0

0
0

文字

分享

0
0
0

在好奇號之前,人類花了多少力氣上金星和火星?—《太空的故事》

三采文化集團_96
・2017/01/12 ・1385字 ・閱讀時間約 2 分鐘 ・SR值 480 ・五年級

對人類來說,前往太空是一項昂貴而且充滿各種危險的旅程。但是機器裝置就不同了。相較於太空人,太空機器的費用較低而且容易維護,只要電源沒有耗盡,它就可以一直執行任務。再者,機器對於冷熱的承受範圍遠大於人類,它們不需要特殊的呼吸設備,也不必擔心暴露在真空之中,而且大多數都不需要返回地球。

事實上,從以前到現在,太陽系的探索任務大多交給機器來執行。這些遙控探測船及機械裝置,都是為了在遠離地球環境的條件下進行太空任務而設計的。科學家可以從地球接收探測船傳送回來的觀測資訊,甚至獲得無人太空船上的實驗成果。

除了地球,太陽系的其他角落究竟有沒有我們可以辨認的生命體存在呢?這是人們一直以來最關心的問題,從地球出發的探測船也在努力為我們尋找答案。早期太空探測船搭載的科學儀器雖然不多,卻足夠偵測各星球上是否有維持生命的必要元素——液態水、碳和氮元素,以及能量來源。

太陽系何處最有可能出現液態水?要有水、冰或水蒸氣,環境溫度應該和地球非常相似,答案顯然是距離地球最近、最容易到達的月球,以及金星和火星。

-----廣告,請繼續往下閱讀-----
從左二到右二,分別是金星、地球、月亮與火星。圖/Scooter20 @ wiki
從左二到右二,分別是金星、地球、月亮與火星。圖/Scooter20 @ wiki

金星比火星更靠近地球,這讓它成為早期太空探索的主要目標。1950 年代末期,隨著微波望遠鏡的發明,科學家偵測出金星表面的溫度非常高,因此不會有液態的水,也幾乎無法讓生物居住。金星的地表環境是否真的如此嚴峻?也許派一艘探測船過去看看,就可以給我們一個確定的答案。

雖然金星距離地球最近,但是它最靠近地球的時候,仍然距離大約 4,000 萬公里,超過地球到月球距離的一百倍。蘇聯在 1961 年進行人類歷史上第一次發射金星探測船的任務,可惜以失敗收場。不久之後,美國就在 1962 年 8 月成功發射水手二號(Mariner 2),並且在同年 12 月從 35,000 公里的高度飛掠過金星表面。在水手二號進入繞行太陽的軌道之前,探測儀器證實了金星的表面溫度超過攝氏 400 度,對一般生物而言確實太熱了。

1962 年發射的水手二號探測器。圖/wiki
1962 年發射的水手二號探測器。圖/wiki

如同金星探測船的遭遇,最初航向火星的探測船也都沒有成功。直到 1965 年 7 月,美國的水手四號(Mariner 4)從距離火星表面 10,000 公里的高度飛掠而過,成為第一架接近火星的探測船;這時它已經在太空中旅行七個月了。

和金星相比,製造適合執行火星任務的探測船就容易多了。火星成為太空探索計畫的重要目標,到目前為止已有超過五十艘探測船前往這個行星。其中雖然歷經過多次失敗,但也多次有重大斬獲,包括美國太空總署送上火星的四輛探測艇。最近一輛是 2012 年登陸的好奇號探測車(Curiosity),而且未來還會有更多造訪火星的計畫。而這些探測船不斷帶給人類驚喜,它們發現證據,證明火星曾經是一個比現在更溫暖且潮濕的地方。它們還發現火星地表下有水的存在喔!

-----廣告,請繼續往下閱讀-----
(點擊看大圖)好奇號探測船
(點擊看大圖)好奇號探測船

《太空的故事》書封

 

 

本文摘自《太空的故事》三采出版。

文章難易度
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
印度登陸月球熱門探測點——月球南極!那裡藏著什麼?為什麼各國爭先恐後?
PanSci_96
・2023/11/11 ・4407字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

你準備好要當月球移民了嗎?

人類再次展開登月競賽,準備重返月球。

今年八月二十三日,在全世界的矚目下,印度登月艇「月船三號 Chandrayaan-3」成功著陸於月球南極附近,展開為期半個月的科學探測任務,也成為人類史上第四個成功軟著陸於月球表面的國家!這更是 21 世紀以來除了中國嫦娥系列之外唯一的成功登月任務。

這次的登陸地點選在月球南極附近。除了月船三號,未來印度與日本合作的月船四號,以及中國的嫦娥七號、嫦娥八號任務,甚至是 NASA 阿提米斯計畫的首次載人登陸,地點也選在月球南極。

-----廣告,請繼續往下閱讀-----

問題來了,月球南極到底有什麼樣的魔力,能讓世界各國如此趨之若鶩?是有挖不完的石油?數不清的黃金?還是外星人留下的秘密裝備?

月球南極有什麼?

從人類的生存、家禽動物的飼養、到植物的灌溉,都脫離不了「水」這個在地球上再常見不過的物質。不僅如此,水電解之後得到的氧氣可以用於呼吸,氫氣則可以做為火箭引擎的燃料使用。想要讓人類走出地球,成為跨行星物種,確保充足的水源供給絕對是最核心的要務之一。

然而,雖然地球上的液態水很多,但正由於我們對水的需求如此龐大,如果要把所有需要的水都從地面用火箭發射進太空,需要的成本將非常驚人。

因此直接開採並使用本來就在太空中的水資源,才是合理且經濟的做法。沒錯,各國在將人類送上登月前,先將目光鎖定在了月球南極,關鍵就是要尋找「水」。

-----廣告,請繼續往下閱讀-----

如果月球上有水,不僅能幫助人類在月球建立起永久基地。月球,更將成為人類航向廣袤星海的第一片綠洲。

可是,缺乏大氣保護、日夜溫差超過兩百度的月球表面,真的會有水存在嗎?

由於缺乏大氣層,液態水在月球上要嘛會因為蒸發而散逸,要嘛會因為低溫結成水冰,很難以液態穩定存在。而即使是固態的水冰,也會在炙烈的陽光下昇華,因此月球表面的大部分地方是幾乎沒有水的。

但大家可以想像一下,月球的公轉軌道與地球繞太陽公轉的黃道面幾乎平行,夾角只有 5.145°。也就是說,月球不論在哪個位置,陽光總是直射在月球赤道附近。如果此時月球的南極點剛好有個向下凹陷,而且足夠大、足夠深的隕石坑,那麼在隕石坑之中的陰影區,就永遠不會照射到陽光。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

這些地方被稱為「永久陰影區 Permanently Shadowed Areas」。由於不會受到陽光照射,因此永久陰影區附近的水冰,能夠持續存在數十億年的時間。

但是,雖然有「保存」水冰的條件,關鍵是永久陰影區中真的有水冰存在嗎?如果有,含量又有多少呢?這時,各國的探月任務就接手上場了。

月球南極真的有水嗎?

這些探月任務可不是一時興起,因為過去「月球上沒有水」的印象可是深植人心。直到 1990 年代開始,科學家才陸陸續續從越來越多月球探測器的資料中,發現水可能存在的蛛絲馬跡。

其中一次重大的進展發生在 2009 年。當時,NASA 使用擎天神五號火箭,同時發射了「月球勘測軌道飛行器 LRO」以及「月球坑觀測和感測衛星 LCROSS」兩個探測器。前者是一顆繞月衛星,後者則是一個撞擊用探測器。

-----廣告,請繼續往下閱讀-----

在發射升空之後,NASA 首先讓 LRO 與火箭分離,並進入月球軌道。接著,還連在火箭第二節上的 LCROSS,則跟著第二節火箭一起朝著月球南極的永久陰影區之一——卡比厄斯環形山飛去。在撞擊前數小時,LCROSS 與第二節分離,並讓第二節火箭以每秒 2.5 公里的高速,直直撞入永久陰影區,激起大量的月表物質。LCROSS 則直直飛入其中,檢測其中的物質成分。並在六分鐘後,同樣撞擊於月球表面。但就在這短短的六分鐘的犧牲打中,LCROSS 收集到的資料向科學家展示了,月球南極的永久陰影區中不僅確定有水冰的存在,更有汞、鎂、鈣、銀、鈉等其他諸多有用的物質資源。

2009 年 6 月 18 日至 2009 年 10 月 9 日 LCROSS 軌跡模擬動畫。圖/wikimedia

有了 LCROSS 的資料,再加上其他月球探測器,像是克萊門汀號、月船一號、LRO 等等,提供各種遙測資料,人類終於能掌握月球表面有水存在的證據。

時間回到現在,月球表面-尤其是月球極區的永久陰影區中,有水冰的存在已經是科學家的共識。但是這些水冰具體有多少,能否支撐人類在月球極區建立太空基地呢?這就只能實際派出登陸艇前往一探究竟了。

到月球南極尋找水冰吧!

可惜的是,8 月 23 日成功在月球上著陸的月船 3 號和攜帶的月球車 Pragyan,在 9 月 2 號和 4 號就入休眠,推測可能是因為無法承受極低溫環境,至今還未能重新喚醒。

-----廣告,請繼續往下閱讀-----
Pragyan 登陸月球。圖/wikimedia

在未來兩年的月球極區無人探測任務中,NASA 的 VIPER 任務可以說是最值得期待的另一項任務。VIPER 全名為月極揮發物調查漫遊車,是 NASA 有史以來第一台「無人月球車」,同時也是 NASA「商業月球載酬服務 CLPS」系列任務的一員。CLPS 和過去的太空任務不同,是由 NASA 提供科研載酬,由商業公司提供載酬的發射、巡航、著陸等服務。本次 VIPER 任務選定的商業夥伴是美國的 Astrobotic Technology 公司,VIPER 探測車將會乘坐該公司的 GRIFFIN 登陸器降落在月球南極,透過各種儀器勘查月球極區揮發份的組成與分布。

這台重 430 公斤,體積與高爾夫球車相當的 VIPER ,身上塞有四個主要儀器。

首先是中子光譜儀,它會藉由量測月球表面中子輻射的能量分布,了解地底下氫原子的分布狀況,從而推測水冰的含量。

第二,近紅外光揮發份光譜儀,它會以近紅外光燈照射月表,並從揮發份的光譜分析它的化學組成,同時也能判斷水是以結晶、非晶質的冰,或是氫氧根離子的形式存在。

-----廣告,請繼續往下閱讀-----

第三,質譜儀,能藉由電場分離不同荷質比的物質。除了能知道月表有哪些元素以外,還能分辨氘與氫、氧-18 與氧-16 等不同同位素的含量,對分析水的來源至關重要。

第四個儀器名為 TRIDENT(The Regolith and Ice Drill for Exploring New Terrain),縮寫很酷,名字很長,但簡單來說就是一個裝有溫度計的鑽頭。可以從月面下一公尺處鑽取一段十公分長的岩芯,為前面幾個儀器提供樣品。

除了這些科研儀器以外,VIPER 上還有一對立體視覺攝影機,能夠拍攝具有距離感的照片,為探測車的導航提供參考。

VIPER 原型機。圖/wikimedia

有了 VIPER,NASA 還必須想好要把珍貴的探測車派到何處進行調查,才能盡可能發揮他的潛能。除了理所當然地要放在可能有水的地方之外,地表的起伏與材質也有要求,比如太陡峭的山壁顯然就不是個好選擇。同時探測的地點,還必須可以和地球建立通訊。

-----廣告,請繼續往下閱讀-----

更重要的是,由於 VIPER 是太陽能驅動的探測車,探測地點不可以長時間缺乏日光,否則探測車會不僅會因為缺乏電力,還會因為長時間處於酷寒環境中而壞掉。進入休眠的月船三號,就是因為設計上就沒有為度過月球寒夜做準備,因此任務的極限時間一開始就限制在兩週左右。綜合以上條件,科學家選定了月球南極 Nobile 隕石坑西方的高地作為 VIPER 任務的地點。這裡雖然不是嚴格意義上的永久陰影區,但是滿足有日照,且時間足夠短到允許地底下有水冰的存在。

為了有充分的時間進行探索,VIPER 設計時就有考慮探測器的電力與保溫,可以透過三個休眠時期度過月球的夜晚,執行至少一百天的任務。在這一百天中,VIPER 將會調查隕石坑周圍,了解到底有多少水冰和二氧化碳、二氧化硫等揮發物,為將來的登月計畫鋪路!

要前往其他星球甚至離開太陽系,比起地球,擁有較低重力的月球,一直被認為是人類出發太空的前線基地。人類想要成為跨行星物種,水則是絕對不可或缺的關鍵資源。而經過數十年的研究,科學家終於在月球發現可能蘊藏大量水冰資源的地方。我們離移民月球或其他行星,又更靠近了一步。

就讓我們一起期待這些探測器們,幫助我們揭開月球南極的神秘面紗吧。

跟大家說個小趣聞,月船三號著陸之後,印度為了慶祝任務成功而將月船三號的登陸點命名為「濕婆神之力 Shiv Shakti」。那如果今天是你的探測器成功登月了,你會想幫登陸地點取什麼名字呢?留言與大家分享吧!

最後也想問問大家,如果人類真的確保水源,並在月球南極建立起了月球永久基地,你會想移民過去嗎?

  1. 不只想,我還想接著去火星跟太陽系外呢
  2. 去旅遊的話剛剛好,我想去找露西和大衛約會的地方聖地巡禮
  3. 先等等,說不定月球背面,還有外星人在等著我們呢

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1225 篇文章 ・ 2319 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
0

文字

分享

1
2
0
如果整個地球由質子構成,月球由電子構成,那會怎樣?——《如果這樣,會怎樣?2》
天下文化_96
・2023/04/26 ・2141字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

如果整個地球都由質子構成,而整個月球都由電子構成,那會怎樣?
——諾亞.威廉斯(Noah Williams)

質子地球,電子月球

這可能是我寫過最具破壞性的假設情境。

你可能會想像電子月球繞著質子地球運行,有點像是巨大的氫原子。某方面來說,這還有點道理;畢竟,電子繞著質子運行,而衛星繞著行星運行。事實上,原子的行星模型曾流行一時(不過,拿來解釋原子竟然不太管用)。

如果你把兩個電子放在一起,它們會想要分開。電子帶負電,而來自電荷的排斥力比將它們拉在一起的重力強了大約 20 個數量級。

如果你把 1052 個電子放在一起(構成月球),它們會劇烈的互相排斥,以致每個電子會被大到不可思議的能量推開。

-----廣告,請繼續往下閱讀-----

事實證明,對諾亞假設的「質子地球和電子月球」情境來說,行星模型更是大錯特錯。月球不會繞著地球運行,因為它們根本沒有機會影響彼此;使兩者各自分別炸開的力量,會遠大於兩者之間的任何吸引力。

如果暫時忽略廣義相對論(等一下會回來談),我們可以算出,來自這些電子相互排斥的能量,足以使它們向外加速到接近光速。將粒子加速到那樣的速率並不少見;桌上型粒子加速器(例如映像管螢幕)可以將電子加速到光速的相當比例。

但是,諾亞月球的電子所攜帶的能量,會遠遠大於普通加速器中的電子所攜帶的能量。它們的能量會超過普朗克能量的數量級,普朗克能量本身則是比最大的加速器中,所能達到的能量又大了很多數量級。換句話說,諾亞的問題遠遠超出普通物理學的程度,帶我們進入到量子重力與弦理論之類的高等理論領域。

所以我聯繫了尼爾斯.波耳研究所(Niels Bohr Institute)的弦理論科學家基勒博士(Dr. Cindy Keeler),請教她關於諾亞的假設情境。

-----廣告,請繼續往下閱讀-----

基勒博士同意,我們不應該信賴任何涉及「在每個電子中放這麼多能量」的計算,因為這遠遠超出加速器測試的能力範圍。「我不相信粒子能量超過普朗克尺度的任何事情,」她說。「我們實際觀測到的最大能量存在於宇宙射線中;我認為比大型強子對撞機大了差不多 106,但還是離普朗克能量很遠。身為弦理論科學家,我很想說會發生什麼關於弦理論的事情——但說老實話,我們也不知道。」

幸好,故事還沒結束。還記得我們先前決定忽略廣義相對論嗎?嗯,這是「帶入廣義相對論反而使問題更容易解決」的罕見情況之一。

在這種情境下,存在巨大的位能——使所有這些電子遠離彼此的能量。這樣的能量會扭曲空間和時間,和質量一樣。結果證明,電子月球中的能量大約等於整個可見宇宙的質量與能量總和。

相當於整個宇宙的質能集中在(相對較小的)月球的空間裡,會使時空強烈扭曲,甚至會比那 1052 個電子的排斥力還要強。

-----廣告,請繼續往下閱讀-----

基勒博士斷言:「沒錯,黑洞。」但這可不是普通的黑洞,而是帶有大量電荷的黑洞。為此,你需要一組不同的方程式——不是標準的史瓦西(Schwarzschild)方程式,而是萊斯納—諾德斯特洛姆(Reissner-Nordström)方程式。

萊斯納—諾德斯特洛姆方程式比較了向外的電荷作用力和向內的重力之間的平衡。如果來自電荷的向外推力夠大,黑洞周圍的事件視界可能會完全消失。那樣會留下密度無限大的物體,光可以從中逸出——這就是所謂的裸奇點(naked singularity)。

一旦有了裸奇點,物理學就會開始分崩離析。

量子力學和廣義相對論給出荒謬的答案,甚至是不同的荒謬答案。有人認為,物理定律根本不容許出現這種情況。正如基勒博士所言,「沒有人喜歡裸奇點。」

-----廣告,請繼續往下閱讀-----

以電子月球的例子來說,來自所有這些電子互相排斥的能量會非常大,以致重力會獲勝,而奇點會形成正常的黑洞。至少,某方面來說是「正常的」;它會是和可觀測宇宙一樣大的黑洞。這個黑洞會導致宇宙塌縮嗎?很難說。答案取決於暗能量是怎麼回事,沒有人知道暗能量是怎麼回事。

但就目前而言,至少附近的星系是安全的。由於黑洞的重力影響只能以光速向外擴展,因此我們周圍的大部分宇宙仍會天下太平,對我們荒謬的電子實驗毫不知情。

——本文摘自《如果這樣,會怎樣?2:千奇百怪的問題 嚴肅精確的回答》,2023 年 3 月,天下文化出版,未經同意請勿轉載。

所有討論 1
天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。