0

14
2

文字

分享

0
14
2

科學寶可夢 #111 鐵甲犀牛:不如叫石墨烯牛

Rock Sun
・2017/02/25 ・2494字 ・閱讀時間約 5 分鐘 ・SR值 519 ・六年級
相關標籤:

身為一名訓練師,你真的了解你的寶貝們嗎?寶可夢圖鑑讀熟了沒?

其實圖鑑告訴你的比想像中的還多喔!每個星期周末跟著 R 編一起來上一門訓練師的科學課吧!來跟大家分析這些寶可夢們是如何使用科學力來戰鬥的。

不要連牠也被獵到絕種 #111 鐵甲犀牛

圖/ubasuteyama – DeviantArt

不管是動漫、空想、還是寶可夢世界,都有一些生物擁有一些令人匪夷所思的生理特性,例如:由黃金打造的外皮、鑽石做的身體……等[註1],這些特性最有趣的地方就是它們都是現實中真的存在的物質,但以一種很神奇的方式存在於生物身上。

現實世界我們有幾丁質碳酸鈣這類東西可以組成生物外殼,但我們就是沒聽過身穿鐵甲的生物(很可憐穿著鋁罐的寄居蟹不算)。原因很簡單:麻煩——重量麻煩、替換麻煩、取得麻煩、對身體代謝也沒幫助。

但這裡我們卻有一個莫名的傢伙,默默地藏著強大又珍貴的前衛物質在他的體內。

 鐵甲犀牛巨大的骨頭比人類硬 1,000 倍,可以輕鬆地撞飛大型拖車。」(藍、葉綠[註2])

比人骨硬 1,000 倍,所以是多耐撞?

比人類硬 1000 倍?聽起來很厲害,但到底是有多誇張呢?

閃喔~圖/GIPHY

首先我們需要知道一些人骨的數據,老實說這並不容易,儘管人類老早就開始在研究骨頭了,但人骨的物理性質近幾年還是一直在更新[註3]。從筆者找到的資料,人類硬骨平均密度大概是 1,000~1,200 kg/m3,並且有著 130 mpa(帕斯卡)的極限抗拉強度。

至於從鐵甲犀牛的敘述,表示牠的骨頭是人類強度的 1,000 倍,那麼就應該是指他的極限抗拉強度是 1000 倍。我們先不管密度,簡單地把人骨的極限抗拉強度乘以 1,000 倍,我們得到 130,000 mpa,也就是每平方公尺可以承受 130,000 牛頓的力。

這個數字,基本上已經是物質硬度表峰頂的程度了,也就是在材料試驗機中,鐵甲犀牛的骨頭差不多是可以承受一台時速 60 公里行駛車子撞擊的強度,所以只要鐵甲犀牛不要跑超過時速 60 公里,牠大爺不管怎麼亂衝亂撞大概都無所謂吧~

大哥你是認真想騎牠的嗎?圖/Pokémon Wiki

很有趣的是,這個數字並不夢幻,因為查查極限抗拉強度表,你會找到一個物質擁有一樣的抗拉強度——石墨烯

石墨烯這個有諾貝爾獎認證的神奇物質這裡就不多做介紹了,有興趣的人可以去搜尋無數的泛科學文章這裡我想聚焦在它的重量上:根據 2010 年諾貝爾物理學獎的研究中提到,1 平方公尺的石墨烯重量是 0.77 毫克(mg),是 1 平方公尺紙的 0.001%,但他只有單原子的厚度。

現在問題來了,要擁有這樣的強度,鐵甲犀牛的內部骨骼勢必是疊合非常緊密的石墨烯,而且石墨烯應該才佔牠體重大概沒多少吧!從其他犀牛的身高體重做很大約的推算[註4],身高 1 公尺,體重 115 公斤的鐵甲犀牛只不過比同體型的犀牛重一點點,如果石墨烯基本上沒有什麼重量,那牠的鐵甲可能就真的是很重了。

能輕鬆撞飛拖車是要多快?

現在來到圖鑑的後半段:可以輕鬆地撞飛大型拖車」,一台大型拖車重量可 60 公噸[註5],一隻體重 115 公斤的鐵甲犀牛竟然可以撞飛這麼重的東西?怎麼覺得牠應該跑太快了……假如鐵甲犀牛撞到拖車立刻停下,能量全部轉移,而拖車在 3 秒內向後飛了 10 公尺,從動量守恆,我們計算得到鐵甲犀牛速度是時速 270 公里!!!

斷了~都斷了(圖/reviewing pokemon)

這豈不是超出範圍了,好不容易身體裡面長了強大的石墨烯,結果為了展現自己多強大,一撞就骨折了,就算你有鐵甲」,在這種撞擊力下還不是都碎了,這還是沒辦法保護你啊!

只好祈禱鐵甲犀牛們無法跑那麼快,托車沒那麼大台了,他們可能是世界最豐富石墨烯來源啊!

(開玩笑的~ 狩獵動物並不好,請大家保護犀牛。) 

註解

  1. 這些標榜用鑽石、黃金打造的怪獸或人物通常都有神奇的體重或生態,例如從攝食的泥土中取得,到底是要吃多少土才能長成這樣,人類吃下蝦子的甲殼也不會長出來,只會從大便排掉而已。
  2. 除了這篇文章中的敘述之外,R 編另外一個很想分析的是「非常強大,可以撞倒摩天大樓」(鑽石、火紅、紅、綠),但這取決於各種撞法和大樓工法,所以最後作罷。其他敘述例如「腦子只有一根筋所以只能考慮一件事。開始猛撞後到睡著前都不停下。」(黃、銀、魂銀);「只能記住一件事,一開始衝就忘記理由了,因為會馬上忘掉。」(水晶、藍寶石)…..等,全是在笑鐵甲犀牛的智商。
  3. 根據 R 編找到的資料,1996 年時一本牛津的醫學課本記載骨質密度是 1000~1200 kg/m3,1999 年的ㄧ本人體的物理學記載是 1900 kg/m3,但這個數字是指單純的密度,到 2000 年時變成 1000 kg/m的骨質密度……幸好後來沒什麼用到這個,要不然又要考慮鐵甲犀牛的骨質了。
  4. 一般犀牛身高大約是 2 公尺,體重 3 公噸,至於剛出生的小犀牛身高大約 70 公分,體重 60 公斤,由於很難找到每一種犀牛的長寬高,所以利用目測的體積與體重的關係大約求了鐵甲犀牛這個體型的體重,差不多是 100 公斤。
  5. 在各種貨車橫行的美國,這數字從 10 公噸到 70 公噸都有,根據長榮貨運的介紹,光是裝滿的貨櫃本身都有幾十公噸了。這裡既然是說大型貨車,那就找大一點啊。

參考資料:

  1. Pokemon Database
  2. 維基百科(犀牛拖車強度石墨烯
  3. The Physics Facts Book: Bone Density
  4. Rhino Resource Center
  5. 長榮貨運:貨櫃重
文章難易度
Rock Sun
63 篇文章 ・ 652 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

1

0
0

文字

分享

1
0
0
終結鼠疫!「臺灣醫學衛生之父」——高木友枝
PanSci_96
・2023/03/26 ・3213字 ・閱讀時間約 6 分鐘

1901 年,一場可怕的災難無聲無息地降臨到臺灣,無數看不見的細菌跟在老鼠身上,穿越過大街小巷,讓鼠疫在臺灣各地四散傳播,最終有 4 千多人染疫,3 千 6 百多人因此身亡,就連當時負責收治、隔離傳染病的「台北避病院」院長本田祐太郎也不幸殉職。

過街老鼠還能人人喊打,但看不見的鼠疫卻依然難以預防,於是,時任臺灣總督府民政長官的後藤新平特別請來了「鼠疫專家」高木友枝來臺灣。他一舉讓臺灣醫療升級成 2.0 版本,成功撲滅了令人頭痛的鼠疫,到了 1910 年,該年度臺灣因鼠疫死亡的人數一口氣降至僅僅 18 人。

究竟是多麼強大的存在,有如外掛般推動臺灣的公共衛生發展呢?高木友枝在臺灣醫療史上有重要的一席之地,被杜聰明譽為「臺灣醫學衛生之父」。

臺灣總督府衛生課長高木友枝。圖/國立臺灣圖書館

空前成功的霍亂防治經驗

雖說高木友枝是後藤新平在帝國大學唸書時認識的好友,但真正讓後藤新平延請高木來到臺灣的理由,還是著眼於他於傳染病防治本身的強大實力與經驗。

1894 年,中日之間爆發甲午戰爭,隨著戰爭而來的,除了硝煙戰火,更有無數傳染病趁虛而入,當時,高木友枝就曾深入香港進行鼠疫調查。

隔年,日本的軍事用船上爆發霍亂,高木友枝被派往似島臨時陸軍檢疫所擔任事務官,最後製造出了霍亂血清、成功治療了霍亂患者,締造了史上首次用血清治療霍亂的成功案例。

這漂亮的第一仗,建立了高木友枝在公衛領域的名聲,接下來他擔任了各種公衛相關職位,更在 1897 年成為日本代表,前往莫斯科參加萬國醫事會議,以及柏林萬國癩(痲瘋)病會議。

而面對臺灣的鼠疫,高木友枝認真制定了兩大方針:撲滅鼠類、接種疫苗。

雙管齊下撲滅鼠疫

消滅老鼠說起來容易,做起來卻不簡單,高木友枝首先針對船舶、火車等處頒布了相關檢疫辦法,對外部來源進行控管。對內部原有的潛在病原呢,高木友枝則採用了軟硬兼施的方式,除了用獎勵的方式鼓勵大家捕鼠,也會請衛生警察加強規範清潔不合格、或沒有配合捕鼠的家戶,最後則透過重新規劃城市分區,來提升臺灣的衛生條件。

1919 年臺北廳實施家戶大清潔。圖/中央研究院台灣史研究所檔案館

另一方面,高木友枝也全力支持鼠疫疫苗接種計畫,一步步降低感染率與死亡率,最終讓鼠疫逐漸絕跡。後來,高木友枝將這段時間內的研究與行政措施出版成德文著作《臺灣的衛生事情》,為這段歲月留下了光輝的紀錄。

鼠疫病死者與患者統計對照表。圖/國立台灣師範大學台灣史研究所范燕秋

然而,撲滅鼠疫並非高木友枝對臺灣醫療衛生唯一的貢獻,他還有許多影響更加深遠。

為醫之前必先學為人 高木友枝的醫療教育理念

1902 年,高木友枝開始擔任臺灣總督府醫學校的校長。

就任醫學校校長期間,他創立了「臺灣醫學會」,嘗試聯合當時的臺灣醫界力量,為公衛盡一份心力。同時,他還創辦《臺灣醫學會雜誌》,讓大家可以透過刊物去探討西方醫學研究的成果,同時對總督府的衛生政策提出建議。

高木友枝在臺擔任教職時,從不會有種族偏見,也不禁止學生在學校使用母語,用一顆尊重臺灣文化的心,栽培新一代的醫生。同時,他也非常重視學生的品格教育,對每一屆畢業生都會給出同樣的勉勵:

為醫之前,必先學為人。

1912 年前後,臺灣總督府曾意圖逮捕當時從事抗日活動與學生運動的蔣渭水、杜聰明等人。當時他們尚在醫學院就讀,高木友枝身為校長,以「教育獨立」、「校園自治」的理念一肩扛下總督府的壓力,甚至對學生表達自己不反對相關運動的立場。

種種事蹟,都在這些學生心中留下了無法取代的重要形象。

為科學研究奠定基礎建設

除此之外,高木友枝對於當時的臺灣科學研究也奠定了重要的基礎。

當時基礎建設並不發達,臺灣各處仍處於瓦斯與自來水缺乏的時代,要進行實驗可說是非常不便:加熱試管得用酒精燈、想要有壓力的水也得自己生,總之就是十分麻煩。於是乎,高木產生了設立基礎研究機關的念頭,並且拿著草案去找了後藤新平。

計畫很快就取得了共識。1907 年,日本特別撥下了一筆經費,準備成立「臺灣總督府中央研究所」,其下分別有化學部及衛生部,而首任所長正是高木友枝。

日治時期的臺灣總督府中央研究所(簡稱中央研究所)。圖/wiki

1939 年,中央研究所在幾經改制後撤廢,另成立農業試驗所林業試驗所工業研究所熱帶醫學研究所。雖然「中央研究所」不復存在,但其打下的基礎仍成為了臺灣早期學術研究發展最重要的支柱。而部分單位如林業試驗所、農業試驗所亦延續至今,繼續為臺灣做出貢獻。

1919 年高木接到一項令人意想不到的任務。時任臺灣總督的明石元二郎創立了「臺灣電力株式會社」,並制定了當時臺灣最大規模的電力建設案──日月潭水力發電計畫。

這案子有多大,其中出現弊案的可能性就有多大。為了避免這些事情影響工程進度,明石元二郎特別找來了高木擔任社長(沒錯他又一次地空降了),而且,這個位子一做就是十年。

想見識高木友枝的廬山真面目?彰化高中就看得到!

高木友枝在臺灣的期間,充分發揮了一位知識份子的影響力,不僅推動了公共衛生發展、培育了無數重視德行的學生、促成了研究院的誕生、監督了水力發電的開發,更是用一顆溫暖而充滿人道精神的心,溫暖了無數學子。

在他過世後,杜聰明等人特別撰文表達自己對他的懷念,黃土水更特別為他雕塑了半身像,如果你想瞧瞧高木友枝這位一代宗師的真面目,可以去彰化高中的博物館看看這件國寶級作品喔!

參考文獻

  1. 張名榕。高木友枝典藏故事館落腳彰化高中,教者之愛打動人心。台電月刊,677 期。https://tpcjournal.taipower.com.tw/article/3203 
  2. 林炳炎。重塑台灣醫校長高木友枝博士的雕像。https://www.lib.ntu.edu.tw/CG/resources/U_His/academia/no2-ch3.htm
  3. 鈴木哲造(2007)。日治初年台灣衛生政策之展開——以「公醫報告」之分析為中心。臺大歷史學報,37,143-180。https://www.his.ntnu.edu.tw/publish01/downloadfile.php?locale=en&periodicalsPage=3&issue_id=33&paper_id=193
  4. 鼠疫:疾病介紹。衛生福利部疾病管制署。https://www.cdc.gov.tw/Category/Page/iCortfmEfVKqcZMeDdEuDA
  5. 陳恒安(2017)。漱口水、高木友枝與《台灣的衛生狀況》。科技大觀園。https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=d9810238-4efa-47b0-a619-94d98a603f77
  6. 莊永明(1998)。台灣醫療史: 以臺大醫院為主軸。遠流出版,頁 711。
  7. 林炳炎(2013)。高木友枝醫學博士的學術生涯。https://pylin.kaishao.idv.tw/wp-content/uploads/2013/11/20131114drtakaki.pdf
  8. 劉仁翔(2020),明治初期岩田技師的臺灣中部地區鼠疫調查報告。國史館臺灣文獻館電子報,197 期。https://www.th.gov.tw/epaper/site/page/197/2729
  9. 避病院。維基百科,自由的百科全書。https://zh.wikipedia.org/wiki/避病院
  10. 范燕秋。醫療衛生歷史篇:日治時期。國家圖書館,臺灣記憶展覽。https://tme.ncl.edu.tw/tw/醫療衛生歷史篇#h1-
  11. 劉士永。日治時期臺灣的防疫與衛生行政。https://www.ntl.edu.tw/public/Attachment/1119143647100.pdf
  12. 魚夫。中央研究所──日治時期臺灣學的重鎮。天下,獨立評論。https://opinion.cw.com.tw/blog/profile/194/article/4481?fbclid=IwAR2kIbtcHiFZizClhLs0RxSs7GjDNwA9POujMN-YLkmI7Gq5i3RRMYfwxj4
所有討論 1
PanSci_96
1036 篇文章 ・ 1356 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
懷念逝去之人而感傷?其實悲傷是為了讓你與他人再次產生聯繫!——《悲傷的的大腦》
臉譜出版_96
・2023/03/26 ・2535字 ・閱讀時間約 5 分鐘

渴求過去的心態

我與眾多喪親者做了大量訪談;其中一次,一位年長的出色男性坐在小桌子另一端與我談話,他的妻子幾年前過世了。

他對我說了過去夫妻之間的暖心故事,告訴我他們中學時認識的過程,之後年紀輕輕就結了婚,生了兩個孩子一起建立美好的家庭。他訴說著過去的家庭生活有多快樂、他有多愛她。

說起妻子因病去世時,他就有點忍不住淚水了,在她過世前的最後幾週,他陪伴左右,然而最後她還是走了。接著他又說,自己最近認識了一位和妻子很不一樣的女性,對方有著與妻子截然不同的興趣,而且個性比較外向。

對他來說,重新開始約會雖然感覺有點怪,但他覺得和對方在一起的自己充滿了活力。這時他靜了下來,沉思了一陣子後,只說了一句:「我只是想說,以前的我們很好。」他又停頓了下,「而現在這樣也很好。」

他還是相當懷念、渴望逝去的時光。圖/envatoelements

渴求的心情並不是專屬於過去的產物,也不是只會令人緬懷以前的人事物;渴求同時也代表一個人對當下有某些不滿。假如人真的只會對過去產生渴求,那就可以單純花一些時間回憶過去,覺得追憶夠了以後再把注意力轉回當下發生的一切就好。

然而在面對悲傷的時候,眼前的現實可能充滿了痛苦,這也就顯得過去的一切更加美好。假如當下的現實生活真的不是那麼吸引人,或是因為自己根本無法將注意力從過去移開,因此不知道當下能賦予自己什麼,這種渴求的狀態就更可能會不斷持續。

悲傷的盡頭是恐懼嗎?

除了我在前文已提過的悲傷、憤怒和失去一部分自己的感受以外,悲傷也可能令人心裡充滿恐慌。

《卿卿如晤》是C.S.路易斯(C. S. Lewis)在太太過世後寫出的優美作品,他在書中寫道:「我從不知道,悲傷與恐懼竟如此相像。」(No one ever told me that grief felt so like fear.)對我來說,悲傷到一個極致時,確實可以稱得上是恐慌的狀態了。

父親過世後,我沒有孩子、沒有配偶、也不再有父母;在那之後的幾年我都覺得自己與這個世界徹底疏離,過去那些我習以為常的依附關係皆已不復存在。通常在傍晚時分,現實世界中的當下就會引起我的痛苦,而恐慌便成了我面對這些情緒產生的自然反應。

悲傷的心情好似不會停止,甚至轉變成了恐慌。圖/envatoelements

我的心和思緒會如萬馬奔騰一樣高速運轉,同時焦躁難耐地坐也坐不住;在這種恐慌的時刻,唯一能讓我好一點的就是順應身體釋放的腎上腺素,好好動一動身體,因此我通常選擇於夜色籠罩下在社區裡快走。走一走以後我的身體累了,心靈也終於開始感到疲憊,這時我會忍不住流淚,然後慢慢回家。

就我自己的體驗與C.S.路易斯的文字來說,其與神經學家賈克.潘克賽普(Jaak Panksepp)的想法不謀而合。

潘克賽普是情感神經科學(affective neuroscience)這個領域的先鋒,研究的正是情緒的神經運作機制;他堅信能以科學方法和實驗研究動物的情緒,也真的發展出了完整的科學模型,對大腦製造出的各種情緒以及情緒功能提出了解釋。

土桑的溫暖天氣是吸引年長學者造訪的一大誘因,我也因此有幸於二○一七年潘克賽普過世之前,在亞利桑那大學數次聆聽他的演講。大家對他的科學貢獻了解不多,然而其中之一就是神經生物學的悲傷研究。

悲傷與恐懼的身體反應

潘克賽普對悲傷不僅止於學術上的了解──他的女兒在青少年時期因酒駕者肇事而喪命,因此他對悲傷有最切身的經驗。

潘克賽普用全大寫的字母為掌管不同情緒的神經系統命名,如愉悅(JOY)、憤怒(RAGE)以及恐懼(FEAR);掌管失落相關情緒的系統則是恐慌/悲傷(PANIC/GRIEF),從名稱就可以看出這兩種情緒的高度重疊。當然了,悲傷與恐慌的感受並非完全相同,潘克賽普的論述中指的是(一)強烈的悲傷、(二)物種間共通的悲傷感受、(三)尚未經過較高層次大腦皮質處理的悲傷。

他曾記錄下動物與同類被分開時會產生的反應,這些動物會產生更多身體活動,包括心跳與呼吸速率都會上升,同時也會釋放壓力賀爾蒙(例如:皮質醇)、發出求救訊號。潘克賽普在此領域提的焦點是動物發出的求救訊號,甚至有些物種會發出超聲波求救。

潘克賽普也提出了他稱為悲傷解剖學的理論,也就是動物在受到電流刺激時,大腦中互相連結而產生求救訊號的腦區。這些腦區當中就包含了中腦(midbrain)的導水管周邊灰質(periaqueductal gray),位置就在脊髓上方。

動物在感受悲傷時,大腦導水管的灰質會產生活動。圖/envatoelements

在我的第二項神經成像研究中,所有喪親受試者(無論有沒有複雜性悲傷)在看著他們深愛的逝者照片時,導水管周邊灰質都會產生活動;看著陌生人的照片時則沒有這種反應。

恐慌是為了讓自己與他人再產生聯繫

恐慌、身體活動增加、求救訊號都可能會令孤伶伶的動物與其他同類產生接觸;因此我們或許可以想像,恐慌/悲傷的功能就是為了促使動物(包括靈長類)與其他個體接觸;即便落單的個體無法再與原本的照顧者團聚,有其他同類在還是比較能夠提升其存活率。

處於壓力下的動物能透過社交接觸釋放類鴉片物質,不僅能夠舒緩壓力狀態,也能促使牠們學習新的經驗—與其他同類接觸的行為會使動物得到強大的酬賞(也就是體內產生的類鴉片物質),而這種有強烈吸引力的酬賞就會促使動物繼續做出能促發酬賞的行為。

假如我們能夠把這種生理機制當作獨特的治療機制,那該有多好啊。

——本文摘自《悲傷的大腦:一位心理神經免疫學者的傷慟考,從腦科學探究失去摯愛的悲痛與修復》,2023 年 3 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
77 篇文章 ・ 248 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

1
0

文字

分享

0
1
0
你是自願想起那些記憶的嗎?為什麼大腦要我們想起——《悲傷的的大腦》
臉譜出版_96
・2023/03/25 ・2023字 ・閱讀時間約 4 分鐘

記憶的自主性

父親死後我時常花時間回想關於他的回憶,也因此開始質疑心理學家們對侵入性思維的看法,畢竟以我的例子來說,我是自己選擇想起那些回憶的。

丹麥心理學家多爾泰.本森(Dorthe Berntsen)找來近期發生人生重大壓力事件的人,問他們在做白日夢或腦袋放空時會想到什麼;她發現這些人腦袋裡也會出現自主記憶(voluntary memories)(就像我主動回想父親的病床在醫院裡移動的那段回憶一樣),其頻率與非自主記憶(involuntary memories)(就像父親在廚房烹飪的回憶突然出現在我腦海裡)出現的頻率相當。

因此,雖然非自主記憶確實比較令人難過,但它們出現的頻率其實並不比自主記憶高。與生命一帆風順時相比,人們面對充滿壓力的變故時會比較常回想起上述兩種記憶,而我們會覺得非自主記憶比較常出現其實是因為它更令我們困擾,因為這些記憶帶來的情緒令你我措手不及。

當我主動向親朋好友們訴說父親耍幽默的故事時,雖然一樣會有強烈的情緒,但因為那是我「選擇」要提起的回憶,所以我能夠事先準備好面對情緒帶來的影響。

有時候我們自己選擇想起某些回憶。圖/envatoelements

自主記憶與非自主記憶之間的差別也讓我們察覺人類大腦與動物大腦(例如田鼠)之間的差異;人類比動物多出了近一公斤的大腦皮質,最重要的是,這些多出來的皮質都位於人類前額與太陽穴之間的額葉(frontal lobes)。大腦的前額腦區為人類所獨有,有協助人類調節情緒等功能。

各位或許還記得,人類大腦提取記憶的方式就像在烤蛋糕一樣,必須從不同腦區集結各種材料;必須用到海馬迴及其周遭用來儲存與回憶相關的各種線索的腦區,大腦同時也得從負責掌管視覺或聽覺的腦區提取內容,以增加思緒的真實性,讓大腦產生想像的同時也具備視覺與聽覺效果。

無論是自主記憶或是非自主記憶,都必須運用到這些腦區,而本森為了搞清楚這兩種記憶之間的差異,仔細比較了受試者在產生這兩種記憶時的功能性磁振造影結果。自主記憶與非自主記憶不同之處在於,它是人類自己主動提取的記憶,因此會運用到額葉外側接近頭骨的腦區──背外側前額葉皮質(dorsolateral prefrontal cortex)。

前額葉會參與人們自主想起的記憶。圖/envatoelements

偶然間想起的記憶總特別難過?

我們需要具備神經心理學家所稱的「執行功能」(executive functions)才能刻意想起某件事情,這是人類特有的能力;這種能力就像企業的執行長一樣,負責組織、指示大腦的其他腦區擔負各種任務。

無論是刻意提取記憶片段,還是回憶不由自主湧上心頭,人類大腦製造記憶的方式大致相同;其中的差別之處在於,如果是刻意提取記憶,人類額葉掌管的執行功能會參與運作,負責指揮大腦想起某一段記憶。

無論是大學畢業典禮、第一個孩子誕生的瞬間,或是結婚的那一天,在這些人生大事過去後的幾週、幾個月甚至是幾年後,就算沒有刻意回想,每個人都有可能突然想起那些時刻,思緒突然出現在腦海裡。也許你當下只是在做一些平凡單調的日常瑣事,或是當天剛好看到某些有關的事物,這些美好的回憶都很有可能驟然躍上心頭。

侵入性思維由令人情緒極度激動的事件而起,當然也可能包括有正面意義的事件──並非只會因為極度負面的事件而產生。但因為關於負面事件的侵入性思維總是特別令人難過,人們才會在出現這些討厭的回憶時格外擔心自己的心理健康。

非自主記憶引來的悲傷總是無法堤防,讓我們更加難過。圖/envatoelements

大部分情況來說(特別是在面對強烈的悲傷時),侵入性思維其實只是大腦的自然反應,目的是要讓我們記住這些重要、充滿情感波動的事件。從大腦的角度來看,人類大腦好像是一再讀取關於失落的思緒,然而大腦對於人們生命中重要的正面事件同樣也是這麼做的。

在猝不及防的情況下,思緒與感受突然被悲傷佔據確實令人非常難受,但大腦其實是為了了解情況才會重新讀取這些記憶,就像你我對親友重新訴說某些記憶與故事一樣,我們只是想更深入了解這些人生片段。

如果能從這個角度看待侵入性思維,下一次這種狀況再次發生時,你就不會覺得有什麼大不了了,畢竟大腦這麼做確實有其緣由;侵入性思維的閃現因此感覺起來更具實際功能,不再像過去一樣,只讓我們覺得自己沒有好好駕馭心中的悲傷。

——本文摘自《悲傷的大腦:一位心理神經免疫學者的傷慟考,從腦科學探究失去摯愛的悲痛與修復》,2023 年 3 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
77 篇文章 ・ 248 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。