1

0
0

文字

分享

1
0
0

投籃 vs. 傳球

Hali
・2012/02/12 ・600字 ・閱讀時間約 1 分鐘 ・SR值 605 ・十年級

-----廣告,請繼續往下閱讀-----

Linsanity!反映了全球籃壇對林書豪五連勝的驚豔表現!

「投籃」或「傳球」,是球員在瞬息萬變的籃球比賽中不斷面對的難題。美國明尼蘇達大學 (University of Minnesota, Twin Cities) 的Brian Skinner利用簡單的機率模型預測最佳的投籃時間,並比對2006到2010年間,共4,720場NBA 賽事的非官方數據。

如預期地,他發現,在充份的24秒進攻時間內,球員傾向傳球而不是出手投籃 (the highest quality shot)。另外,關於球隊的致勝策略,他也提出了不同的看法。

如果A隊的得分率、失誤率皆與B隊相同,在仍有充份的進攻時間、但傳球較頻繁的A隊取得的投籃機會 (shot opportunity ) 是B隊的兩倍狀況下 (A隊:每4秒; B隊每8秒)。一般認為,A隊的投籃率 (shooting rate) 應是B隊的兩倍。但是,Brian Skinner 的分析卻顯示, 當B隊的投籃率是平均每19秒投籃一次時,A隊的最佳投籃率竟然不是9.5秒一次,而是每12秒投籃一次,這額外的2.5秒讓A隊有更多選擇最佳出手機會的時間。換句話說,A隊加倍傳球速度的優勢,不是來自於相對加倍的投籃率,而是藉由增加最佳投籃的選擇機會來提升進攻效率。另外,Brian Skinner 也指出,NBA球員也不傾向在進攻時間內太早出手投籃。

文獻來源:
The problem of shot selection in basketball.

-----廣告,請繼續往下閱讀-----
  1. arXiv:1107.5793v2
  2. PLoS ONE 7(1): e30776.

相關報導:

1. The Mathematics of Basketball.
2. Science Podcast.
3. 作者: Brian Skinner
4. 非官方NBA數據

文章難易度
所有討論 1
Hali
5 篇文章 ・ 0 位粉絲
菩提本無樹 明鏡亦非台 本來無一物 何處惹塵埃

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
得到 COVID-19 已知的後遺症有哪些?康復後還可能有哪些問題?
活躍星系核_96
・2020/06/29 ・3697字 ・閱讀時間約 7 分鐘 ・SR值 560 ・八年級

  • 文/ 麥騫洺

得到 COVID-19 的症狀類似感冒,會出現咳嗽、高燒,已是全世界都知道的常識了,但有些症狀我們較不熟悉,像失去嗅覺1短暫記憶消失2意識受損3 創傷後壓力症候群4憂鬱5、等。這次的疾病是否會帶來哪些長期影響呢?

為什麼有些人得到 COVID-19 會失去嗅覺與味覺?這樣的情況會持續嗎?

26 歲的紐約時報作家費歐娜.羅文斯坦因感染 COVID-19 而住院時,世界對於病毒對人體所造成的影響還很模糊不清,而她經歷的腸胃道症狀和失去嗅覺等才剛被辨別為症狀之一2

費歐娜.羅文斯坦是作家,也是製片人、瑜伽老師。

雖然 COVID-19 被標記為呼吸系統的病毒,但研究已證實它有侵襲神經系統的傾向1。一般流行性感冒和病毒感染期間,會出現由於鼻塞、鼻充血導致嗅覺和味覺喪失,通常將持續 7 至 14 天。事實上,在感冒期間大多數的人感覺失去嗅覺與味覺是由於:進食時這兩項感官是相輔相成的,很少人能夠清楚地分辨兩者,因此只要失去嗅覺,就會造成患者感覺食之無味7

-----廣告,請繼續往下閱讀-----

據專家推測,有些人從 COVID-19 這樣的急性系統性的病毒攻擊康復後,仍有餘毒干擾著鼻腔與口腔中的蛋白質分泌腺,導致味覺和嗅覺的喪失7。雖然此病毒感染過程的動力學仍是未知,但瞭解其作用機轉對於幫助理解味覺和嗅覺是如何在病毒感染中喪失是十分關鍵的。但在 COVID-19 的患者中,約有 1% 似乎會永久喪失味覺跟嗅覺。

年輕患者出院後,仍需要時間才能恢復

羅文斯坦出院返家後的三個禮拜後仍經歷疲勞、頭痛、鼻塞、喉嚨痛、精神難以集中及短暫記憶消失。基於康復過程中的孤獨感,她在社交平台 Slack 上成立了新冠肺炎患者的互助協會以分享自己的經驗及接觸他人瞭解更多資訊。

互助協會中,不乏 24 至 31 歲的年輕患者於感染後的 20 天仍經歷呼吸喘、發燒、咳血等症狀,部分患者甚至在一個月後仍感到呼吸困難和疲勞2。在一般肺炎的情況中,康復的時間長短與患者的年齡及是否有共病症(如糖尿病)有關;但在 COVID-19 的研究中已有初步證明,病人在臨床表徵上的差異有一半由遺傳因素造成9,當中患者康復時間的詳細差異仍在研究當中。

由費歐娜.羅文斯坦成立的線上互助會。圖/截圖自網站

-----廣告,請繼續往下閱讀-----

重症患者的難題:呼吸與血栓

重症患者通常需長時間依賴呼吸器,由此也增加了長期併發症發生的可能性。除此之外,在 ICU(Intensive Care Unit,加護病房)中隔離時失去與人接觸的機會更衍伸出心理問題。

另外,疫情造成的醫療資源緊繃也造成了很大的問題。過去當病人從 ICU 康復出院時,他們能夠獲得物理治療和語言治療等後續追蹤及支持,但在美國疫情嚴重醫院人滿為患的情況下,康復的病人被儘快安排辦出院以應付不間斷的確診病人潮。當這些康復的患者出院後嘗試獨立進行日常活動,如吃飯洗澡時,才體認到住院時沒有察覺到的體力侷限。

約翰.霍普金斯醫院(The Johns Hopkins Hospital)的醫師指出,當病人病情嚴重至需要維生儀器如呼吸器的幫助時,呼吸器被移除的時候,他們多半無法在短期內恢復罹病前的狀態10。在患者的放射學影像分析中,CT(Computed Tomography,  電腦斷層影像)檢查顯示病人的肺部呈毛玻璃樣病變。同為冠狀病毒家族的 SARS 和 MERS-CoV 也引發了相似的肺部症狀,這種由病毒引發的炎症反應多半會造成不可逆的肺部纖維化,在目前的醫學治療上是無法根治的11a

由患者的 CT 影像可以看出,肺部呈毛玻璃樣病變。圖/ncbi

-----廣告,請繼續往下閱讀-----

除了病毒攻擊的主戰場肺部,由於感染會引發免疫系統的發炎反應,比意料中來得多的病人身上出現了血栓情形。此情況在重症患者間愈來越常見,以致醫師們將其辨認為一種新的血栓形態:新冠肺炎形凝血病(COVID-19 Associated Coagulopathy, CAC)13。血栓若流滯大腦將導致中風及癲癇3、在肺部會形成肺部栓塞、若堵在心血管將引起心血管疾病14,或造成腎和肝等重要器官的功能衰竭15。器官以外的血栓也可能有嚴重的後果,加拿大百老匯影星 Nick Cordero 就因 COVID-19 引發的血栓而不得不進行右腿截肢16

 

感染患者堵塞的氣管內管。

運動員能快速從疫情復原嗎?

目前我們已經知道年輕患者罹患 COVID-19 之後沒有這麼快從病情復原,那運動員呢?隨著越來越多的球星的篩檢結果呈陽性17、疫情的發酵和封鎖措施的執行,各個國際重大賽事如 NBA 賽季和 2020 東京奧運等都被迫停賽。

NBA 至今仍停賽。圖/NBA官方推特

-----廣告,請繼續往下閱讀-----

目前有許多年輕的輕症運動選手平均於 5 到 7 天之後幾乎完全康復,但不乏於 7 至 9 天之後演變成爆發式的下呼吸道症狀如肺炎或呼吸衰竭的案例18。因此實際上的復原狀況與速度,完全因人而異。體育協會已陸續公佈球員們何時可恢復正常訓練的指南,如

  • 輕症患者需休養兩週,完全康復後進行臨床心血管評估結合心臟生物標識物及影像檢查;
  • 重症患者則建議於康復並無症狀後,進行臨床評估前休息至少兩週,且需反覆進行心臟相關評估及採漸進式的復原練習19

本次 COVID-19 症狀的嚴重程度因人而異。但重點是,當運動員們尚未完全康復便心急於投入積極訓練恢復正常體能的話,將有極大的風險發生心肌炎或心肌損傷20。獨自隔離中的選手們處於孤獨和擔憂自身復原情況的高壓下,焦慮及憂鬱等精神健康也需獲得照顧21

在經歷了漫長的禁閉後,民眾對於體育賽事的萬分期待和經濟壓力之下,決策人若急於重啓賽事而不聽從專家們的建議,承受代價的將是這些前途無量的選手們。

病後人生:除了後遺症,康復後還可能有哪些問題?

此外,康復的患者還必須面對的是,重新踏出家門時旁人的眼光、批判和社會污名化。在集體意識強烈和排外的日本,民眾因擔憂被歧視及霸凌而隱瞞實情導致防疫出現破口;出生入死的醫護人員被拒絕進入餐廳以外,連家人也收到波及,無法上學甚至求職遭拒22

-----廣告,請繼續往下閱讀-----

新聞中其實不乏成功抵抗病毒的生還者的故事:在美國奧瑞岡有 104 歲的退伍軍人順利康復後得以和家人一起慶生;同在奧瑞岡的95歲輕症患者和西雅圖某護理之家的 90 歲太太亦康復了23

隨著確診人數的增加,更多患者在恢復的過程中掙扎的故事被分享及報導了。但對於疾病的長期影響,仍有許多未知有待長期觀察及驗證。

除了找出本次疫情的解方,我們也應正視患者們的「病後人生」。圖/pixabay

參考資料

  1. Xydakis, M. S., Dehgani-Mobaraki, P., Holbrook, E. H., Geisthoff, U. W., Bauer, C., Hautefort, C., … & Hopkins, C. (2020). Smell and taste dysfunction in patients with COVID-19. The Lancet Infectious Diseases.
  2. The New York Times: We need to talk about what Coronavirus recoveries look like.
  3. Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., … & Miao, X. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology77(6), 683-690.
  4. The Conversation: Delirium, depression, anxiety, PTSD – the less discussed effects of COVID-19.
  5. Murray B. Stein, COVID-19 and anxiety and depression in 2020. Wiley Online Library
  6. Science News: Some patients who survive COVID-19 may suffer lasting lung damage.
  7. INEDNPDENT: Coronavirus: Why are loss of smell and taste symptoms of Covid-19?
  8. Coronavirus Disease 2019: NYC Covid-19 deaths among confirmed cases.
  9. Williams, F. M., Freydin, M., Mangino, M., Couvreur, S., Visconti, A., Bowyer, R. C., … & Hammond, C. (2020). Self-reported symptoms of covid-19 including symptoms most predictive of SARS-CoV-2 infection, are heritable. MedRxiv.
  10. Washington Post: The dark side of ventilators: Those hooked up for long periods face difficult recoveries.
  11. The New York Times: There aren’t enough ventilators to cope with the Coronavirus.
  12. Spagnolo, P., Balestro, E., Aliberti, S., Cocconcelli, E., Biondini, D., Della Casa, G., … & Maher, T. M. (2020). Pulmonary fibrosis secondary to COVID-19: a call to arms?The Lancet Respiratory Medicine.
  13. Business insider: Face with tough choices, Italy is prioritising young COVID-19 patients over the elderly. That likely “would not fly” in the US.
  14. COVID-19 and coagulopathy: Frequently asked questions.
  15. Willyard, C. (2020). Coronavirus blood-clot mystery intensifies. Nature.
  16. Wadman, M., Couzin-Frankel, J., Kaiser, J., & Matacic, C. (2020). How does coronavirus kill. Clinicians trace a ferocious rampage through the body, from brain to toes, 1502-1503.
  17. CNN: Broadway star Nick Cordero had his leg amputated due to coronavirus complications.
  18. NBA Coronavirus updates: NBA players, Von Miller, other sports figures who tested positive for COVID-19.
  19. Hull, J. H., Loosemore, M., & Schwellnus, M. (2020). Respiratory health in athletes: facing the COVID-19 challenge. The Lancet Respiratory Medicine8(6), 557-558.
  20. Phelan, D., Kim, J. H., & Chung, E. H. (2020). A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) infection. JAMA cardiology.
  21. INEDNPDENT: The curious case of SG Covid-19 patient who continued to test positive for 34 days after being symptom-free.
  22. Society guideline links: Coronavirus disease 2019 (COVID-19) – International and government guidelines for general care.
  23. For Japanese, stigma of the sick is a much greater fear than the coronavirus itself.
  24. ‘He just got better and better’: 104-year-old veteran beats coronavirus in time to celebrate his birthday.
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
袖套上的籃球教練!
Scimage
・2013/08/28 ・330字 ・閱讀時間少於 1 分鐘 ・SR值 543 ・八年級

偷偷練習射籃應該是很多愛打籃球朋友的共同記憶,除了一次一次練習手感以外現在又有了新的工具-把投籃的教練裝戴手臂上!

影片中介紹一種特殊的袖套,內裡裝設加速裝置,可以偵測手臂與手腕的運動,所以投球的速度跟軌跡可以由袖套所收集的數據加以估計,然後即時用聲音或是光來給運動員回饋。雖然這樣的工具還未能全面幫助練習籃球上,不過以往的運動分析都是在運動資料以攝影機或是局部的感測器擷取後,再慢慢分析運動員的姿勢來改正。這樣的新工具開啟了一種新的可能性,假如配合上更多元完整的動作偵測分析與環境條件,或許將來有一天只要裝上特定的運動服裝,就可以自動學習,看見查克拉的流動,慢慢精通各種運動的竅門。

轉載自科學影像scimage