0

2
0

文字

分享

0
2
0

「統計不就是按按計算機嗎?」讀統計系到底能做什麼?

活躍星系核_96
・2017/01/21 ・3510字 ・閱讀時間約 7 分鐘 ・SR值 493 ・六年級

-----廣告,請繼續往下閱讀-----

文/黃大維|目前在台灣大學就讀統計碩士學位學程。我的研究領域是特徵表達與降維分析、序列決策模型、以及財務時間序列,我喜歡用商業的觀點切入大數據與資料科學!

統計系到底在學什麼?圖/pixabay, CC0
統計系到底在學什麼?圖/pixabay, CC0

我曾經在在粉絲專頁「大鼻觀點」針對 ptt 八卦版的一篇問卦文「[問卦] 統計系是文組最強科系嗎」分享一些看法,反映出乎意料的好。一般大眾好像對於「統計」有著不少迷思,像是以前有一次剪頭髮,設計師問我讀什麼科系,我說我讀的是統計,設計師居然回答:「喔,跟會計差不多對嗎?」當下白眼真的要翻到後腦勺了 XD

泛科學一直有在經營的一個區塊叫「科學教育,科學嗎?」,裡面會不時邀請一些相關科系的學生來談他們自己科系的各種大小事,也是給將來要選系的高中生一些了解這個科系的參考。因此我決定也寫一篇文章,來跟大家分享我在統計這個領域打混一陣子的心得。

統計不就是按計算機嗎?你所不知道的統計

357px-casio-fx115es-5564
許多人聽到「統計」,第一件事情就是想到「按計算機」。事實上,統計的本質並不是計算、也不是數學。圖/By Loadmaster David R. Tribble, 創用CC 姓名標示-相同方式分享 3.0, wikimedia commons

首先,我想先談談「統計不是什麼」。許多人聽到「統計」,第一件事情就是想到「按計算機」,就算大學有修統計課程的學生,課程也不外乎是按計算機算算平均數、標準差,頂多算點變異數分析或回歸。事實上,統計的本質並不是計算、也不是數學,統計界的大師 John Tukey 說過:

-----廣告,請繼續往下閱讀-----

“Statistics is a science, not a branch of mathematics, but uses mathematical models as an essential tool.”

統計學會讓一般人認為是數學的主要原因,是需要用到大量的數學、程式設計、科學計算等做為解決問題的工具。因此,對於接觸統計不深的人時常會以為統計是數學的一個分支,其實並不是如此。

那麼,統計的本質是什麼呢?我非常喜歡 R Studio 首席資料科學家 Hadley Wickham 的詮釋:

“Statistics is an important tool in the data analysis/science toolbox. Statistics provides a coherent framework for thinking about random variation, and tools to partition data into signal and noise.”

從他的話中我們可以知道,「統計」其實有兩個功能:一是作為在充滿隨機性(randomness)的世界中,思考資料變異(data variation)的架構,二是作為從資料變異區分出真實信號(signal)與隨機雜訊(noise)的工具。 如果用更一般化的講法,就是提供分析資料的思考架構,從具有隨機性的資料中找出重要的、有意義的資訊,並將協助各個領域的人將這些資訊凝鍊成真正的「知識」。

84967293_6e4c727e4d_z
「統計」其實有兩個功能:一是作為在充滿隨機性的世界中,思考資料變異的架構,二是作為從資料變異區分出真實信號與隨機雜訊的工具。圖/By duncan c @ flickr, CC BY-NC 2.0

接下來,我想了一些時常會有人問的問題,我想要花點篇幅談一談。

-----廣告,請繼續往下閱讀-----

疑問 1:統計系是文組還是理組?

有很多人會想要問:統計系是文組還是理組?我覺得其實很難界定,文組並不是純粹只有閱讀、思考與寫作,像是「統計機器翻譯」(Statistical Machine Translation)就是一個跨領域的議題,需要語言學家、電腦科學家、數學家、統計學家一起來解決。而「財務工程」雖然屬於商學院,但本質與電腦科學、統計學、數學等密切相關,所以統計系大多掛在不同的學院底下,有的學校會掛在商學院下、有的會掛在理學院下、也有的會掛在工學院底下。所以,如果是要用文組/理組來分的話,其實很難直接把統計分在其中一個底下。

不過,如果以必備技能來看的話,統計可能比較像是一般工學院或理學院的學生。首先,統計非常吃重數學,尤其是機率與數學分析(主要是實分析)的基礎要很好,才能夠了解怎麼樣用數學的工具去架構問題。二是統計很吃重程式設計的能力,我們不會負責去做系統架構或是前端介面,但我們非常倚賴運用程式工具去整理、運算並分析資料,因此寫程式是不可避免的。三是我們最好要對某個/某些特定領域有足夠的了解,統計不是一個可以引領一代人命運的學問,而是在方向確定後建立穩固根基並持續發展的工具,因此我們通常的角色支援某個領域的專家將他們的專業往前推進,此時你對於你支援的領域要有一定的認識才能發揮所長,將統計模型運用於這些領域問題中。

疑問 2:統計系畢業之後可以幹嘛?

《哈佛商業評論》將資料科學家評為 21 世紀最性感的職業,因此讀統計的前景相當看好。其實統計系畢業之後的發展方向很多,金融、工程、消費品、製造、行銷等各個領域都很需要量化分析的人。

然而我必須跟大家講兩個個現實。首先,因為台灣強勢產業的因素,統計系畢業的學生往往是去(1)金融業(2)藥廠(3)工業製程 做統計分析師,這些行業給的起薪都不錯,但你如果想做物流、電商、應用程式的話,台灣每年的缺滿有限的,必須有往外走的決心。

-----廣告,請繼續往下閱讀-----

此外,如果大學你讀的是統計,你可能會跟數學系畢業生遇到同樣的難題,容易找不到畢業之後的方向。但你有了這些統計工具之後,其實很容易轉往其他領域。因此我會建議如果未來想念統計/你正在念統計系,最好輔系或雙主修一個未來就業時你希望投入的領域。如果你想做產品中數據模型的建置者,輔個資工/資管學學軟體設計是很重要的;如果你想做計量交易員,對於債券、股票、期貨、衍生性商品、總體經濟的了解會很有幫助;如果你想去藥廠做統計分析師,對臨床試驗有一定的認識將會幫助很大。

重點在於,你必須找到你運用這些方法的領域,並對這些領域有一定的了解,千萬不要有「我進去再學」就好的心態,因為對於原本就在該領域深耕的人來說,「統計方法」也是可以進去在學的。

疑問 3:統計要在台灣念還是在國外念?

這個問題是個假議題,台灣也有很好的統計學家與教育,如果想補 programming 的技能的話也可以去資工那邊修課,其實要不要出國的問題是取決於「你想要獲得什麼」,以及很現實的「出國讀哪一所學校」。其實要讀統計我覺得重點是在於——你把自己當成一個統計系學生還是統計學家。

我在台灣幾所很好的學校上過統計系所的課,大部分都是在教怎麼使用統計軟體或是推導統計理論,在碩班聽到老師上課說「你們碰實際的資料就會知道很有趣」時,我第一個反應就是:實際資料難道是要讀到碩班才開始碰的嗎?另外,很多時候我們會太過著重於要用哪個 model 去解,但其實重點是「你要解決什麼問題?」將領域的問題重新定義成資料分析問題是非常重要也非常有價值的能力,但說真的這很難在課堂上學到。

-----廣告,請繼續往下閱讀-----

我不覺得上面的問題是出在教授,或是在台灣還是在國外,其實根本問題是在學統計時,我們有沒有不斷的去探索不同的領域,不停思考這些領域的問題我們怎麼樣轉成資料分析的問題,怎麼樣去設計實驗或蒐集資料,運用哪些模型才能夠解決問題,最後怎麼樣視覺化分析得到的 insight,並用一般人可以理解的語言說給不懂統計理論的人。這串過程必須反覆的練習,才能夠讓自己資料分析的功力不斷進步。

小結:如果想當資料科學家,統計是個好選擇!

雖然資料科學的夯度最近小輸人工智慧,但不要忘了《紐約時報》曾經如此評論「資料科學」(Data Science):

“This hot new field promises to revolutionize industries from business to government, health care to academia.”

可見這個領域絕對是前景大好。那麼如果想做個資料科學家,是不是一定要讀統計呢?我個人不負責任的認為,如果你想做的資料科學家是分析事情的關連與因果,找出問題的本質,以及透過數據做出更好的決策,我相信統計是一個不錯的選擇。當然,如果你想要做機器學習跟預測科學,統計也有不少人在做,但 computer science 可能是另外一個很棒的選擇,如果能夠跨統計與 CS 兩個領域的話更好。

14276846526_6fc181cd56_z
如果想當資料科學家,統計是個好選擇!圖/By NASA Goddard Space Flight Center @ flickr, CC BY 2.0

資料科學家需要領域知識、程式設計、數學與統計三大能力,常有人會問我說「當資料科學家的數學統計和程式能力一定要很好嗎?」我給自己的答案是:這兩項能力越強,能做的事情越多,老實講如果這兩個領域的能力都不好的話,那怎麼能說是個資料科學家呢?所以說,要走資料科學的路,你可以從三大能力中挑一項能力專精,但另外兩樣也不可以太差,才能夠走的長久!

-----廣告,請繼續往下閱讀-----

本文同步刊登於作者部落格「大鼻觀點」,喜歡他的文章也可以追蹤同名臉書粉絲專頁

文章難易度
活躍星系核_96
752 篇文章 ・ 121 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
備審卡關、筆記好難整理?國高中生必學,一個 prompt 讓 AI 幫你做科系探索!
泛科學院_96
・2024/04/13 ・450字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

這集來分享學生必學的 AI 工具與操作!

本來是想做寫作業的 AI prompt,但肯定會被罵翻……因此這次聚焦在如何用 AI 協助整理筆記、職涯探索、製作歷程檔案等事情上。

廢話不多說,讓我們開始吧 !

最後,附上本支影片的學習懶人包:

如果你有更多想要學習的操作技巧,歡迎在下面留言跟我們敲碗~有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
28 篇文章 ・ 38 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

-----廣告,請繼續往下閱讀-----
  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

-----廣告,請繼續往下閱讀-----

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

-----廣告,請繼續往下閱讀-----
對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
我的身高有特別矮嗎?為什麼大多數女性身高都「差不多」!——《統計,讓數字說話》
天下文化_96
・2023/03/04 ・2634字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是常態分布?

圖 13.3 和 13.4 裡的密度曲線,同屬一族特別重要的曲線:常態曲線。圖 13.7 再呈現了兩個常態密度曲線。常態曲線都是對稱、單峰、鐘形的,尾部降得很快,所以我們應該不會看到離群值。由於常態分布是對稱的,所以平均數和中位數都落在曲線的中間位置,而這也是尖峰所在。

常態曲線還有一個特別性質:我們可以用目測方式在曲線上找到它的標準差。對大部分其他的密度曲線,沒有法子這樣做。做法是這樣的。想像你要從山頂開始滑雪,山的形狀和常態曲線一樣。起先,你從山頂出發時,往下滑的角度非常陡:

幸好,在你還沒有直直墜下之前,斜坡就變緩了,你愈往下滑出去,坡度愈平:

曲率(curvature)發生改變的地方,是在平均數兩側、各距平均數一個標準差的位置。圖 13.7 的兩條曲線上都標示出了標準差。你如果用鉛筆沿著常態曲線描,應該可以感受到曲率改變的地方,進而找出標準差。

-----廣告,請繼續往下閱讀-----

常態曲線有個特別的性質是,只要知道平均數及標準差,整條曲線就完全確定了。平均數把曲線的中心定下來,而標準差決定曲線的形狀。變動常態分布的平均數並不會改變曲線的形狀,只會改變曲線在 x 軸上的位置。但是,變動標準差卻會改變常態曲線的形狀,如圖 13.7 所示。標準差較小的分布,散布的範圍比較小,尖峰也比較陡。以下是常態曲線基本性質的總結:

常態密度曲線的特性

常態曲線(normal curve)是對稱的鐘形曲線,具備以下性質:

  • 只要給了平均數和標準差,就可以完全描述特定的常態曲線。
  • 平均數決定分布的中心,這個位置就在曲線的對稱中心。
  • 標準差決定曲線的形狀,標準差是指從平均數到平均數左側或右側的曲率變化點的距離。

為什麼常態分布在統計裡面很重要呢?首先,對於某些真實數據的分布,用常態曲線可以做很好的描述。最早將常態曲線用在數據上的是大數學家高斯(Carl Friedrich Gauss, 1777 – 1855)。

天文學家或測量員仔細重複度量同一個數量時,所得出的量測值會有小誤差,高斯就利用常態曲線來描述這些小誤差。你有時候會看到有人把常態分布叫做「高斯分布」,就是為了紀念高斯。

-----廣告,請繼續往下閱讀-----

十九世紀的大部分時間中,常態曲線曾叫做「誤差曲線」,也就因為常態曲線最早是用來描述量測誤差的分布。後來慢慢發現,有些生物學或心理學上的變數也大致符合常態分布時,「誤差曲線」這個名詞就不再使用了。1889 年,高騰(Francis Galton)率先把這些曲線稱做「常態曲線」。高騰是達爾文的表弟,他開拓了遺傳的統計研究。

常態分布的形狀:鐘形曲線

人類智慧高低的分布,是不是遵循常態分布的「鐘形曲線」?IQ 測驗的分數的確大致符合常態分布,但那是因為測驗分數是根據作答者的答案計算出來的,而計算方式原本就是以常態分布為目標所設計的。要說智慧分布遵循鐘形曲線,前提是:大家都同意 IQ 測驗分數可以直接度量人的智慧。然而許多心理學家都不認為世界上有某種人類特質,可以讓我們稱為「智慧」,並且可以用一個測驗分數度量出來。

當我們從同一母體抽取許多樣本時,諸如樣本比例(當樣本大小很大、而比例的數值中等時)及樣本平均數(當我們從相同母體取出許多樣本時)這類統計量的分布,也可以用常態曲線來描述。我們會在後面的章節進一步細談統計分布。

抽樣調查結果的誤差界限,也常常用常態曲線來算。然而,即使有許多類的數據符合常態分布,仍然有許多是不符合的,比如說,大部分的所得分布是右偏的,因而不是常態分布。非常態的數據就和不平常的人一樣,不僅常見,而且有時比常態的數據還有趣。

-----廣告,請繼續往下閱讀-----

68 – 95 – 99.7 規則

常態曲線有許多,每一個常態曲線都可以用各自的平均數和標準差來描述。所有常態曲線都有許多共同性質,特別要提的是,對常態分布來說,標準差是理所當然的量度單位。這件事實反映在下列規則當中。

68 – 95 – 99.7 規則
在任何常態分布當中,大約有 68% 的觀測值,落在距平均數一個標準差的範圍內。
95% 的觀測值,落在距平均數兩個標準差的範圍內。
99.7% 的觀測值,落在距平均數三個標準差的範圍內。
圖13.8、68–95–99.7規則。圖/《統計,讓數字說話》。

圖 13.8 說明了 68 – 95 – 99.7 規則。記住這三個數字之後,你就可以在不用一直做囉嗦計算的情況下考慮常態分布。不過還得記住,沒有哪組數據是百分之百用常態分布描述的。不管對於 SAT 分數,或者蟋蟀的身長, 68–95–99.7 規則都只是大體正確。

年輕女性的身高常態

年輕女性的身高約略是平均數 63.7 英寸、標準差 2.5 英寸的常態分布。要運用 68 – 95 – 99.7 規則,首先得畫一個常態曲線的圖。圖 13.9 說明了這個規則用在女性的身高上會是什麼情況。

任何常態分布都有一半的觀測值在平均數之上,所以年輕女性中有一半高於 63.7 英寸。

-----廣告,請繼續往下閱讀-----

任何常態分布的中間68%觀測值,會在距平均數一個標準差的範圍內。而這 68 %中的一半,即 34 %,會在平均數之上。所以有 34 %的年輕女性,身高在 63.7 英寸及 66.2 英寸之間。把身高不到 63.7 英寸的 50% 女性也加上去,可以得知總共有84%的年輕女性身高不到 66.2 英寸。所以推知超過 66.2 英寸的人占 16%。

任何常態分布的中間 95% 的值,在距平均數兩個標準差範圍內。這裡的兩個標準差是 5 英寸,所以年輕女性身高的中間 95% 是在 58.7(= 63.7 − 5)和 68.7(= 63.7 + 5)英寸之間。

另外 5% 女性的身高,就超出 58.7 到 68.7 英寸的範圍之外。因為常態分布是對稱的,這其中有一半的女性是在矮的那一頭。年輕女性中最矮的 2.5% ,身高不到 58.7 英寸(149 公分)。

任何常態分布中幾乎所有(99.7%)的值,在距平均數三個標準差的範圍內,所以幾乎所有年輕女性的身高,都在 56.2 及 71.2 英寸之間。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。