生技醫藥獎得主三名之一的珍妮佛.道納(Jennifer Doudna),By Jussi Puikkonen/KNAW [CC BY 2.0], via Wikimedia Commons。
向細菌的免疫系統取經
從過去十多年來各地實驗室的研究得知,各種細菌內的 CRISPR 系統扮演著適應性免疫系統的角色。它們可以讓細胞辨識外來DNA,像是病毒感染時所注入的,或是透過質體轉型作用進來的。這些外來的 DNA 小片段會被嵌入基因體裡的 CRISPR 基因座。細胞會將這些夾在重複序列中的病毒序列轉錄成 RNA,用它們充當分子嚮導,來引導 CRISPR 關聯基因所表現的 Cas 蛋白,去辨識並且摧毀外來 DNA。它們是以蛋白-RNA複合體的形式來和外來的 DNA 進行鹼基配對,所以是 RNA 和 DNA 雜交。
利用 CRISPR-Cas9 技術進行基因編輯示意圖。By Ernesto del Aguila III, NHGRI, via Wikimedia Commons
我們和夏彭提耶合作,用生物化學方法純化了 Cas9 蛋白,發現它是雙 RNA 引導的 DNA 內切酶,意思是這個蛋白能夠和兩條不同的 RNA 結合。一條是包含引導序列的 crRNA,能和DNA進行鹼基配對。
在合作的過程中我們發現,另一條 tracrRNA 對於 crRNA 的加工處理很重要,對於尋找目標 DNA 的能力也是必要的,所以這是一個兩條 RNA 的系統在和蛋白交互作用,形成進行監控的複合體。這個蛋白的運作方式是靠兩把化學剪刀,在目標區域將 DNA 旋開後進行切割。重要的是,要切割的目標位置,必須是在 DNA 上的 PAM 模體旁邊。
在了解運作的機制之後,我們意識到其實可以把系統進一步簡化,弄得比自然界更為簡單。我們將兩條 RNA 合而為一,形成單鏈引導型態:一端包含需要搜尋的目標序列,另一段是和 Cas9 結合所需要的資訊。如此簡化成雙分子系統,一個蛋白被一條 RNA 引導至 DNA 序列,製造 DNA 的雙股斷裂。
Cas9 蛋白結構,以及單鏈引導 RNA和目標 DNA。By Hiroshi Nishimasu, F. Ann Ran, Patrick D. Hsu, Silvana Konermann, Soraya I. Shehata, Naoshi Dohmae, Ryuichiro Ishitani, Feng Zhang, and Osamu Nureki [CC BY-SA 3.0 ], via Wikimedia Commons
為什麼 CRISPR/cas9 技術起飛如此地快?
為什麼這項技術起飛地如此快?第一,是鹼基配對的力量。細胞本來在很多情況就會利用 RNA-DNA 雜交進行基因調控。這個系統利用這個特點,只需變更引導RNA的序列,就可以改變要辨認的目標 DNA。而不要像先前的基因編輯技術那樣,需要改變整個蛋白來做 DNA 辨認。
第二,它是一個可塑性很高的系統,可以配合你的需求而進行改造。除了切除 DNA 造成基因體永久的改變之外,也可能利用這個系統來控制轉錄,改變特定DNA序列的蛋白表現量,或點亮基因體特定區域,用顯微鏡觀察其位置。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。