼斯特・哈特曼(ErnestHartmann)帶領了一項深入研究,比較了十二名終身受惡夢所擾的人、十二名夢境生動的人,和十二名既非惡夢受害者也不是夢境生動的人。每位受試者均接受了結構式訪談、心理測驗和其他措施,以評估他們的性格。研究人員發現,受惡夢困擾的人比起其他兩組受試者,具有更強烈的藝術和創作傾向。換言之,在夢中想像邪惡或危險力量的心智,清醒時也可用其豐富的想像力發揮創意。

惡夢曾為許多知名作家的作品提供靈感。聞名全球的恐怖小說作家史蒂芬・金(StephenKing)在飛機上睡著,夢見了一名瘋狂女子囚禁並殘害了她最喜愛的作家,結果成了《戰慄遊戲》(Misery)一書的靈感來源。

《鬼店》(TheShining)的構思也來自於一個夢。史蒂芬・金和妻子是一山中度假飯店僅有的兩位客人,當時飯店由於季節即將關閉。他在夜裡夢見自己三歲的兒子尖叫著跑過大廳,被消防水管追趕。他從惡夢中驚醒,滿頭大汗。史蒂芬・金回憶,當時他點了一支菸,望向窗外:「菸抽完時,這本書的架構已經在我的腦海裡成形。」

傑克·尼克遜(Jack Nicholson)名場面之一,即出自於《鬼店》(TheShining)。圖/wikimedia

我們如何看待法國和其他處的史前洞穴壁畫及其他古代文物?世界各地所描繪的許多生物,都是人獸混合的動物形象,使得考古學家不禁心想,這些奇特的圖像是否可能是受到了夢境的啟發?惡夢既是人最容易記住的夢境,這些會不會是最早對惡夢的藝術描繪?我同意此種看法。我們有理由認為,說故事本身也許源自於分享夢和惡夢的渴望。

-----廣告,請繼續往下閱讀-----

如何引導夢境來激發創意?

古埃及人建造了睡眠神廟,讓人可以在此處睡覺,希望能誘發夢境,幫助他們治癒疾病或做出重要決定。古希臘人也會去特殊的神殿祈禱,希望做一個能解決問題的夢。希臘人稱此作法為「孵夢」。現今研究顯示,孵夢不僅僅是建立在信仰上的古老方法,它背後有真正的科學依據。

研究人員發現,做夢的人可以透過暗示來影響夢境發展。雖說這不是萬無一失的過程,但他們發現,光是表達你想夢見某個人或特定主題的意圖,通常就能將夢境推向此方向。透過此種方式,我們也許能引導自己的夢境,來幫助激發創意、思考社交難題和考慮重大決定。哈佛大學夢境心理學家芭瑞特要求她的學生在睡前十五分鐘思考一個情感相關的問題。結果,半數學生表示,他們做了與此問題有關的夢。

由於夢境如此視覺化,所以,入睡時在腦海裡設想某個人、想法、地點或問題,將有助於你孵夢成功的機率。正如我們在關於惡夢的章節中所了解,我們可以運用意象預演療法改寫反覆出現的惡夢,重新編排夢境情節,使其變得無害,甚至給它更好的結局。這種方法聽來雖然簡單,但相信你也記得,研究也證明此法常常能成功幫助人們擺脫惡夢。孵夢也一樣,聽來雖像是一廂情願的想法,但嚴謹的研究已證實了此種方法引導夢境的效用。

入睡時設想特定情境有助於引導夢境,研究證實了這種方法的效用。 圖/unsplash

MIT 前沿科技助力夢境設計

麻省理工學院媒體實驗室(MediaLab)的研究人員,一直致力於開發睡眠和夢境設計技術,希望藉此大幅提升創造力。研究裝置會感知受試者進入睡眠的情況,並提供口頭提示,詢問受試對象在想什麼,然後記錄對方的反應。如我們將在第8章所見,現今還有其他方法可利用感官來設計夢境內容。

-----廣告,請繼續往下閱讀-----

正如我們探討如何減輕惡夢時的方法,你也可以在紙上寫下自己的意圖,放在床邊,或將希望夢見的事物相關圖片、物件放在床邊。這不僅僅是某種象徵儀式,而是人們見證能啟發他們夢境的有效方法,就好比我們將原料放進鍋裡,等待夢境以全新、意想不到的方式將它們混合。

當解決方案能在腦海以視覺呈現時,孵夢最容易成功,原因是視覺皮質在快速動眼睡眠期間十分活躍。睡前請回顧一下你想夢見的問題或主題,想像自己夢見了這個問題後醒來,然後在床邊的紙上寫下夢境。

芭瑞特的學生選擇了學術、醫療和個人方面的問題,並記錄哪些夢境為他們的問題提供了潛在的解決辦法。其中一名學生搬到了一間較小的公寓,無法找到不顯雜亂的家具擺放方式,結果他夢見將五斗櫃搬到客廳,這名學生實際嘗試了一下,果真有效。另一名學生在選擇麻州或其他地方的學術課程時陷入兩難,他夢見自己乘坐的飛機需要緊急降落,夢裡飛行員說降落在麻州太過危險,做夢的學生一想到這個夢,便意識到了選擇其他地方課程的決定。

即便不記得自己的夢,它們也能影響你清醒時的想法。你也許會突然靈光一閃、腦海瞬間蹦出想法或沒來由地想到解決辦法,這些靈感很可能來自於我們的夢境。不論記不記得,我們每晚都會做夢,而我們的夢夜夜都在為我們從事創意工作。

-----廣告,請繼續往下閱讀-----

——本文摘自《我們為何會做夢:睡夢中的大腦如何激發創造力,以及更好地改善清醒時的生活》,2024 年 11 月,悅知文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。