0

0
0

文字

分享

0
0
0

天文學家公布首張暗物質地圖

臺北天文館_96
・2012/01/15 ・842字 ・閱讀時間約 1 分鐘 ・SR值 566 ・九年級

蘇格蘭愛丁堡大學(University of Edinburgh)天文學家Catherine Heymans和加拿大英屬哥倫比亞大學(University of British Columbia)Ludovic Van Waerbeke等人,首度公布觀測到的暗物質在大尺度空間中的分布圖,呈現在約10億多光年的空間中,由暗物質和星系所組成、錯綜複雜的宇宙網絡。

Heymans等人領導的計畫稱為「加-法-夏望遠鏡重力透鏡巡天計畫(Canada-France-Hawaii Telescope Lensing Survey,CFHTLenS)」,主要分析分析加-法-夏望遠鏡宇宙遺寶巡天計畫(Canada-France-Hawaii Telescope Legacy Survey)的觀測資料。他們分析了4個不同天區、共約1000萬個星系影像,研究這些星系所發出的輻射到地球之前,因受到大團暗物質「重力透鏡效應(gravitational lensing)」影響所造成的變形程度。這個巡天計畫前後執行了5年,利用廣角相機MegaCam進行拍攝,這個相機的視野廣達1度×1度,像素高達340百萬像素(Megapixel)。這個計畫中分析的星系大都位在離地球約60億光年遠的宇宙空間中,相當於大霹靂至今、一半的宇宙年齡之處。

The densest regions of the dark matter cosmic web host massive clusters of galaxies. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration.暗物質這種東西,看不到,但可以「感覺」得到,因為它與一般物質有重力交互作用;從左圖中可見,暗物質最密集的地方,通常也是大型星系團所在之處。根據以前電腦模擬的結果,由於暗物質具有重力,不論朝向宇宙那個方向,暗物質都應該與一般物質一樣,會連結形成龐大的網絡結構;但是因迄今不瞭解暗物質的性質,無法直接偵測暗物質的分布,因此一直不確定這種理論預測是否正確。直到Heymans等人的研究工作,才首度證明這個論點的正確性。

Van Waerbeke表示:能利用這種時空扭曲的方式「看」到原本不可見的暗物質,真是太棒了!不過,瞭解暗物質分布,只是最初步的工作,接下來要瞭解暗物質性質,以及這些神秘物質與目前已知物理學的相關性,才是重點所在。

-----廣告,請繼續往下閱讀-----

資料來源:2012.01.09

  1. Astronomers reach new frontiers of dark matter
  2. Astronomers Witness a Web of Dark Matter

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 39 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

11
4

文字

分享

0
11
4
暗能量是什麼?看不到也摸不著,我們該如何找到它?
PanSci_96
・2023/11/27 ・5683字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

愛因斯坦對於宇宙的理解錯了嗎?

愛因斯坦的廣義相對論重新改寫我們對於時間、空間、與質量的認知,也開啟我們對廣大宇宙研究的大門。

在宇宙物理學如同大霹靂快速發展之時,我們也發現愛因斯坦最早提出的宇宙模型,可能並不完全正確。

正確來說,我們發現我們過去對宇宙的理解,可能真的太少了。少到我們至今所觀測到的所有物質,可能仍不到整個宇宙組成的百分之五。並不是說這些能量或物質距離我們太過遙遠,而是他們可能就在附近,而我們卻全然不了解它。

-----廣告,請繼續往下閱讀-----

其中佔了將近宇宙組成七成的「暗能量」,到底是什麼來頭?我們能徹底了解它,同時能為我們宇宙的存在,提供一個正確的解釋模型嗎?又或者我們能掌握它,來改變宇宙的未來嗎?

暗能量(dark energy)到底是什麼?這聽起來有夠中二的名字,難道是暗影大人的新能力嗎?

其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。

矛盾大對決來了,既然我們摸不到,也看不到,我們怎麼知道暗能量存在,還是僅存在我們的中二想像中呢?我們得將時間回推到最早認為宇宙中有未知能量存在的那個人,他不是別人,就是鼎鼎大名的愛因斯坦。

-----廣告,請繼續往下閱讀-----

1916 年愛因斯坦推導出廣義相對論,解釋物質和能量如何影響時空的彎曲和演化。愛因斯坦當時認為,宇宙應該是靜態的,但是若宇宙中只有物質,宇宙應該會受重力吸引而塌縮,因此需要與反向的能量來平衡重力,這股能量平均地存在在空間當中。愛因斯坦當時引入了宇宙常數 Λ 來平衡他的靜態宇宙模型,而直到非常近期的 1998 年,暗能量 (dark energy) 這個詞才由物理學家麥可.特納提出。

在愛因斯坦之後,著名宇宙學家傅里德曼提出不同看法,他認為宇宙不一定是平衡的,也可能正在收縮或膨脹當中,並根據廣義相對論推導出 Fridemann 方程式,關於 Fridemann 方程式的故事,先前我們有好好介紹過。

暗能量不只存在於理論上的預測,同時期天文學家開始發現我們熟知的銀河系,並無法代表整個宇宙,原來夜空中很多像星雲的天體,其實是遙遠的星系!宇宙遠比以前認為得大的太多了!1929 年,哈伯進一步發現,這些星系竟然正在遠離我們而去,而且距離我們愈遠的星系,遠離的速度就愈快!宇宙竟然真的是以地球為中心,而地球利用強大的排斥力,將其他星系用力向外推開嗎?當然不是,想像一下,宇宙就像一個葡萄乾麵包,上面布滿的葡萄乾就是各種天體,當麵包發酵膨脹時,不論站在哪顆葡萄乾的視角,所有天體的距離都是互相拉遠,而且距離愈遠的天體,彼此遠離的速度就愈快。

也就是說,哈伯觀測到的結果顯示整個宇宙正在膨脹。但還有一個問題,就是這個宇宙的膨脹速度,是隨著時間經過越來越快的加速膨脹,還是膨脹速度正隨著時間在趨緩的減速膨脹呢?為什麼這個問題很重要?因為如果是減速膨脹,靠現有的重力理論就可以解釋,宇宙中天體所提供的重力,正在使宇宙減速膨脹,甚至宇宙的結局可能會是宇宙重新塌縮。但如果宇宙正在加速膨脹,那麼只考慮重力就不夠了,為了抵抗向內塌縮的重力,勢必要有一股力量要將宇宙向外加速推開。這時,就需要加入暗能量的存在了。

-----廣告,請繼續往下閱讀-----

宇宙真的正在加速膨脹?

為了確認宇宙正在減速或加速膨脹,好推算暗能量是否存在,科學家再次將目光投向宇宙深處。隨著觀測技術愈來愈進步,天文學家可以透過不同方式,觀測更早期的宇宙。

愈遠的天體發出的光,需要經過愈長的時間才能傳到地球。假設我們觀察離地球1億光年遠的星球,由於我們看到的影像是從星球出發後,經過 1 億年後才到達地球,因此在望遠鏡中看到的,其實是該星球一億年前的樣子。只要利用這點,如果我們將望遠鏡頭對向更加遙遠的宇宙深處,就能看到更早期的宇宙樣貌,幫助我們了解宇宙過去的樣子。

科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。

Ia 超新星殘骸。圖/wikimedia

接著,透過光譜分析,我們還能得到這個超新星遠離我的的速度。這就像是救護車在靠近和遠離我們的時候,警笛的聲音頻率會因為我們和救護車相對速度的改變而產生變化,同樣的道理放在電磁波上,當超新星遠離我們,電磁波頻譜的頻率會下降,我們稱為頻譜「紅移」。最後,只要我們同時觀測好幾顆超新星,並且量測每一顆的距離和遠離我們的速度,看看是不是真的離我們越遠的超新星離開的速度越快,就可以知道宇宙正在加速或是減速膨脹。

-----廣告,請繼續往下閱讀-----

第二種方法是觀測宇宙大尺度結構,宇宙中星系的分佈其實是不均勻的,有些地方有星系團,也有一些地方是孔洞,整個宇宙就像是網子一樣。這是因為宇宙在形成星系時,向內的重力以及向外的氣體與光壓力會彼此抗衡,就像我們在擠壓彈力球一樣,向內壓時內部壓力會增強,導致物質向外拋射,壓力減弱後又會停止拋射,這樣來回震盪的過程,就在宇宙中形成一個個震波漣漪,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。有趣的是,當好幾個地方都在震盪,就會產生類似好幾個水波互相撞在一起的干涉現象。而這個宇宙規模的超大水波槽中,波腹部份聚集較多物質就會形成星系團,波節部份不足以形成星系就形成孔洞,是不是覺得我們的宇宙就像是一鍋湯,而我們只是裡面毫不起眼的一顆胡椒粒呢?不過即使是連一粒胡椒都不如的我們,透過觀測宇宙星系分布並透過理論計算,人類科學家還是可以得知這些結構的大小,並且推知這些結構上的星系距離我們多遠,最後再搭配紅移光譜,一樣可以算出宇宙膨脹的速度。今年七月升空,11 月 8 號從太空傳回第一張照片的歐幾里得太空望遠鏡,它的其中一項任務,就是專門觀測重子聲學振盪,來研究宇宙大尺度結構。歐幾里得太空望遠鏡有望帶給我們對宇宙的全新認知,關於這一部分,我們很快會再來深入介紹。

第三種方法是透過觀測宇宙微波背景輻射,它是宇宙的第一道曙光,在此以前,宇宙能量很高,光和電漿相互作用,不會走直線。但是到了宇宙三十八萬歲時,宇宙已經冷卻到足以讓電子與原子核結合,宇宙終於變得乾淨了,光也終於可以走直線。而三十八萬歲時的早期宇宙的畫面,至今仍不斷經過遙遙 137 億年的時間抵達地球,被我們觀測到,稱為宇宙微波背景輻射。有趣的是,根據這些照片,我們能發現早在 137 億年前,宇宙各處就不是均勻的。透過分析這些微波的分布,科學家能計算出當時宇宙的組成成份。這時我們發現,目前的已知物質,也就是元素週期表上看得到的原子,只佔所有能量的 4.93%,而看不到的暗物質,佔 27.17%,那還有 67.9%,將近七成的組成分是什麼?科學家認為就是暗能量。

宇宙微波背景輻射。圖/wikimedia

哇!暗能量佔的比例這麼高?那我們未來有機會從空間中汲取無限的能量嗎?先不要想的這麼美,其實暗能量在宇宙中的密度很低,依照質能等價公式,質量跟能量是可以互相換算的。換算下來暗能量每立方公分只有 10 的負 24 次方公克,相比之下,水的密度是立方公分 1 公克!真的微乎其微。之所以暗能量在宇宙中佔的能量比這麼大,是因為它均勻的存在在廣大無垠的宇宙中,不像一般的物質,只集中在一些星系和星體中。

現在我們知道暗能量存在,而且量也不少,但回到最關鍵問題,這些暗能量到底是怎麼來的呢?

-----廣告,請繼續往下閱讀-----

宇宙與暗能量的未來

科學家普遍認為暗能量是來自「真空能量」,根據量子力學,我們過往認為的真空,其實會不斷短暫的出現粒子並消失。而這些量子漲落便會產生真空能量。雖然這聽起來很玄,但各位看完我們的影片並按下訂閱之後,這些訂閱數就一定會是真的。都看到影片最後一段了,就拜託大家再多動一下手指吧!

而量子力學除了能在真空中產生真空能量以外,這個過程甚至可能幫助我們開啟蟲洞!關於真空能量與時空旅行的關係,可以參考我們的這一集哦(閃電俠)。

為了重新認識我們的宇宙,科學家此時再次拿出了宇宙常數 Λ 和 Fridemann 方程式,建立了一個可以完美解釋前面三種觀測結果的模型-ΛCDM 模型。

ΛCDM 是近代在解釋宇宙微波背景輻射、宇宙大爆炸時,最常被使用的理論。目前對於宇宙歷史與加速膨脹的圖像,也都基於此模型。

-----廣告,請繼續往下閱讀-----
ΛCDM模型,加速擴張的宇宙。圖/wikimedia

不過 ΛCDM 理論仍有兩個致命的問題待解決。第一個是理論中的宇宙常數 Λ,應該要與位置、時間無關,是一個不隨時間變化的常數。然而針對觀測早期和晚期宇宙所計算出來的宇宙常數數值卻不一樣,要如何解釋這個觀測差異?第二個問題是,假設暗能量是真空中的量子漲落所造成,依此推算出的宇宙常數數值,還跟觀測差了 120 個數量級!也就是 10 後面有 120 個零,整個宇宙中的原子數量也才 82 個數量級而已!

因此科學家也提出其他可能的暗物質理論。比如認為暗能量不是來自真空能量,而是由一種未知的粒子場所驅動,而這個場與時間有關,導致早期和晚期宇宙的觀測結果有差異。還有人認為根本沒有暗能量存在,宇宙會膨脹,是因為愛因斯坦的廣義相對論在宇宙學這種大尺度中是不適用的!就像牛頓的萬有引力公式在地球上管用,到了太陽系規模就會出現誤差。或許在宇宙規模還有比廣義相對論更完備的其他理論等待我們發現!另一派科學家也認為沒有暗能量,我們會看到加速膨脹,只是因為銀河系剛好位於宇宙大尺度結構的孔洞中,也就是葡萄乾麵包裡面空氣比較多,口感比較鬆的地方,由於這個地方總體重力比較小,天體也就是葡萄乾之間向外膨脹的速度比較快,但不代表整個葡萄乾麵包都在加速膨脹,宇宙加速膨脹只是局部觀測的假象。

這些理論或許可以解釋部份的問題,但沒有一個能解釋所有觀測數據,而且由於觀測的限制,這些理論都缺乏數據的佐證。因此目前我們只能說,暗能量的效應確實存在,但我們還不知道它確切是什麼。

有人可能想問,研究暗物質對我們真的那麼重要嗎?其實,它不只影響了宇宙過去演化的歷史,也影響著我們將來的命運。由於宇宙膨脹,物質的密度會因為膨脹被稀釋,但如果暗能量是常數,就代表密度不會改變,因此宇宙會膨脹的愈來愈快,導致遙遠的星系加速離我們遠去,最後暗能量會超過所有的基本作用力,包括重力、電磁力和核力,星系、太陽系、地球都將被拉開,甚至中子和質子都互相分離,使原子不復存在,進入大撕裂時期,也將是宇宙最孤獨的結局。不過這是一百多億年後的事情,在那之前地球會先被死去的太陽吞沒,我們應該要先煩惱的是要如何移民其他星球才是。

-----廣告,請繼續往下閱讀-----

最後總結一下,暗能量到底是什麼?很抱歉,經過了幾十年的努力,這個問題依舊是一個問號,但藉由宇宙學的研究,使我們更謙卑更加發覺自身的渺小,我們或許已經掌握許多物質運作的原理,也開發出許多高科技產品,但這些只是整個宇宙的 5% 仔,宇宙中還有許多未知等待我們去探索,而它深深關係到我們的過去和未來。

最後也想問問大家,你覺得當一切真相大白之時,我們會發現暗能量是什麼呢?

  1. 符合最直覺的 ΛCDM 理論,它就是宇宙加速膨脹的元凶!
  2. 它根本不存在,我們甚至需要比廣義相對論更強的理論來解釋!
  3. 依照人類這個物種的感知等級,可能永遠無法了解暗能量的真相!
  4. 我、我已經無法抑制我左手的暗能量了!啊啊啊~

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2199 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
2

文字

分享

0
7
2
宇宙學的最大謎團!有超過90%的世界都是暗物質和暗能量,但,它們究竟是什麼?──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/08 ・3400字 ・閱讀時間約 7 分鐘

觀測星系時,科學家發現了「看不見的物質」

我們現在所看到的人類、太陽、星系以及星系群等等,所有東西都是由物質構成。「物質構成了宇宙的全部」這個概念長年以來深植於人類心中。

宇宙是由物質構成的,但究竟是由甚麼物質構成的呢?圖 / twenty20photos

不過,後來我們了解到,宇宙中存在著許多我們人類看不到的物質,那就是「暗物質(dark matter)」。這個名稱聽起來很像科幻作品中的虛構物質,卻實際存在於宇宙中,而且暗物質在宇宙中的含量,遠多於我們看得到的「物質」

1934 年,瑞士的天文學家茲威基(Fritz Zwicky,1898~1974)觀測「后髮座星系團」時,發現周圍星系的旋轉速度所對應的中心質量,與透過光學觀測結果推算的中心質量不符。

周圍星系的轉速明顯過快,推測存在 400 倍以上的重力缺損(missing mass)。

在這之後,美國天文學家魯賓(Vera Rubin,1928~2016)於 1970 年代觀測仙女座星系時,發現周圍與中心部分的旋轉速度幾乎沒什麼差別,並推論仙女座的真正質量,是以光學觀測結果推算出之質量的 10 倍左右。

-----廣告,請繼續往下閱讀-----

到了 1986 年,科學家們觀測到了宇宙中的大規模結構,發現星系的分布就像是泡泡般的結構。若要形成這種結構,僅靠觀測到的質量是不夠的。

為了補充質量的不足,科學家們假設宇宙中存在「看不見的物質=暗物質」。

看不到卻存在?暗物質究竟是什麼?

既然看不到,那我們怎麼確定暗物質真的存在?圖 / twenty20photos

前面提到我們看不見暗物質,而且不只用可見光看不到,就連用無線電波、X 射線也不行,任何電磁波都無法檢測出這種物質(它們不帶電荷,交互作用極其微弱)。

因為用肉眼、X 射線,或者其他方法都看不到它們,所以稱其為「暗」物質。

不過,從星系的運動看來,可以確定「那裡確實存在眼見所及之上的重力(質量)」。這就是由暗物質造成的重力。

-----廣告,請繼續往下閱讀-----

看不到的能量:暗能量

事實上,科學家們也逐漸了解到,宇宙中除了暗物質之外,還存在「看不見的能量」。

原本科學家們認為,宇宙膨脹速度應該會愈來愈慢才對,不過,1998 年觀測 Ⅰa 型超新星(可精確估計距離)時,發現宇宙的膨脹正在加速中。這個結果證明宇宙充滿了我們看不到的能量「暗能量(dark energy)」。而且,暗能量的量應該比暗物質還要更多。

我們過去所知道的「物質」,以及暗物質、暗能量在宇宙中的估計比例,如下圖所示。 這項估計是基於 WMAP 衛星(美國)於 2003 年起觀測的宇宙微波背景輻射(CMB),計算出來的結果。

圖/台灣東販

後來,普朗克衛星(歐洲太空總署)於 2013 年起開始觀測宇宙,並發表了更為精準的數值。

-----廣告,請繼續往下閱讀-----
  • 什麼是「普朗克衛星」?

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。  

暗物質的真面目,究竟是什麼?微中子嗎?

既然暗物質有質量,那會不會是由某種基本粒子構成的呢?也有人認為暗物質是在宇宙初期誕生的迷你黑洞(原始黑洞),而我也致力於這些研究,不過相關說明不在此贅述。

已知的基本粒子(共 17 種)以及其他未知粒子,都有可能是暗物質,在這些粒子當中最被看好的是微中子。

因為暗物質不帶電荷,不與其他物質產生交互作用,會輕易穿過其他物質。這些暗物質的特徵與微中子幾乎相同。而且,宇宙中也確實充滿了微中子。因此,微中子很可能是暗物質的真面目。

-----廣告,請繼續往下閱讀-----

不過,目前的物理學得出的結論卻是「微中子不可能是暗物質的主要成分」。

NASA 曾經想透過星系團的碰撞來了解暗物質的特性。圖/NASA

為什麼微中子被撇除了呢?

這是因為,雖然微中子大量存在於宇宙中,質量卻太輕了。雖然科學家們現在還不確定微中子的精準質量是多少,不過依照目前的宇宙論,3 個世代的微中子總質量上限應為 0.3eV。如果暗物質是微中子,那麼 3 個世代的微中子總質量應高達 9eV 才對,兩者相差過大。

另一方面,暗物質中的冷暗物質(cold dark matter)的速度應該會非常慢才對。

宇宙暴脹時期會產生密度的擾動,進而產生暗物質的擾動(空間的擾動應與觀測到的 CMB 擾動相同),這種微妙的重力偏差,會讓周圍的暗物質聚集,提升重力,進一步吸引更多原子聚集,最後形成我們現在看到的星系。

-----廣告,請繼續往下閱讀-----

相較於此,微中子過輕(屬於熱暗物質,hot dark matter),會以高速飛行。微中子無法固定在一處,這樣就無法聚集起周圍的原子,自然也無法形成星系。

暗物質、暗能量的真相究竟是甚麼?仍然是宇宙學中最大的謎團!

熱暗物質、冷暗物質

這裡要介紹的是熱暗物質與冷暗物質。所謂的「熱暗物質」,指的是由像微中子那樣「以接近光速的速度飛行」的粒子組成暗物質的形式。

宇宙微波背景輻射(CMB)可顯示出宇宙初期的溫度起伏,因而得知存在相當微小,卻十分明顯的擾動,此擾動與暗物質的擾動相同。擾動中,物質會往較濃的部分聚集,並形成星系或星系團等大規模結構。

不過,如同我們前面提到的,科學家們認為以接近光速的速度運動的微中子,在程度那麼微弱的宇宙初期擾動下,很難形成現今的星系團。

-----廣告,請繼續往下閱讀-----

於是,科學家們假設宇宙中還存在著速度非常慢的未知粒子「冷暗物質」。

冷暗物質的候選者包括「超對稱粒子(SUSY 粒子)」當中光的超伴子——超中性子(neutralino)、名為軸子(axion)的假設粒子;另外,也有人認為原始黑洞可能是「冷暗物質的候選者」,雖然黑洞並不是基本粒子。

在討論暗物質時,即使不假設這些未知粒子的存在,在標準模型的範圍內,微中子也是呼聲很高的候選者。

如同在討論熱暗物質時提到的,當我們認為微中子應該不是主要暗物質時,就表示基本粒子物理學需要一個超越標準理論的新理論,這點十分重要。

-----廣告,請繼續往下閱讀-----
宇宙微波背景(CMB)是宇宙大霹靂後遺留下來的熱輻射,充滿了整個宇宙。圖 / 台灣東販

那麼,微中子真的完全不可能是暗物質嗎?

倒也並非如此。如果存在右旋的微中子,由於我們還不曉得它的質量以及存在量,所以「微中子是暗物質」的可能性還沒完全消失。不過,這樣就必須引入超越標準理論的理論才行。

在目前只有發現左旋、符合標準理論的微中子的情況下,一切都還未知。關於這點,我們將在《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》第 6 章第 7 節詳細說明。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

3
2

文字

分享

0
3
2
哈伯也懂漂移?3D-DASH:哈伯太空望遠鏡最大的近紅外巡天計畫
Tiger Hsiao_96
・2022/07/10 ・2933字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

若問當前軌道上最強的可見光太空望遠鏡是誰,那當然非哈伯太空望遠鏡莫屬。身處太空的它有著直徑 2.4 公尺的主鏡,可以在不受大氣層干擾的情況下,清晰地拍攝遙遠且黯淡的天體。然而,哈伯望遠鏡並非全能,雖然它在解析度(angular resolution)和靈敏度(sensitivity)上都無人能及,但也有不擅長的領域 ── 它的視野相當小。

哈伯太空望遠鏡。圖/NASA

即使是哈伯裝備的所有相機中視野最大的「先進巡天相機(ACS)」,其視野也只有 202 角秒 x 202 角秒而已,相當於滿月的 1.5%,或是一個十元硬幣在約 25 公尺外的大小。可以想見,想要用這麼小的視野拍攝廣大的區域,是相當緩慢而沒有效率的事。

直到最近幾年,天文學家發明了稱作「Drift And SHift (DASH)」的新型觀測模式,可以在不改變哈伯硬體設備的前提下,大大增加哈伯在近紅外線波段的拍攝效率。利用這項技術,來自多倫多大學的團隊展開名為 3D-DASH 的大型紅外線巡天計畫,其拍攝的天空範圍,是前一個紀錄保持人「CANDELS」的七倍之多。

不斷選擇「引導星」的傳統觀測模式

想了解為什麼 DASH 技術可以大大提升哈伯的觀測效率,就要先從哈伯原本是怎麼觀測的開始談起。

-----廣告,請繼續往下閱讀-----

不知道大家有沒有在黑夜中拍照的經驗呢?在低亮度的環境中,相機總需要比較長的時間進行曝光,才能拍出清楚的照片。而如果你在曝光的過程中不小心移動了相機,那拍出來的照片就會糊成一團。同理,由於天文學家想要拍攝的目標,大多是極其遙遠且黯淡的天體,所以天文觀測時單張照片的曝光時間,往往動輒數百秒以上。因此,專業天文望遠鏡常會配備「導星(Guiding)」系統,以確保望遠鏡能在數百秒的時間內,都精準的指向同一個位置。

導星的原理很簡單,就是在望遠鏡和相機觀測的同時,同時用另一套相機監測視野中星星的位置。一旦發現畫面中恆星的位置有任何小小的移動,導星系統就會命令望遠鏡調整指向(pointing),即時把誤差修正回來。在哈伯望遠鏡上,這個負責導星的相機叫作「精細導星感測器(FGS)」。而這個用來幫望遠鏡「導航」的星星,就被稱為「引導星(guide star)」。

哈伯在進行拍攝時,需要找一顆導星來隨時校正方向。圖/GIPHY

一般來說,在哈伯望遠鏡每指向一個新的目標,都需要先花費一段約十分鐘的時間選擇引導星,然後才能進行科學拍攝。然而,由於哈伯的軌道週期僅有 97 分鐘左右,因此在一次軌道中,哈伯基本上只能拍攝一或兩個固定的天區,不然就會有大量的觀測時間被浪費在尋找引導星的過程中。如此一來,天文學家若想透過哈伯來拍攝 800 個不同指向,就需要花費 800 次的軌道繞行時間才能結束這項任務。

花費很多時間有什麼問題呢?哈伯望遠鏡的觀測,是由美國「太空望遠鏡科學研究所(STScI)」向全世界天文學家公開徵求觀測企劃之後,再從中挑選出最具科學效益的企劃後實施。一個耗時 800 個軌道週期的觀測,很難在競爭激烈的觀測計劃書中脫穎而出。

-----廣告,請繼續往下閱讀-----

但如果,天文學家真的很需要用哈伯進行大面積的巡天,該怎麼辦呢?

提升效率的新方法

如前述,一般來說哈伯每指向一個新目標,都需要花費十分鐘來進行捕捉引導星。但換個角度想,如果把導星功能關掉,不就可以省下這些時間了嗎?

計画通り!圖/GIPHY

還真是沒錯,哈伯的設計的確是可以關掉導星系統,利用其中的陀螺儀來進行控制。但陀螺儀的能提供的穩定性終究不如導星系統,一旦曝光時間過長,望遠鏡的微小移動還是會造成最後曝光出來的星星像塗抹花生醬一樣糊成一片,這樣的影像是很難用於科學分析的。

開導星耗時間,不開導星又沒辦法長曝,該怎麼辦呢?

-----廣告,請繼續往下閱讀-----

這時就輪到「Drift And SHift(DASH)」技術出場了!DASH 的核心概念很簡單:

  • 為了省時,我們就關掉導星。
  • 關導星不能長曝,那我們就拍很多短曝光時間的照片,降低每張照片的模糊程度,再把它們對齊之後疊起來。

以 3D-DASH 計劃來說,關掉導星會讓哈伯的指向以每秒 0.001 至 0.002 角秒的速度緩緩飄移。因此天文學家將每張照片的曝光時間壓縮到 25 秒以下,讓星點在畫面中的移動不超過一個像素(WFC-3 的像素大小為 0.129 角秒)。利用這樣的技術,天文學家就能在哈伯的一次軌道週期中,拍攝八個不同的指向,把觀測效率提升了八倍!

3D-DASH 的觀測天區和其他觀測計畫天區大小、深度(最暗可拍到的天體星等)的比對圖。圖/arxiv

拍這些照片有什麼用?3D-DASH 的科學意義

3D-DASH 計畫的觀測資料最近已於網路上公開,不過這龐大的資料量,觀測團隊以及其他科學家們還需要更多時間進行分析。不過,在公布這個計劃的論文中,團隊已經提出了一些值得分析的科學問題。

舉例來說,天文學家認為如今多數的橢圓星系(elliptical galaxy)們,都是由較小的星系合併而來。因此尋找合併中的星系,並測量它們的各項物理性質,是研究星系演化歷史的重要方法。但很多時候,地面望遠鏡可以大略看到一個光點可能是兩或多個相鄰的天體組成,卻沒有足夠的解析度可以研究它們的細節。但有了 3D-DASH 的資料,天文學家就可以清楚的看到星系們合併的細節,並研究其中細微的結構以及測量更多複雜的物理量。

-----廣告,請繼續往下閱讀-----
合併中的星系們。圖/NASA

不過這種大範圍的巡天計畫也不是完美的。為了拍攝廣大的天區,每個天區分配到的平均觀測時間就會比較少,因此比起 CANDELS 等前輩們,3D-DASH 只能看到相對亮的星系們。雖然如此,3D-DASH 這種相對廣而淺的觀測,不僅可以提供更大量的星系樣本,幫助天文學家使用強大的統計方法進行分析;也可以讓天文學家先大概了解這片天區裡有些什麼,如果發現了有趣的目標,就可以使用哈伯或韋伯等其它強大的望遠鏡們進行更深入的觀測!

3D-DASH 的所涵蓋的天區,以及其超高的解析度。圖/arxiv

參考資料

延伸閱讀

Tiger Hsiao_96
2 篇文章 ・ 13 位粉絲
現於約翰霍普金斯大學攻讀天文博士。