0

1
1

文字

分享

0
1
1

遠的要命的遙遠星系,能揭開宇宙演化的奧秘?天文學家王為豪專訪

研之有物│中央研究院_96
・2017/05/05 ・4367字 ・閱讀時間約 9 分鐘 ・SR值 481 ・五年級

-----廣告,請繼續往下閱讀-----

為什麼要研究「遙遠星系」?

天文學家在黑夜裡觀測,搶在天未明之前,透過望遠鏡取得他們所需的資料。中研院天文所王為豪副研究員,利用遠紅外光及次毫米波觀測遙遠星系,揭開宇宙演化的奧妙。而美麗的天文影像,能夠傳達給大家許多科學的想法。

中研院天文及天文物理研究所王為豪副研究員,利用遠紅外光與次毫米波,揭開遙遠星系的奧秘。圖/張語辰

在山頂上度過黑夜,和越來越少有的觀測生活

海拔 3000 公尺的中繼站,那邊有給天文學家吃飯、晚上睡覺休息的地方。喔,不是晚上,是白天睡覺休息,因為晚上要觀測。

王為豪娓娓道來,他們去夏威夷觀測,要先飛到檀香山,再飛到大島。天文台都在大島上,海拔 4200 公尺的毛納基(Mauna Kea)山頂。為了安全,必須先在海拔 3000 公尺的中繼站停留一天。隔天下午四點吃晚餐,五點就跟天文台的工作人員,開車上山頂觀測,直到隔天早上六、七點天亮,再開車下來吃早餐。

夏威夷毛納基山頂上的次毫米波陣列 (SMA) ,是中研院天文所參與的重要計畫。圖/王為豪

不同波長的觀測,作息其實不太一樣,這是因為不同波長的「天亮」時間不同。可見光的天空之所以會亮,是因為大氣散射陽光;近紅外光的天空之所以會亮,是因為高層大氣的原子被陽光激發而放出輻射。因此,近紅外光可以多觀測半個小時。至於次毫米波的天空,並不受太陽影響,但還是會避免在白天觀測,避免望遠鏡的元件受熱變形。話鋒一轉,王為豪說,「這是老人觀測了啦!」

現在天文學家做觀測,很少實際飛到某個地方觀測,大部分都是遠距進行,直接在山下的辦公室裡控制山上的望遠鏡,甚至在台灣就能控制夏威夷的望遠鏡。

現在只剩下少數天文台,會要求申請到觀測時間的天文學家到現場。主要的原因,並不是需要你去做觀測,而是因為山頂的環境非常危險,所以天文台都有個規定──任何時刻,天文台裡面至少要有兩個人。但是天文台經費可能有限,只能安排一位觀測員,於是天文學家就需要有人上山。

那些「陪觀測員」的時間,天文學家都在做什麼呢?王為豪說,可以在觀測員旁邊不斷問問題,學著操作。而他現在去天文台,通常就是做自己的事情,看卡通、拍照。在山上若做研究也不容易,因為氧氣含量太低,「就算我真的要想辦法寫論文,下山一看,可能會覺得:這是什麼東西啊!」

-----廣告,請繼續往下閱讀-----

另一種情況,是天文台剛蓋好的時候,人們對於它的脾氣不熟悉,常有突發狀況,因而要求天文學家來到現場。例如日本的昴星團(Subaru)望遠鏡,當年剛蓋好的時候,所有人都要親自飛到山頂觀測,但是現在不需要了。

現在大多數望遠鏡,都是由遠距操控,或者是另外一種模式──根本不用去控制望遠鏡,只要在所謂的「腳本(script)」上寫你要做什麼,把它寄給天文台,天文台就會在合適的時間幫你執行,再把資料寄給你。例如現在最好的次毫米波望遠鏡「阿塔卡瑪大型毫米及次毫米波陣列(ALMA)」就是如此,人們不必到智利觀測。

中研院參與建造:世界最強大的電波望遠鏡

位於智利的阿塔卡瑪大型毫米及次毫米波陣列 (ALMA) ,於 2013 年正式啟用,中研院參與其建造及營運。其靈敏度比前一代的 SMA 高出幾個數量級。圖/王為豪

談到 ALMA ,王為豪說,比起前一代的「次毫米波陣列(SMA)」, ALMA 的靈敏度高出好幾個數量級。之所以有這麼大的差異,主要是因為望遠鏡大了很多,再來是來自接收機的技術進步。

在無線電波裡面,高頻率的接收機特別難做,例如微波通訊是近二十年才發達的技術。次毫米波又比微波更高頻,近二、三十年才有較好的儀器。另一方面,次毫米波很容易被水分子吸收,而最近人們在智利找到了比夏威夷更乾燥的地點。這兩個因素使得 ALMA 可以接收到比較暗的訊號,也可提高觀測的解析力。

-----廣告,請繼續往下閱讀-----

過去你要花一百個晚上才能完成的觀測,用 ALMA 不用一個晚上就能完成。所以我們辛辛苦苦用夏威夷的次毫米陣列做七、八年的研究, ALMA 只要一個禮拜就能從頭到尾幫你做完一次,這是過去完全不能想像的。

中研院參與了 SMA 和 ALMA 的建造和營運,並以此取得重要的科學成就。王為豪利用這兩台望遠鏡,研究「次毫米波星系」。

什麼是次毫米波星系呢?我們的銀河系,大部分的輻射來自可見光,因為銀河系最重要的組成份子是恆星,恆星放出來的輻射主要是可見光,就像我們的太陽一樣。不過,在一些遙遠的星系裡面,灰塵非常多。灰塵的大小約 0.1 微米到幾微米,善於吸收可見光和紫外光,再放出遠紅外光。

灰塵多的星系中,灰塵把恆星的光幾乎都吸收掉,使得絕大部分的輻射在遠紅外光,用可見光觀察反而覺得它不亮。這種星系,就稱為「亮紅外星系」。但宇宙膨脹導致波長增加(紅移),灰塵放出的遠紅外光會移到毫米或次毫米波,也就成為「次毫米波星系」了。也就是說,「亮紅外星系」與「次毫米波星系」是同一回事,指的都是這種灰塵很多的星系。

「亮紅外星系」描述的是星系的本質,說明它放出很多遠紅外光;「次毫米波星系」描述的是我們是在次毫米波觀測到它。

-----廣告,請繼續往下閱讀-----

遙遠的「次毫米波星系」告訴我們什麼?

宇宙中這麼多星系為什麼會變成現在這個樣子?我們不能只研究它們現在的樣子,也要研究它們過去的樣子。

王為豪說,宇宙的年齡和星系的生命期,比星系中個別的物理過程還要長。研究星系現在的狀態,我們能夠回溯的時間很短,難以推知是什麼原因導致它現在長成這樣。打個比方,研究動物排出的大便,我們可以知道牠最近兩三天吃了什麼,但無法知道牠兩年前吃了什麼。那如何看到從前的星系?

「宇宙本身就是一個大的時光機」王為豪說,因為光傳遞需要時間。我們看很遠很遠的東西,表示看到的是宇宙很久以前的狀態。那就是我們為什麼要研究遙遠的星系。

宇宙早期的星系與現在的星系,成長模式非常不同。一開始宇宙中只有「氫」和「氦」,這些氣體聚集形成恆星、星系。從宇宙早期到現在,氣體的含量是越早期越高,現在則較少。因為星系形成需要氣體,所以宇宙早期星系成長比較快。

此外,最早期的宇宙沒有恆星、沒有星系,也沒有黑洞放出很強烈的輻射,所以那時候的氣體都是中性,也就是電子和質子在一起。等到有了恆星,有了大質量黑洞放出很強的紫外線,紫外線就會讓氫氣游離。被游離的氣體溫度很高,很難透過重力壓縮,也就很難形成新的恆星。以上因素彼此相互影響,導致早期宇宙的星系形成與成長模式,與現在相當不同。

-----廣告,請繼續往下閱讀-----
由「哈伯深空」擷取的一小塊影像,包含了眾多的遙遠星系。有些遙遠星系會發出遠紅外光,也有些會發出 X 光、無線電波或紫外光。圖/哈伯太空望遠鏡

次毫米波星系出現在較早期的宇宙,主要原因就是早期宇宙的氣體比較多。氣體裡面的「氧」、「碳」、「矽」這些比較重的元素,會凝聚成灰塵。因此,早期宇宙容易出現灰塵多的星系。氣體以及它夾帶的灰塵,可能因為某些物理作用被壓縮,譬如說形成年輕的恆星,或者掉到星系的重力位能井中,使得它們分布範圍很小、密度很高,於是對星光的吸收能力就非常強。這時,就有辦法把星系裡絕大部分的星光吸收掉,並放出遠紅外光。

還有另一個有趣的現象:亮紅外星系、次毫米波星系中央的大質量黑洞,通常也比較活躍。一個星系的紅外線輻射變很強,通常是有很多氣體,有很多恆星形成。觀測結果告訴我們,這種星系裡的黑洞,經常也是快速成長的。王為豪說明,這兩件事情好像是連在一起的,但是現在還不清楚其中的因果關係。一般而言,星系越大,裡面的超大質量黑洞也越大,所以星系與星系中黑洞的形成,可能透過某個物理過程連在一起。

美麗的天文圖可以傳達科學的想法

問到為何投入天文研究,王為豪表示,從小就對天文有興趣,但不是早早立志踏入專業天文研究。高中參加了天文社,看了一些天文書籍,發覺能夠言之有物的書,裡面都是物理,於是決定大學讀物理。

不過,即使讀了物理系,他也沒有一定要念天文。到了大三,修了袁旂老師的天文物理導論,才開始了解天文與物理如何結合,於是決定念天文所碩士班試試看。碩班念完發現自己還是有興趣,就念天文所博士班試試看。一步一步試試看,才一直走下去。

-----廣告,請繼續往下閱讀-----

就覺得試試看、做做看,做得不錯再走一步,是這樣子才最後一直走下去的。

王為豪不僅在專業天文有所成就,亦是業餘天文攝影的翹楚,讓人好奇兩者之間有何有趣的聯繫。王為豪表示,雖然同時身為業餘天文學家跟專業天文學家,但他把這兩塊切得很乾淨,很少有交集。而另一方面,王為豪總是樂意將攝影作品提供給天文所使用,作為教育用途。更有意思的是,他著作的天文攝影書籍很特別,「講攝影的書竟然沒放多少照片,裡面都是方程式。」背後的目的,其實是把科學的想法帶進攝影當中。

我是用這種方式在教育對天文有興趣的人。就算你是想拍漂亮的照片,你也可以用科學的方法來進行。

王為豪不但是專業天文學家,也是天文攝影的專家。圖為王為豪拍攝的獵戶座,為 18 幅馬賽克,總曝光時間 27 小時。圖/王為豪

王為豪說,雖然自己長年從事天文攝影,但十年前他其實不太鼓勵年輕人從事天文攝影,因為許多天文社團所做的只剩下攝影。不過,現在想法完全相反了,因為現在的天文攝影使用數位相機,這就與專業天文觀測用的 CCD 原理類似。數位相機照片的後製,與真正專業的科學觀測非常接近,所以不管是為了推銷某種科學的想法,或幫助想研究天文的學生接觸真正的天文觀測,攝影都是很好的媒介。

說到天文教育,王為豪說,他真正關注的是國民的科學素養,而不是天文。大家並沒有一定要懂天文,但是天文教育在台灣可以很有用。

增進科學素養有許多方法,但我們知道告訴學生「這個考試要考」並沒有用,必須要讓人打從心裡喜歡。王為豪認為,天文的好處,是它可以很吸引人,有漂亮的照片,可以說出很多故事。雖然現在大部分的人,在大部分的時間都看不到天上的星星,但是大多數人到了山上,如果天氣好,剛好沒有月亮,可以看到天上星星,十個裡面有九個都還是很開心──天文有這種魅力,在科學教育當中何必放棄它呢?

-----廣告,請繼續往下閱讀-----

透過天文教育這個包裝得很漂亮的糖衣,真正我希望餵給別人的是科學的想法。當你開始問天上為什麼那麼多星星,或者當你開始問銀河為什麼有兩道中間是黑的,那中間黑的是怎麼一回事,科學已經在裡頭了。


延伸閱讀

採訪編輯|歐柏昇  美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
293 篇文章 ・ 3356 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
科學月刊_96
249 篇文章 ・ 3436 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
2

文字

分享

0
1
2
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

-----廣告,請繼續往下閱讀-----

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

-----廣告,請繼續往下閱讀-----

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

-----廣告,請繼續往下閱讀-----

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

-----廣告,請繼續往下閱讀-----

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

-----廣告,請繼續往下閱讀-----

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1007 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。