0

0
0

文字

分享

0
0
0

想變成《攻殼機動隊》裡的機器人?抱歉,電腦還無法處理你的複雜大腦

林希陶_96
・2017/08/22 ・2840字 ・閱讀時間約 5 分鐘 ・SR值 522 ・七年級

科學之神啊!請給我一顆機器大腦吧!

想當初《攻殼機動隊》 1995 年在台灣上市,對於我的幼小心靈造成了多麼巨大的衝擊。我到現在還將書留在身邊,舊版的書只有前面七話,比新版的書薄了許多。當時看完書的第一個感想是:「如果有這樣的世界還真好,接一根電線就可以將知識都傳進來了,YA,不用唸書了,大家現在念得要死要活的是怎麼樣。」這是深受聯考荼毒的考生,最深刻的感受。

攻殼機動隊書本。左為新版,右為舊版。

不過經過了二十年的生命洗禮,現在再來思考《攻殼機動隊》所建構的科幻世界,就會知道現今的社會要變成書裡那樣,還不太可能。首先,人腦平均有 860 億個神經元1,這些神經元還需互有連結,一根都不能接錯,才有可能用電腦的方式完全模擬人腦。

光這樣的工程想來就不太可行2,更不用說大腦裡面的神經傳導無時無刻都在發生,這樣的景象,在電腦上仍否完全模擬,還有很大的疑問。除非我們能完全摸透大腦運作的模式,知道所有的神經衝動為何會開始、為何會結束,以及它們的關係是什麼?這還有賴科學家們持續努力。

午餐的選擇太多?機器人可沒這種煩惱

接著《攻殼機動隊》中,是把機器人(或者說生化人)等同於人,所有的運作都可以跟人類一樣。但如果接受機器人是由電腦所驅動的話,就必須先接受要先有指令,才會有成果。如果沒有指令(或內建的程式運作),就不可能會有結果產出。我覺得這是人類與機器人最大的不同。

人類最可貴的地方,在於前額葉的功能。前額葉是一個複雜的總和能力,統稱為「執行能力」(Executive Function)。

執行功能是一組複雜的後設認知能力,其面向包含抽象能力、問題解決能力、計畫能力、組織能力、目標設定能力、工作記憶、抑制能力、自我監控能力、注意力控制、起始能力、預估能力、創造力等等。也就是說,前額葉告訴我們自己要做什麼事情,我們進入辦公室後,會自己規劃一天的行程,知道哪一件事情先做、哪一件事情後做,這些都屬於執行功能。前額葉就像是總司令的角色,協調腦中各個部位做出合宜的反應。就像是軍艦的艦長室一般,合適地發出適當的命令,船隻才知道要怎麼往正確的方向行動。

前額葉就像是總司令的角色,協調腦中各個部位做出合宜的反應。圖 /By jawavs @ flickr, CC BY 2.0

另外,前額葉最特別的地方在於,它會隨時改變主意。像是我們下班之後,本來計畫要去吃牛肉麵的,但是走到一半,你突然回想起上週才剛吃過牛肉麵,今天應該吃點不一樣的東西。停在紅路燈前,聞到煎餃飄出的香味、煎餃出爐吱吱作響的聲音、看到爐子飄出的煙霧,你突然覺得今天可以不吃牛肉麵了,改吃知名店家的煎餃好了,就立刻指揮自己的身體調頭,往煎餃店出發。

這是現今機械人不可能做到的事,因為他只會按照既定的指令行事,不會自己突然改變命令,自己又指示自己往別的地方前進。(當然,根據葛詹尼加(Michael S. Gazzaniga)的研究與看法,我們的大腦會有統一的感覺,是因為左腦有一個解譯器,他會自動幫我們行為加上合理的說法,讓我們可以解釋這些突如其來的行為1。)

鏡像神經元:電腦難以複製的同理心來源

如果再微觀一點看,人類跟機器人最大的不同,在於人類有鏡像神經元。

有了這個神經元,就能形成心智推理能力(Theory of mind)[註],也可視為同理心的起源。看到別人在受苦,自己大腦裡的鏡像神經元就會動作,讓身體的各部位也運作起來,並模擬起受苦的感受。

這樣的能力,大約四到五歲就會發展出來,才有可能適度的理解別人,建立合宜的社交技巧。這是一個非常複雜的歷程,我實在不知道如果真要用程式驅動機器人的話,應該要怎麼寫才好。因為我們的模仿不只是表面的感受而已,而是連肌肉、內分泌、大腦中的神經衝動都會同時運作;唯有自己感同身受,我們才能真實地理解他人,對方也能迅速的接收這樣的訊息,進而使人與人之間聯繫在一起。這絕對是很細緻的,不是設定一兩個程式就能辦到的。

機器人要能做到這樣,肯定還有很長的路要走。(沒錯,我們可以說機器人就是「Mg U Cu Li Zn」!這裡另外介紹一部廣告,大家就可以知道人類的感情變化,不是三兩下就能模仿出來的。)

機器人缺乏鏡像神經元,沒有同理心。圖 /changehali @ flickr, CC BY 2.0

別擔心被機器人超越,至少我們認識自己

《攻殼機動隊》中一個很重要的主線,是在說明與傀儡師之間的鬥智。這裡面最神奇的一件事,就是傀儡師可以靠著一根傳輸線就將本體傳送到別的地方去,甚至他可以躲在資訊的大海之中,不被他人發現。故事中的設定,最後是將傀儡師定位為「失控的程式」,他因為發展出「自我意識」,而必須被追緝到案。

若以發展心理學的角度來看,要發展出自我意識,要先能認出自己的樣貌,才能知道自己是誰。

在 1970 年,知名的心理學家小蓋洛普(Gordon Gallup Jr.)發明出一種別緻的測量自我意識的方式:「鏡子測試」(Mirror test):在動物麻醉之後,在他們的臉上點上一個紅點,等到他們醒來,再將該動物放在鏡子前面。如果動物可以從鏡子中,認出自己的臉上多出一個紅點,就表示他們可以認出自己3。目前只有少數物種可以通過該測試,如人類、大型類人猿(黑猩猩、大猩猩)、鯨魚、海豚、亞洲象等等。幼兒要大約 20 至 24 個月才能理解該測試,也才逐步發展出自我概念。

科學家會利用「鏡子測驗」來檢視動物的自我認知,僅有少數的動物會對鏡中的自我有反應。圖/ By Kadres @Pixabay

因此,若要瞭解機器人(程式)是否有自我意識,只要能通過該測試就算數。但回顧過去的研究,目前只有耶魯大學發表過一個案例4(發表的地方是會議論文,並非正式的審查期刊之上)。所以,大家也不擔心的太早,以為家門口前等著一堆機器人隨時要叛變。他們最應該學會的是:主動告訴你螢幕髒了,需要幫他們擦一擦。如果他們真能辦到,這才是人類與機器人爭鬥的開始。

總而言之,《攻殼機動隊》雖然是一部科幻神作,啟發了後世無數作品,但距離人類真實世界,絕不能以道里計。我們只要不停地發揮人類的優勢,「不時騰出時間,停下一切好好思考」。或許,未來世界人類仍有許多生存空間。

  • 註:人類天生有能力瞭解其他人的心裡有不同的欲望、企圖、信念與心智狀態,還有能力建立具有某種程度的理論來解釋那些欲望、企圖、信念與心智狀態為何。

參考資料

  1. 鍾沛君(譯)(2013)。我們真的有自由意志嗎?意識、抉擇與背後的大腦科學(Michael S. Gazzaniga)。台北:貓頭鷹。
  2. 系統神經科學的觀點─腦袋裡到底裝些什麼東西? (2017/04/27)。科學月刊。
  3. Gallup, G. G., Jr (1970). Chimpanzees: Self-recognition. Science, 167, 86-87. DOI: 10.1126/science.167.3914.86
  4. Gold and B. Scassellati (2007). A Bayesian Robot that Distinguishes “Self” from “Other”. In: Proceedings of the 29th Annual Meeting of the Cognitive Science Society (CogSci2007). Nashville, Tennessee.
文章難易度
林希陶_96
80 篇文章 ・ 51 位粉絲
作者為臨床心理師,專長為臨床兒童心理病理、臨床兒童心理衡鑑、臨床兒童心理治療與親子教養諮詢。近來因生養雙胞胎,致力於嬰幼兒相關教養研究,並將科學育兒的經驗,集結為《心理師爸爸的心手育嬰筆記》。與許正典醫師合著有《125遊戲,提升孩子專注力》(1)~(6)、《99連連看遊戲,把專心變有趣》、《99迷宮遊戲,把專心變有趣》。並主持FB專頁:林希陶臨床心理師及部落格:暗香浮動月黃昏。

0

2
1

文字

分享

0
2
1
從遺傳基因能發現人類起源?在我們 DNA 上銘刻的故事!——《我們源自何方?》
馬可孛羅_96
・2023/03/17 ・2580字 ・閱讀時間約 5 分鐘

遺傳基因如何記錄歷史

要理解遺傳學為何能協助我們探究人類的過去,必須了解基因組(我們由雙親繼承來的所有遺傳密碼)如何紀錄資訊。

一九五三年,法蘭西斯.克里克(Francis Crick)、羅莎琳.富蘭克林(Rosalind Franklin)、詹姆斯.華生(James Watson)和莫利斯.威爾金斯(Maurice Wilkins)證明,基因組是由大約三十億個化學構件組成的雙長鏈(總共有六十億個單元)。

我們可以把這些構件想成字母,包括腺嘌呤(adenine,A)、胞嘧啶(cytosine,C)、鳥糞嘌呤(guanine,G)和胸腺嘧啶(thymine,T)1。我們所謂的「基因」是由一段段短鏈組成,每段的長度通常是一千個字母左右。

基因的功能是模板,用來合成執行細胞內各項工作的蛋白質。基因之間是非編碼 DNA ,有時稱為垃圾 DNA (junk DNA)。在 DNA 片段上進行化學反應的機器能讀取這些字母指令,在反應沿 DNA 序列行進時放射閃光。

A、C、G、T 等字母進行化學反應時放射的色彩各不相同,所以字母序列能用攝影機掃描後輸入到電腦。

  

現代人演化年表。圖/《我們源自何方?》

絕大多數科學家只留意基因包含的生物訊息,但 DNA 序列之間偶爾也會有些差異。這些差異源自基因組過去複製時出現在某些時刻的隨機誤差(稱為突變〔mutation〕)。這些差異的發生機率大約是一千分之一,基因和垃圾 DNA 都可能出現。遺傳學家探究過去時要研究的正是這些差異。

在這大約三十億個字母中,無關的基因組之間通常有大約三百萬個差異。兩個基因組的片段之間差異密度越高,這兩個片段的共同祖先年代就越久遠,因為突變隨時間增加的速率大約是固定的。所以差異密度就像生物碼表,紀錄了以往發生的重要事件距離現在大約多久。

基因組序列差異/《我們源自何方?》

粒線體夏娃

透過遺傳學研究過往,最令人驚奇的應用途徑是粒線體 DNA 。粒線體 DNA 是基因組中非常微小的一部分(大約只有二十萬分之一),透過母親、女兒和孫女等母系親屬代代相傳。一九八七年,艾倫.威爾森(Allan Wilson)等人採集世界各地多個人種的粒線體 DNA ,定序出數百個字母。他們比較這些序列之間的突變差異,建構母系親屬系統樹。

他們發現,系統樹中最長的分支(也就是最早脫離主幹的分支)現在只出現在撒哈拉以南的非洲人後裔身上,表示現代人的祖先生活在非洲。相反地,現在非洲以外的人全都源自系統樹中年代較晚的分支。

依據一九八○和一九九○年代發現的考古、遺傳和骨骼證據下提出的主流整合結果中,這項發現成為十分重要的部分,支持現代人的祖先數十萬年前曾經生活在非洲的理論。

威爾森等人依據突變累積速率,估算出所有分支的共同祖先中,距離現在最近的粒線體夏娃(Mitochondrial Eve)大約生活在二十萬年前。目前最可靠的估計年代是十六萬年前左右,但我們必須了解,這個數據和大多數遺傳年代一樣不大精確,因為人類突變的實際發生速率並不確定。

科學家藉由基因突變率估計人類共同的祖先約出現在二十萬年前。圖/envatoelements

共同祖先年代距離現在如此之近,相當令人興奮,因為這打破了多區域說(multiregional hypothesis)。根據這個假說,生活在非洲和歐亞大陸許多地區的現代人類大多源自直立人(Homo erectus)早年的擴散(距今至少一百八十萬年)。直立人能製作粗糙的石造工具,腦容量大約是現代人類的三分之二。

多區域說則指出,直立人的後代在非洲和歐亞大陸各地分別演化,形成現在生活在相同地區的族群,因此多區域說預測,現代人類身上有些粒線體 DNA 序列在兩百萬年前左右分化開來,也正是直立人擴散的年代。

人類擴散與文化演變

然而,遺傳資料完全不吻合這個預測。所有現代人類的共同粒線體 DNA 祖先距今只有兩百萬年的十分之一,代表現在的人類大多源自年代晚近許多的擴散,從非洲前往世界各地。

人類學證據指出當時可能的狀況。最古老的「解剖上具有現代人類相同特徵」的人類骨骼(也就是在球狀顱骨和其他表徵方面位於所有現代人類的變異範圍內)年代約為二十∼三十萬年前,而且全部出自非洲。但在非洲和近東地區外,解剖學上的現代人目前還沒有年代早於十萬年前的可信證據,年代早於五萬年前的證據也相當有限。

石造工具種類的考古證據也指出五萬年前開始出現重大改變,西歐亞大陸考古學家稱這個時期為舊石器時代晚期(Upper Paleolithic),非洲考古學家則稱之為石器時代晚期(Later Stone Age)。

這段時期之後,製造石造工具的技術大幅躍進,此後每幾千年改變風格一次,改變步調比冰河還慢。這段時期的人類也開始留下更多展現美學與精神生活的文物:鴕鳥蛋殼串珠、拋光的石質手鐲、以紅色氧化鐵製作的身體塗料,以及全世界最早的具象藝術。

目前已知全世界最古老的小雕像是長毛象牙刻成的獅子人(lionman)雕像,發現於德國的霍倫斯坦—施泰德洞穴(Hohlenstein-Stadel),年代約為四萬年前。法國蕭維岩洞(Chauvet Cave)中的前冰川時期動物畫的年代約為三萬年前,現在仍被認為是傑出的藝術作品。

尼安德塔的骨骼。圖/wikipedia

從大約五萬年前開始,考古紀錄變化大幅加快,同時也反映在族群變化上。尼安德塔人大約四十萬年前出現在歐洲,由於骨骼形狀不在現代人類變異範圍內,所以被視為「古代」人類,於四萬一千年∼三萬九千年前在西歐滅絕,此時現代人類到達西歐只有數千年。

歐亞大陸其他地方也有族群反轉現象,非洲南部也是如此,證據包括某些地點遭到棄置以及石器時代晚期文化突然出現。

這些變化最自然的解釋是解剖上具有現代人類相同特徵的某個人類族群擴散,這個族群的祖先包括擁有先進新文化的「粒線體夏娃」,並且取代了原先居住在這些地方的人類。

——本文摘自《我們源自何方?:古代DNA革命解構人類的起源與未來》,2023 年 3 月,馬可孛羅出版,未經同意請勿轉載。

馬可孛羅_96
22 篇文章 ・ 16 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。

1

2
0

文字

分享

1
2
0
狗用來標記地盤,老鼠用來求偶,但人類很可能沒有?神奇的化學分子費洛蒙——《完美歐姆蛋的化學》
日出出版
・2023/01/01 ・1841字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

可以傳染的「興奮感」:費洛蒙

費洛蒙是一種非常大的分子,會從動物體內散發出來並影響其他動物身體的行為。

這種物質當初是在 1959 年由德國生物化學家阿道夫.布特南特(Adolf Butenandt)發現, 這位科學家在二十年前就因為首次合成出性激素而獲得諾貝爾化學獎,說他是化學界的搖滾巨星都還不足以形容他的貢獻。

阿道夫.布特南特首次合成出性激素。圖/wikipedia

他的研究發現,費洛蒙的功能和激素一樣,但是只對附近的相同物種個體有效。

舉例來說,如果動物 A 在動物 B 附近釋放出性費洛蒙,動物 B 的身體會吸收這些分子,整體行為也會受到影響。這其實代表動物 A 具有像丘比特的能力,只不過用的不是箭,而是分子。

基於以上的原因,費洛蒙有時會被稱為「環境激素」(eco-hormone),因為這類分子的運作方式就像是體外的激素。

和激素相同的是,費洛蒙有各式各樣的結構。有些分子非常小,有些則相當大,不過全都是揮發性分子,這表示分子在特定條件下會輕易蒸發。揮發性物種通常很好辨識,因為會帶有強烈的氣味(像是汽油或去光水)。

汽油帶有強烈的氣味。圖/pixabay

研究人員決定把這種分子命名為費洛蒙(pheromone),是因為字面上的意思是「轉移興奮感」,而這正是費洛蒙的功能。

動物間的費洛蒙功用

強大的費洛蒙分子可以傳送幾種不同主題的訊號給附近的同類,例如食物、安全狀況或者性。舉例來說,螞蟻會在巢穴和食物之間的路徑散發費洛蒙,來通知彼此食物來源在哪裡。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。就連雄鼠也會散發出性相關的費洛蒙來吸引雌鼠,同時也會導致附近的雄鼠變得更有攻擊性。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。圖/pixabay

那麼人類呢?

人也會散發出任何一種類型的性費洛蒙嗎?

出乎意料的,人類不會散發任何一種形式的性費洛蒙。不過我們自以為有費洛蒙的原因在這裡:1986年,溫尼弗雷德.卡特勒(Winnifred Cutler)發表的研究宣稱,她成功分離出第一種人類性費洛蒙。

在這項研究計畫中,她蒐集、冷凍並解凍來自幾位不同對象的性費洛蒙。一年之後,她將這些分子塗在許多女性受試者的上唇,接著便宣稱她觀察到和大自然的動物類似的結果。

事實上,卡特勒的研究完全是一派胡言。她根本沒有分離出人類性費洛蒙;而只是把奇怪的氣味塗在隨機受試對象的上唇,其中包括——請做好心理準備——腋下的汗水。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。圖/pixabay

直到今天,卡特勒的噁心科學研究還流傳在網路上的各個角落,這表示如果有人在 Google 上搜尋「人類性費洛蒙」,就會和得到一堆錯誤資訊。有些研究人員堅信我們總有一天會發現性費洛蒙,不過在這本書出版的當下,科學界尚未找到任何人類性費洛蒙。

一直以來有不少相關研究在執行和重複進行,也盡可能針對各種變數進行調整,而所有的研究團隊都得出相同的結論:二十一世紀的人類大概沒有性費洛蒙。

但人類有史以來就是這樣嗎?如果大多數的其他哺乳類都有性費洛蒙,包括兔子和山羊,為什麼我們沒有?

答案其實意外簡單:人類學會了溝通。

我們可以用語言(和蠟燭……還有性感內衣……)告訴伴侶我們有興趣滾床單,而雪貂則必須往理想交配對象的方向散發性分子。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

所有討論 1
日出出版
11 篇文章 ・ 5 位粉絲

0

3
4

文字

分享

0
3
4
真的能「感同身受」嗎?我感受到了你的感受——《我是誰》
啟示
・2022/11/11 ・2543字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

感同身受真的存在嗎?

有些人在看到卡爾.梅(Karl May)的小說拍成的電影裡溫尼圖(Winnetou)死去的那一刻掉下淚來;有些人為電影《油炸綠番茄》裡蘿絲(Roth)的死而哭;還有一些人在看到小說《哈利波特》裡鄧不利多(Dumbledore)教授被殺時流淚。

我們在看悲傷的電影或書的時候會哭,是因為我們設身處地去想像故事裡那些英雄們的感覺,彷彿他們的痛苦就是我們自己切身的痛苦一般;我們跟著笑,我們也為影片中的怪物和心理變態情節感到害怕,就好像他們威脅到了我們一樣。

我們在電影或書的時候會跟著劇情有情緒起伏,是因為我們設身處地去想像故事裡那些英雄們的感覺。圖/pixabay

這些是每個人都有過的經驗,但它們是如何產生的呢?為什麼我們能夠了解他人的感覺?為什麼我們會在電影院裡起雞皮疙瘩,雖然在那裡一點也不危險?為什麼他人的感覺會感染到我身上呢?

答案很簡單:我們能夠感同身受,是因為他人(在現實世界或電影裡)的感覺喚起了我們心中相同的感覺;而這很可能不僅存在於人類。

根據德瓦爾在麥迪森研究中心的觀察,母獼猴法恩的姊姊顯然也感覺到法恩的痛苦和恐懼。然而,即使能與他人「感同身受」或「心有戚戚焉」是如此理所當然,對科學界來說,直到近幾年,這仍是個完全無解的謎。令人驚訝的是,第一位提出具有科學說服力的學者,在其所屬的專業領域之外仍然鮮為人知。

腦部研究的佼佼者:賈科莫.里佐拉蒂

賈科莫.里佐拉蒂(Giacomo Rizzolatti)經常被人們和愛因斯坦相提並論:蓬亂的白髮、嘴上同樣蓄著的白鬍子,以及臉上狡黠的微笑。不過他們的相似處不僅止於外表。

賈科莫.里佐拉蒂。圖/Wikipedia

對許多腦部學者來說,這位活潑開朗的義大利人是學界裡的佼佼者;他將腦部研究推向一個新的層次。不過,他的研究領域並不是最熱門的。里佐拉蒂探究控制行為的神經細胞,即所謂的行為神經元,已經超過 20 年了。

這個比較無趣的領域,因為啟動行為的「運動皮質」始終被視為比較遲鈍的腦區。大部分的學者都想:如果我們能夠研究像語言、智力或感覺等複雜的領域,又何必對簡單的肢體動作感興趣呢?

看來似乎是如此。不過,情況在 1992 年有所轉變,而且這個轉變令大家都跌破眼鏡。里佐拉蒂工作的所在地帕瑪(Parma)是歐洲最古老的大學,位於城市邊緣的醫學院卻是個非常前衛的雪白色建築樓群。

1990 年代初期,里佐拉蒂身邊的腦部學者從事一項很不尋常的研究。他們知道,特定的行為具有「傳染」的效果,發笑、打哈欠、甚至談話者的身體姿勢,都能立刻引起對方的模仿。在某些猿猴也出現相同的現象,某些種類甚至以喜歡模仿聞名。

不過研究人員偏偏決定以一種一般來說不會模仿同伴的豬尾獼猴作為研究對象。里佐拉蒂和幾位較年輕的同事伽列賽(Gallese)、佛格西(Fogassi)和迪派勒吉諾(di Pellegrino),將電極接到一隻豬尾獼猴的腦部,然後把一粒核桃放在地上,並觀察當猴子快速伸手抓取核桃時某個行為神經元如何反應。

研究者將電極接到一隻豬尾獼猴的腦部,然後把一粒核桃放在地上,並觀察當猴子快速伸手抓取核桃時某個行為神經元如何反應。圖/Wikipedia

鏡像神經元的發現

至此一切都算正常,不過,這時驚人的情況發生了:研究人員把同一隻猴子放到一片玻璃後方,這次牠抓不到核桃了,只能眼睜睜看著里佐拉蒂的助手伸手抓取核桃。這時猴子的腦部發生了什麼現象呢? 當牠注視別人拿牠的核桃時,相同的神經元產生反應,就像牠之前自己伸手去抓核桃一樣,雖然牠的手並沒有移動,牠的精神卻想像了這個動作。

科學家們無法相信自己所看到的:無論猴子是親手完成某個動作,亦或只是精神想像了訓練師所做的動作,其神經細胞都做了完全一樣的工作。

在此之前,從未有人觀察腦部如何模擬現實裡沒有發生的動作,而李奧那多.佛格西(Leonardo Fogassi)則是第一人。不過成功應該是屬於整個團隊的。里佐拉蒂發明一個新的概念,他把這個在被動想像時卻如真實行為般於腦部引發相同反應的神經細胞稱為「鏡像神經元」,一個新的神奇術語就此誕生了。

「親身經歷」和「感同身受」的差別

首先是義大利,接著是全世界大學和研究中心的腦部學者,都立刻投入鏡像神經元的研究行列。如果人的腦部對於我們的「親身經歷」和只是「認真觀察並感同身受」的反應沒有差別的話,那麼這不正是了解我們社會行為的關鍵嗎?

至少鏡像神經元是其中一個重要部分。它位於額葉的前額葉皮質,一個稱為「腦島」的區域。然而這個腦島卻不同於「社會中心」,也就是到目前為止所說的「腹側區」。

大腦額葉和頂葉的位置,從左側看。額下葉是藍色區域的下部,頂葉上葉是黃色區域的上部。圖/Wikipedia

其中的差別也很清楚,因為鏡像神經元雖然和無意識的「移情作用」有關,卻和更大範圍的計畫、決定或意願無關。到目前為止,我們還不很清楚這些腦區如何交互作用。

里佐拉蒂於 6 年前以圖像程序說明,人類的鏡像神經元顯然也位於負責語言的兩個腦區之一(布羅卡區)附近,這使得學界特別振奮。

荷蘭格羅寧根(Groningen)大學的腦部學者不久前在「聽到聲響」和「鏡像神經元發出信號」之間發現了有趣的關聯。當人聽到開飲料罐氣泡冒出的聲音時,腦中的反應就跟他自己開飲料罐完全一樣;也就是說,單憑聲音就足以讓人經歷到整個情況。

——本文摘自《我是誰:對自我意識與「生而為人」的哲學思考》,2022 年 10 月,啟示出版,未經同意請勿轉載。

啟示
3 篇文章 ・ 1 位粉絲