Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

大家都來學程式=提升台灣「軟」實力?別讓軟體人才都成靠 X 工程師

活躍星系核_96
・2017/09/17 ・4070字 ・閱讀時間約 8 分鐘 ・SR值 495 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/Ming|曾經夢想走在文學的道路上,成為一個文人,卻意外撞進理工的世界,最後竟成了軟韌體工程師,但依舊對於自然科學保有好奇心,對社會及環境依舊關心,期望能將工程師的世界與普羅大眾的搭上軌,拉近彼此陌生的距離。

近幾年學程式的風潮盛行,好像不學程式就落伍似的。坊間各種電腦補習班林立、政府也大力推動,甚至連國中、小都要開始推行程式教育;彷彿不會程式,我們就會被這個大環境給淘汰。從大數據、雲端網路再到工業4.0,整個城市似乎都在程式的浪潮當中。矽谷最搶手!IT 新兵訓練營 程式設計夯「客製」課程難度 文學系也學大數據「高教深耕」教部規劃50%大學生學程式設計資訊教育從小紮根!「不插電」學習法 幼稚園學程式語言」……,這樣的新聞資訊,在這幾年來多的可怕,但我們靜下來思考與分析,這樣的熱潮與推行真的能改變我們電腦科學素質與精神嗎?

台灣的電腦科學素質好嗎?好像也還不錯吧!曾經號稱「電腦王國 」,目前市面上也有幾家國際知名的電腦大廠,例如:宏碁、華碩……等,在電腦硬體產業的發展,倒也頗有幾分樣子,但電腦科學,只有硬體嗎?那軟體上的發展呢?咦!好像沒甚麼印象!似乎不太清楚,到底電腦科學的靈魂「軟體」我們發展的如何呢?

台灣的電腦科學發展史

我們可以先回過頭來,快速地回顧一下台灣的電腦科學發展史。電腦於 1940 年代被發明,於 1960 年代開始商業普及,而台灣也在同一個時期將電腦引入台灣。 1970 年代,由有「中文電腦之父」之稱的朱邦復先生創造了倉頡輸入法,這是兩岸三地最早普及的型碼輸入法。而在 1983 年更完成了直到了今天,我們仍然可能會使用的—「大五碼」(Big5)。

簡單來說「大五碼」就是電腦編碼裏頭,專門收錄中文的字元集。英文最常見的就是ASCII碼,但英文只有26個字母,再加上一些符號,所以編碼很簡單;相比之下,中文字的編碼複雜太多了,所以早期的中文系統很亂,各家有各家的編碼方式,造成很多應用軟體是不能互通,這個概念很像現在微軟和蘋果的作業系統常常軟體不互通的感覺。因此在台灣能在電腦發展初期,就發展出一套統一的編碼方式,其實是一件很厲害的事情!

-----廣告,請繼續往下閱讀-----

另外,宏碁於 1981 年發表了「小教授一號」,這是一款針對 Zilog Z80 微處理器所開發的訓練用電腦,也因為我們很早開始了電腦科學的發展,所以台灣在電腦科學一直存在一定的影響力。

時間到了 1990 年代,那是台灣大補帖盛行的年代,也是台灣電腦軟體最鼎盛的年代,在台北光華商場你很容易可以看到電腦相關的書籍,當時電腦旋風剛席捲全台,電腦遊戲盜版採用大補帖的情況非常嚴重(這當然不是好事,但也代表很夯)。

這也正是台灣軟體最興盛的時期,當時還創立了幾款列為中文世界史上經典的 RPG 遊戲,例如大名鼎鼎的「仙劍奇俠傳」,就是那個後來被寫成小說、改編成電視劇以及不斷再版的「仙劍」,在當時出現的還有另一個並駕齊驅的「軒轅劍系列」,後來也是被中國大陸改編、拍成電視劇。在當時的電腦還是 DOS 作業系統的年代,台灣的遊戲軟體實力可以稱得上是中文世界的霸主。

中文世界史上經典的RPG遊戲,大名鼎鼎的「仙劍奇俠傳」。圖/作者電腦遊戲擷取

而在 1998 年的時候,一隻由台灣開發名叫「CIH」的電腦病毒冒了出來,且在後來的幾年更造成全球無數的電腦遭受感染,引發一場軒然大波。CIH 病毒,因為被設定在 4 月 26 日,剛好與車諾比核災的時間相同,所以也被稱為「車諾比病毒」。

-----廣告,請繼續往下閱讀-----
source:Wikimedia

這隻病毒可以說是台灣軟體實力巔峰的證明,當年由台灣大同工學院(現在的大同大學)資工系的學生陳盈豪所開發,當初開發的目的只是單純想戳破,那時很多防毒軟體都號稱可以百分百防毒的謊言(就是這麼單純的原因),卻因為陰錯陽差的意外讓這款病毒造成全球大感染。這隻病毒最厲害的地方,在於他除了能破壞電腦硬碟,也會造成資料的毀壞、還能攻擊電腦的 BIOS (可以把 BIOS 想成電腦的心臟),造成整台電腦根本開不了機,必須更換晶片才行。這是史上第一隻會因為讓電腦中毒,而害得電腦需要維修硬體的電腦病毒,你能想像嗎?因為軟體寫出來的幾行程式碼,造成整台電腦幾乎報銷,如果沒有對整個電腦系統軟、硬體架構有通透的了解,是不可能辦到的

電腦科學的發展需要怎樣的環境?

從上面我們可以看到,台灣在電腦軟體科學上的發展曾是如此的輝煌,不僅僅是電腦硬體的成功才造就的所謂的「電腦王國」,軟體也曾經有過一片天。但為何在最近的十幾年間,除了硬體產業能代表科技業,台灣的軟體業似乎就只能沾著科技業的邊緣、載浮載沉;為何電腦科學發展到了今天,似乎開始越來越無力,還成了必須由政策來大力推廣的情境呢?

如果電腦科學的興盛,是一棵欣欣向榮的大樹,電腦硬體就是樹木的主幹和樹枝,軟體技術就是那些茂盛的葉子,而開花結果就像是能夠銷售的產品;那現在我們的這棵電腦科學樹,似乎開不了花、結不了果、葉子似乎也長得不太好,這到底是什麼原因造成的呢?我們也許應該集中探討關於培養軟體所需要的土壤到底是什麼,讓我們回到整個問題最根本的因素:是什麼樣的環境才能造就興盛的軟體科技產業,是什麼樣的因素才能驅使人們創造出舉世驚人的軟體作品?

Google首頁搜尋欄位輸入「do a barrel roll」,會看到網頁開始翻轉。圖/Google 網站擷取

不知道大家是否有注意到目前最大的搜尋平台「Google」,常常會在特定的節日動不動就搞一堆有的沒的「驚喜」,有的時候是有趣的動畫,偶爾還會伴隨簡單的遊戲。除此之外,Google 也在他的搜尋引擎藏著幾個「彩蛋」。比如說,現在請在你的 Google 首頁搜尋欄位輸入「do a barrel roll」,應該會看到你的網頁開始翻轉,這是因為任天堂有一款遊戲「星戰火狐 64」,其中一個技能是快按 Z 或 R 兩下,就可以翻滾的快速飛轉彈開子彈,所以你如果搜尋「 Z or R twice」效果其實是一樣的!「Zerg Rush」是「星海爭霸」裏頭一種快速複製去攻擊敵人的一種蟲,因此在首頁搜尋欄輸入「Zerg Rush」,你會看到你的網頁開始被吃掉了。如果你於圖片搜尋欄位輸入「Atari Breakout」,則會出現一個復古的打磚塊遊戲。

-----廣告,請繼續往下閱讀-----
圖片搜尋欄位輸入「Atari Breakout」,會出現一個復古的打磚塊遊戲。圖/Google 網站擷取

到底 Google 搞這些有的沒的,有什麼目的嗎?如果你仔細探究,你會發現答案竟然只是因為這樣很好玩,這看起來也許很幼稚的原因。難道你認為只有 Google 才做這種事嗎?只有現在才這樣做嗎?不!大名鼎鼎的微軟也做過這種事,最著名的彩蛋,莫過於微軟的 Microsoft Excel 2000 隱藏了一個賽車遊戲 Dev Hunter,除此之外,我們現在常用的壓縮軟體「WinRAR」裏頭的也藏有也許大家認為毫無意義的彩蛋(如下圖,如在「關於WinRAR」的那本書,給他點兩下,那本書會掉下去)。做這些事情的基本原因就是因為很有趣,很好玩,也是許多軟體設計師的起心動念,台灣 90 年代的軟體啟蒙,也是這樣開始的。

圖 / 作者提供

我們再來探討本文一開始要思索的問題:怎樣才是提升電腦科學的環境,什麼才是培養軟體人才的重要養分呢?從上述這些例子中,我們可以歸納觀察出,不管是目前國外軟體人、還是早期國內的軟體人,這些人之所以會投入軟體的開發、熱衷於電腦科學,不外乎電腦是一個很有趣的東西。就是因為很好玩,不管你是想開發它來玩遊戲,或是拿來開發病毒(當然好孩子不應該這樣),最根本的驅使因素,都是那最原始的頑皮與童趣的吸引力,電腦就是一個好玩的東西!因為很好玩、很有趣,所以才有這麼多人願意投入,也因為這樣才會創造出有價值並吸引人的產品。

今天我們的新政策,竟然開始要把它納入必要的課程,而又讓許多非電腦資訊背景的老師,教我們的學生如何寫程式,如何學習電腦科學,當成我們八股考試的一環,填鴨教育的一套課程,這樣電腦科學還能在我們的環境下,保有它那最初「有趣」的動機與本質嗎?這樣的推行,到底是在幫我們「提升」軟體環境,還是摧毀我們的軟體人才呢?

要讓我們的軟體土壤繼續發芽,請先保有你的赤子之心吧!圖/By PublicDomainPictures @ Pixabay

們無法輕易改變政策,但我們可以先改變自己,電腦科學最讓人流連忘返之處,就是可以自由自在地發揮想像力與創造力,利用「程式」把內心的想法創作成作品,而且這個作品是可以直接與大眾互動的,當人們無法自由發揮想像力和創造力的時候,即便學會寫程式,也就只是拿到一個無用的工具,這樣的培養並不會造就更好的軟體人才,也不會提升我們的軟體實力,不論你是希望培養孩子擁有程式語言能力的家長,還是正在教授資訊相關科學的老師,又或者只是自己想要成為程式設計師的追夢人,都請先讓自己變成一個有趣的人,改變自己以及影響你周圍的人,要讓我們的軟體土壤繼續發芽,請先保有你的赤子之心吧!

-----廣告,請繼續往下閱讀-----

參考資料

 

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
從離子阱到拓樸量子位元:量子計算的未來還有多少可能?
PanSci_96
・2024/10/13 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦的新戰場:Atom Computing 的崛起

量子電腦的發展一直以來被視為科技的終極挑戰,從 Google 的量子霸權,到 IBM 不斷推進的Condor 超導電腦,業界翹首以待。然而,截至 2024 年,量子計算領域出現了一個新的變數。Atom Computing 一家美國新興公司,推出了擁有 1,180 個量子位元的量子電腦,不僅超越了IBM神鷹量子電腦的 1,121 個量子位元,甚至德國達姆施塔特工業大學也宣布開發出 1,305 個量子位元的超級電腦。

這些新興勢力的出現,不僅在位元數量上超越了 Google 與 IBM 的現有設備,更顛覆了量子電腦技術路線的既有認知。與以往依賴超導技術的量子電腦不同,Atom Computing 與達姆施塔特大學採用了「離子阱」( Ion Traps ) 技術,利用雷射與電場操控離子,形成穩定且壽命較長的量子位元。這是否意味著,超導量子電腦將不再是量子計算的唯一未來?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

離子阱技術:量子計算的新契機?

為了理解這一新興技術的潛力,我們首先需要認識量子位元的製作原理。超導量子電腦運用電子在超低溫下的行為,來實現穩定的量子狀態。然而,隨著量子位元數量增加,超導系統面臨物理尺寸與能耗的挑戰。這也是為何離子阱技術逐漸受到重視。

離子阱技術是透過電場陷阱將帶電的離子懸浮在空中,並利用雷射操控其量子態。這種技術擁有更高的穩定性,且能在更長時間內維持量子位元的疊加態。然而,由於需要超低溫、精確的電場控制以及真空環境,離子阱技術在商業應用中的成本仍然偏高,但它的潛力不容忽視。

-----廣告,請繼續往下閱讀-----

中性原子與光學魔法:更進一步的量子技術

除了離子阱技術,Atom Computing 與德國團隊則採用另一種不同的策略——使用中性原子來取代離子。中性原子不帶電,這意味著無法直接依賴電場控制,那它們如何操控?答案在於光學技術。他們運用光鑷(光學鑷子)和雷射致冷技術,用光來束縛和操控中性原子。光鑷是 2018 年諾貝爾物理學獎的技術,利用雷射的動量來推動和控制微小的粒子。

在這種方法下,雷射不僅能束縛原子,還能通過致冷技術將原子的運動降到極低,使得量子態更穩定。這種新興技術雖然仍處於實驗階段,但已顯示出其在量子計算中的巨大潛力。

量子點與鑽石空缺:人造原子的力量

另一個在量子計算領域獲得關注的技術是「量子點」( Quantum Dots )。量子點被視為人造原子,科學家透過在矽晶體等半導體材料中束縛電子,並利用微波來控制其自旋狀態。這項技術的最大優勢是半導體產業已經相當成熟,因此如果量子點技術能成功商業化,其普及速度將非常快速。即便如此,量子點技術仍需要在低溫環境下運作,且面臨如何克服材料內部雜訊干擾的挑戰。

與此類似的技術還包括「鑽石空缺」( Diamond Vacancies ),它透過在人造鑽石中替換部分碳原子,以氮原子取代,並使用雷射來激發這些空缺結構。鑽石空缺技術的最大優點是它不需要極低溫,能在室溫下運作,這使得它在未來的量子計算應用中具有很大的潛力。

-----廣告,請繼續往下閱讀-----
量子電腦模擬的原子核 。圖/wikimedia

二維世界的探索:拓樸量子位元

隨著三維物理的極限逐漸顯現,科學家們將目光投向了二維世界,探索其中的量子計算可能性。微軟與貝爾實驗室都在研究的「拓樸量子位元」( Topological Qubits ) 便是一個例子。拓樸量子位元基於一種稱為「任意子」( Anyon ) 的準粒子運作,這種粒子只存在於二維空間中,並且擁有無視傳統量子力學法則的特性。

拓樸量子位元透過操控粒子的空間幾何軌跡來實現運算,這種軌跡在二維空間中表現出穩定且高度容錯的特性。因此,與其他量子位元相比,拓樸量子位元的穩定性與耐久性更佳。然而,這項技術仍處於實驗階段,距離實際應用還有一段路要走。

量子電腦的未來:量子糾錯與穩定性挑戰

儘管量子電腦擁有極大的潛力,但其目前仍面臨著許多挑戰,最重要的便是量子位元之間的「保真度」( Fidelity ) 與「量子糾錯」( Quantum Error Correction ) 技術。現代的量子電腦對外界干擾極為敏感,甚至微小的環境變化都可能導致計算結果的錯誤。因此,提升量子位元的精確率,並開發有效的糾錯技術,是量子計算未來必須跨越的關鍵。

以 Google 為例,他們在 2023 年發布的研究顯示,通過增加量子位元數量並使用「表面碼」( Surface Code ) 技術,他們成功降低了量子計算中的錯誤率。這項進展意味著量子糾錯技術正逐步成為現實,然而,大規模商業化的量子電腦仍需更多時間才能問世。

-----廣告,請繼續往下閱讀-----

誰將引領量子計算的未來?

量子電腦的發展方向多樣,從超導量子電腦、離子阱、中性原子、量子點、鑽石空缺,到拓樸量子位元,每一種技術都有其獨特的優勢與挑戰。誰能成為量子計算的最終霸主,仍然是未解之謎。或許在不遠的將來,量子電腦將以我們無法想像的速度改變世界,重新定義我們對計算、數據與科技的理解。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。