導致大量食物被浪費的主要原因之一,是有多達三分之二的消費者未能正確了解包裝上各種標示日期,像是何謂最佳食用日期(best before date),在歐洲就因此導致約 15~33 %的食物遭丟棄[3]。面對這個問題,在丹麥就有過期食品超市;德國政府過去幾年也開始關切這些浪費的問題,試圖透過教育讓消費者明白問題的嚴重性,鼓勵大家購買較小的包裝,盡量將食物吃完、減少剩菜和浪費,可惜最後成效相當有限[1],看來在資源充裕的環境,要改變大家浪費的習慣並不容易。
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
Kasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L. 1., Jameson, J. L., & Loscalzo, J. (2015). Harrison’s principles of internal medicine (19th edition.). New York: McGraw Hill Education.
Llovet, J.M., Fuster, J. and Bruix, J. (2004), The Barcelona approach: Diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl, 10: S115-S120.
Clavien, PA., Dutkowski, P., Mueller, M. et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat Biotechnol (2022).
導致大量食物被浪費的主要原因之一,是有多達三分之二的消費者未能正確了解包裝上各種標示日期,像是何謂最佳食用日期(best before date),在歐洲就因此導致約 15~33 %的食物遭丟棄[3]。面對這個問題,在丹麥就有過期食品超市;德國政府過去幾年也開始關切這些浪費的問題,試圖透過教育讓消費者明白問題的嚴重性,鼓勵大家購買較小的包裝,盡量將食物吃完、減少剩菜和浪費,可惜最後成效相當有限[1],看來在資源充裕的環境,要改變大家浪費的習慣並不容易。
為了解決低溫環境難以控制的問題,日本山梨大學(University of Yamanashi)生殖生物學家 Daiyu Ito 的研究團隊發展出一項技術,將小鼠精子放入細頸瓶或玻璃安瓿(Ampoules,一種形狀類似保齡球瓶的小型玻璃瓶,常用於盛裝藥品等溶液。)並置於 4℃ 的環境中三個月,然後再放置於室溫中 1 個月。經過冷凍乾燥處理,可放置於室溫環境中一年。雖然經過處理後的小鼠精子已死亡,無法移動,但精子中的 DNA 仍然維持完整性[4]。
爾後,再將這些冷凍乾燥後的小鼠精子在注射入卵子時,一樣能繁衍出正常的後代。這項冷凍乾燥的技術已運用與許多物種,例如實驗小鼠、倉鼠、兔子、馬以及綿羊等物種[5]。然而,使用玻璃安瓿仍有一些缺點。Daiyu Ito 說:「雖然玻璃安瓿的體積小,但它們相當笨重且易碎,容易影響小鼠後代的繁衍。所以將小鼠精子儲存在玻璃安瓿並不適合用來長期保存。因此,我們希望發展新的保存技術。」
為進一步了解使用塑膠片保存精子是否會影響精子內的 DNA,研究團隊藉由彗星分析法(comet assay),來比較玻璃安瓿和塑膠片的精子中 DNA 的完整性。彗星分析法可用來檢測單細胞中 DNA 的損害程度,若 DNA 有損害,其結構會較為鬆散,斷裂或破碎的 DNA 片段會在進行電泳(gel)時被拖出細胞,在顯微鏡之下會呈現出一個類似彗星的形狀。不同程度的 DNA 損傷則會造成拖尾程度的差異,至於未損傷的 DNA 則會保持球狀。
從觀察結果得知,保存於玻璃安瓿的小鼠精子 DNA,其彗星尾相較保存於塑膠片的小鼠精子 DNA 慧星尾長度稍短一些,不過,就統計結果而言,兩者之間有顯著差異。
但另方面,在小鼠精子進行細胞質內精子注射(ICSI)之後,藉由使用 γ-H2Ax 染色來比較玻璃安瓿和塑膠片的雄原核(male pronucleus)中 DNA 損壞程度,結果卻發現,相較於保存在塑膠片的小鼠精子,保存於玻璃安瓿的小鼠精子經 γ-H2Ax 染色後,其雄原核[註2]有較高的亮度,顯示此細胞核內的雙股 DNA 損壞較為嚴重。
-----廣告,請繼續往下閱讀-----
綜合上述,保存於塑膠片中的小鼠精子 DNA 完整度,與保存於玻璃安瓿的小鼠精子 DNA 完整度,是可以相比擬的。
Daiyu Ito 說:「遺傳資源對於人類未來而言,是個重要資產。即使有許多遺傳特徵可能已不適用於生存,但這些遺傳資源可能有利於某些物種在環境變遷或未知疾病擴散時存活下來。」哺乳類動精子保存,有利於不孕、維持品系中修飾過的基因序列。這個使用塑膠片夾帶小鼠精子的方式,可以方便保存數千種的小鼠品系(strain),除了有利於實驗室及研究機構間的合作往來,更可以促進生殖技術及科技的發展。
Ito, D., Wakayama, S., Emura, R., Ooga, M., & Wakayama, T. (2021). Mailing viable mouse freeze-dried spermatozoa on postcards. iScience, 102815.
Benson, J. D., Woods, E. J., Walters, E. M., & Critser, J. K. (2012). The cryobiology of spermatozoa. Theriogenology, 78(8), 1682-1699.
Sztein, J. M., Takeo, T., & Nakagata, N. (2018). History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology, 82, 57-63.
Wakayama, S., Kamada, Y., Yamanaka, K., Kohda, T., Suzuki, H., Shimazu, T., … & Wakayama, T. (2017). Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. Proceedings of the National Academy of Sciences, 114(23), 5988-5993.
Choi, Y. H., Varner, D. D., Love, C. C., Hartman, D. L., & Hinrichs, K. (2011). Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction, 142(4), 529.