0

0
1

文字

分享

0
0
1

火箭發射成功或失敗,也跟它耐不耐壓有關?—《科學築夢大現場》

親子天下_96
・2016/11/03 ・2125字 ・閱讀時間約 4 分鐘 ・SR值 536 ・七年級

編按:這是一個自找麻煩的故事,也是一個用熱血推動夢想的歷程!故事說的是台灣的火箭團隊 ARRC,從 2008 年開始投入研究、親手打造火箭,2010 年 9 月,才初嘗發射成功的滋味。

火箭飛離地面要花很大力氣與地心引力拉鋸,混合式火箭用來把火箭推離地面的燃料與氧化劑合稱為「推進劑」。光是推進劑就佔了火箭總重量高達 90 %(飛機、船、汽車的燃料比都不到 50 %),也就是說一整支火箭幾乎全部的空間都用來裝載飛行所需的能量。

壓力容器的原理跟水火箭類似,高壓的笑氣儲存於壓力容器中,所以當閥門打開便會從出口流出液態的笑氣到燃燒艙(火箭引擎)中了。圖/《一起離開地球上太空!:ARRC自製火箭》提供
壓力容器的原理跟水火箭類似,高壓的笑氣儲存於壓力容器中,所以當閥門打開便會從出口流出液態的笑氣到燃燒艙(火箭引擎)中了。圖/《一起離開地球上太空!:ARRC自製火箭》提供

混合式火箭的組成,主要包含一個裝有液態氧化劑的壓力容器與一個裝有固體燃料的燃燒艙,壓力容器與燃燒艙中間有一個閥門將氧化劑與燃料分離。當火箭發射時,首先點火融化固態燃料,而後打開閥門,讓氧化劑流入燃燒艙,氧化劑與燃料起化學作用進而產生推力。儲存氧化劑的壓力容器,要能承受非常高的壓力,本身就是一門很大的學問。

壓力超大的「壓力容器」

日常環境中為 1 大氣壓,若是使用笑氣,壓力容器內部必須承受 60 大氣壓的壓力,基於安全考量,設計時必須耐壓達 90 大氣壓力。所以壓力容器既要承受高壓,又必須夠輕才不會讓火箭超重。這個壓力超大的任務,是由屏東科技大學團隊負責。

為了達到又輕、強度又強的目標,團隊一開始使用鋁合金製作壓力容器,它的強度不遜於鋼,重量則輕得多,只是有一個大麻煩,使用傳統 TIG 銲(鎢極氣體保護電弧焊),銲接過後強度幾乎減半。壓力容器因為必須承受高壓,實驗階段總是驚險萬分,成員得做好萬全準備才行。有一次當成員將笑氣從鋼瓶灌入壓力容器中,沒想到壓力容器突然爆開──氣體體積可以壓縮,一旦裝填氣體的高壓容器爆炸,碎片會像炸彈般高速四射。實驗室頓時煙霧瀰漫,物品東倒西歪,還有塊碎片將門後柱子鑿出缺口,幸好沒有人員受傷。不過,這場意外嚇壞不少人,也差點擊垮老師們的信心,一度很猶豫是否該繼續作火箭。壓力真的很大!

-----廣告,請繼續往下閱讀-----

後來團隊在鋁合金內膽貼上玻璃纖維強化,搭載這個壓力容器的 HTTP-1 成功升空後,給了團隊很大的鼓舞,但這樣的技術無法滿足未來的火箭,必須進一步研究更高階的複合材料,首選材料是「碳纖維」,這是一種強度比鋼大了四倍、比鋼或鋁合金都輕、比人類頭髮還細的纖維,含碳量 90 % 以上。這麼高強度而輕量化的材料,自 70、80 年代便普遍用在航太領域如火箭、飛彈外殼,後來延伸應用到跑車、釣魚竿、運輸工具等體育休閒產業。

不過,想使用這材料的門檻相當高,一台碳纖維纏繞機要價新台幣數千萬,台灣只有中科院擁有碳纖維的纏繞設備和技術。最後團隊只能尋求民間廠商協助,不過,當聽說是要做火箭時,廠商還以為是遇到詐騙集團!後來廠商了解團隊計畫與夢想後,轉而大力相挺。

外層黑黑的是碳纖維包覆,目的就是為了要減輕重量。圖/《一起離開地球上太空!:ARRC自製火箭》提供
外層黑黑的是碳纖維包覆,目的就是為了要減輕重量。圖/《一起離開地球上太空!:ARRC自製火箭》提供

越來越耐壓

2011 年 8 月,ARRC 在屏東旭海試射第二枚大型火箭 HTTP-2α,任務重點是回收火箭本體與資料。對於製作壓力容器的屏科大團隊而言,這也是他們檢驗以新的材料、新的製作方式設計的壓力容器是否能成功執行任務的機會。

這次的任務卻因颱風、暴雨延遲兩三天,火箭團隊一百多人徹夜檢查火箭,溫習發射程序。發射當天凌晨兩三點成員們就驅車到海邊準備,在 11 個月前同樣的地點、同樣興奮的心情倒數、點火,卻只見火箭冒出白煙,HTTP-2α 仍優雅的掛在發射架上,發射失敗。大家只能垂頭喪氣的收工回民宿,他們仍不放棄,不斷進行各項檢查,第二天再試一次,但結果還是一樣,眾人心情一下由頂峰跌到谷底,只能接受失敗的事實。後來細查原因,原來是推進段的燃料槽控制閥內的鐵氟龍墊襯處於高壓情況過久而嚴重變形,馬達轉不動它,導致笑氣無法通過閥門與固態燃料進行反應,沒有辦法燃燒燃料,當然就無法升空了。

-----廣告,請繼續往下閱讀-----

HTTP-2α 沒升空,屏科大團隊無法確認新製程之下的壓力容器是否能穩定進行飛行任務。他們直接在海邊卸除儲槽內的氧化劑,那些從儲存槽釋出的壓力轉化為團隊心頭上的壓力。在準備第三支火箭 HTTP-2β 的發射期間,屏科大團隊持續尋找更高階的設備,希望製作出更耐壓的壓力容器,HTTP-2β 的飛試足足延了一年。在這一整年裡,團隊補足許多分析與細節測試,把 HTTP 的設計提升到另一個層級;同時,另一家位於桃園的廠商熱血幫忙,也讓團隊有了堅強的後盾。

睽違了兩年的 HTTP-2β 順利升空,HTTP-3S 也緊接著六個月後發射。證明了壓力容器的製作已經達到穩定。以往每做一個壓力容器就要動員整個屏科大實驗室,現在製造一個成品只需 4 人。


20160824172509828_500

 

本文摘自科學築夢大現場 01《一起離開地球上太空!:ARRC 自製火箭》,親子天下出版。

文章難易度
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
3

文字

分享

0
5
3
睽違三年,重磅回歸:獵鷹重型的現在與未來
EASY天文地科小站_96
・2022/11/04 ・2560字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/林彥興(EASY天文地科團隊總編輯,現就讀清大天文所)

台灣時間 2022 年 11 月 2 日晚上九點四十一分,SpaceX 的「獵鷹重型 Falcon Heavy (FH)」火箭從濃霧繚繞的甘迺迪太空中心 LC-39A 發射台轟然升空。睽違三年,世人終於再次體會到世界最強火箭飛向天際,以及雙助推器同時著陸的震撼。

USSF-44 任務中獵鷹重型火箭的升空與著陸。圖/SpaceX

從獵鷹九號到獵鷹重型

相信有在關注太空時事的讀者們,對 SpaceX 的獵鷹九號火箭都不陌生。

獵鷹九號火箭。圖/SpaceX

獵鷹九號是 SpaceX 目前當仁不讓的發射主力,從低軌小衛星共乘高軌頂配同步衛星乃至星際探測器都能一手包辦,而且還擁有能夠「重複使用第一節」這舉世唯一的絕技,在大幅降低成本的同時,也讓 SpaceX 能夠以超過一週一發的超高頻率發射火箭。從 2022 年初至週二當天,獵鷹九號已經發射 49 次,佔世界總發射次數的約 35%;論發射酬載總質量,世界所有其他火箭加起來還不到獵鷹九號的一半。[1][2]

但獵鷹九號雖然優秀,面對少數特別重的酬載(也就是衛星、太空船等火箭攜帶的物體),或是要把酬載送到特別高能量的軌道時,仍然力有未逮。怎麼辦呢?基本概念很簡單:在獵鷹九號第一節兩側,再綁兩根第一節火箭,給火箭更多的燃料、更強的推力,就能把更重的酬載,送到更高更遠的地方,這就是「獵鷹重型 Falcon Heavy, FH」火箭。習慣上,人們將中間那根第一節稱為芯級(Core Stage),兩側的則稱為助推器(Side Booster)。根據任務需求,芯級和助推器可選擇不同的回收模式(陸上回收、海上回收、不回收)。在完全不回收的模式下,獵鷹重型擁有超過 60 公噸的最高理論運載力(LEO),比位列第二的三角洲四號重型火箭多了一倍不只。

發射台上的獵鷹重型火箭,可以清楚的看到並排的芯級與助推器。圖/SpaceX

風光亮相後?

獵鷹重型在 2018 年進行了一場轟轟烈烈的首飛。由於未經驗證的新火箭,一般不會有客戶願意買單承擔風險,因此火箭製造商通常會自費發射一些不太重要的東西,常稱為「假酬載 Dummy Payload」,向客戶展示火箭確實可以把你的衛星送入軌道。這個不太重要的假酬載,也給了工程師們搞怪的機會。

-----廣告,請繼續往下閱讀-----

假酬載該選什麼好呢?
大老闆 Elon Musk:「啊,那就把我的 Tesla 跑車打上去吧。」

Falcon Heavy 首飛官方剪輯

首飛隔年(2019)四月和六月,獵鷹重型分別進行了兩次任務(福衛七號就是其中之一噢)。但在這之後,獵鷹重型彷彿就進入了休假期,長達三年都沒有發射任務。為甚麼會這樣呢?這背後的原因有非常多面相可以討論,比如獵鷹九號就已經足以應付現在市場上絕大部分的發射需求、獵鷹重型發射的酬載開發與製造進度延宕等等。篇幅有限,在此就不展開細說。但總之,對太空迷們來說,這三年真的是格外漫長。獵鷹重型還是獵鷹重型,但 2022 的世界已經跟 2019 大不相同了。

獵鷹九號(與其子型號)與獵鷹重型發射次數統計,可以看到比起馬不停蹄的獵鷹九號,獵鷹重型的發射是多麼稀少。來源:維基百科,2022.11.04 數據。

機密任務 USSF-44

回到正題,本次 USSF-44 任務的目標,是為美國太空軍發射機密軍事衛星,前往地球同步軌道。

發射直播回顧。

在上面的影片中,我們可以看到火箭發射的全過程。在轟轟烈烈地起飛後,火箭沿著預定軌道不斷加速。升空後約兩分三十秒,幾乎耗盡燃料兩根助推器率先脫離。而芯級在本次任務中則不進行回收,毫無保留地將所有燃料都用於運送衛星。約四分零三秒,芯級耗盡所有燃料並脫離,由第二節火箭負責繼續將衛星送入指定軌道。由於衛星的機密性,第二節直播就此切斷。直播聚焦於兩個助推器,如何自行返回陸上降落場,並最終成功降落。

本次任務的成功,不僅宣告著獵鷹重型的回歸,也是 SpaceX 第一次直接把衛星送進「地球同步軌道 GEO」,而非一般的「地球同步轉移軌道 GTO」(相關知識可以參考「衛星軌道萬花筒」系列圖文)。擁有將衛星直送 GEO 的能力,對火箭發射商來說意義相當重大。另一方面,雖然可憐的芯級被太空軍指定拋棄了,但兩側助推器的同框降落真的百看不厭。如果覺得這次發射霧太大景不好,不妨多看幾次 2018 首飛的剪輯吧!

還要再等三年嗎?獵鷹重型的未來

那麼,何時才能再次看到獵鷹重型轟然起飛呢?答案可能比你以為的要快。按現在的規畫,明年一月就應當要有兩場獵鷹重型的發射,分別是 ViaSat-3 與 USSF-67,都是 GEO 直送任務。但當然,這是火箭發射,再延宕個幾個月也是很正常的。

-----廣告,請繼續往下閱讀-----

往更遠的看,未來五年獵鷹重型將發射的重要酬載包括:

  • 大型行星探測器:靈神星(Psyche,左圖)任務與歐羅巴快船(Europa clipper,右圖)。
圖/NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin|N
  • 阿提密斯計畫:月球門戶建造(PPE 與 HALO 艙段)、VIPER 月球車、月球門戶補給(Dragon-XL)。
月球門戶太空站(左下)與 Dragon XL 無人貨船。圖/NASA
南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/NASA (WFIRST Project and Dominic Benford)
  • 太空軍機密衛星與同步通訊、氣象衛星若干。

相信這些名字對太空迷讀者來說都是如雷貫耳。可見獵鷹重型在美國近期多項重要太空計畫中,都是關鍵角色。接下來幾年,就讓我們拭目以待,一起見證獵鷹重型大展身手吧!

EASY天文地科小站_96
23 篇文章 ・ 1529 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
ARRC試射小火箭 「80%成功!」
劉珈均
・2015/04/20 ・2504字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

DSC_5786(by游允赫)
APPL-9β發射瞬間。圖/游允赫提供。

交大、北科大、成大、屏科大四校組成的自製火箭研究團隊「前瞻火箭研究中心」(Advanced Rocket Research Center,以下簡稱ARRC)18日下午於香山濕地試射雙節火箭「APPL-9β」,主要為接下來的大型探空火箭「HTTP-3」測試脫節與空中點火功能。火箭飛向天際並完整回收,只可惜火箭未如預期中脫節。ARRC主任、交大機械系教授吳宗信形容這是「80%的成功」,待團隊討論再決定是否再次飛試。(文末新增後記,ARRC於2016年1月底再次飛試,終於脫節成功!)

目前釋出的短版官方影片,此次飛行最大高度約360公尺:

發射現場

火箭會逆風飛行,風向和風速是判斷發射點要離岸多遠、火箭發射角度的重要因素,那天下午天氣陰涼,風向大致由外海往岸上吹,但風不大,算是個好天氣。採蚵車載著火箭,交大成員穿著雨鞋、扛著發射架,走入遍佈蚵殼、小螃蟹的泥濘濕地到離岸約一公里處。

-----廣告,請繼續往下閱讀-----

發射前的作業流程繁瑣而嚴謹,現場總指揮賴冠融依照近40道程序的SOP發布指令,每道指令都有對應的負責成員,完成一個指令後回報再進行下一個。成員們為火箭上架、接上「臍帶」(連接火箭與發射架,接收點火指令的電線)、灌氣、確認兩個地面站接收訊號的狀態、為航電上電等,整套流程耗時約1.5小時。

IMG_1906
成員正在為航電系統接上電源。攝影/劉珈均。

倒數一分鐘

全員撤退到發射架後方幾十公尺處,對講機關閉,開始倒數一分鐘。就在這時,吳宗信眼尖看到濕地遠處有一個人正往發射架點方向靠近!賴冠融用大聲公呼叫負責點火的成員魏世昕緊急暫停,並對那位遠方的老伯大聲喊叫:「阿伯!不要移動!我們正在發射火箭!」「他聽嘸啦!講台語啦!」「嘜振動(tín-tāng,閩南語移動之意)!」一陣忙亂後,那位老伯會意過來,小插曲有驚無險的落幕,火箭也恢復倒數。

火箭冒出白煙,隨即飛嘯而上沒入雲端,火箭上天後的飛行姿態、航電是否正常運作、資料傳輸狀況等才是真正的重點。大家仰望天空,老師們叨念著火箭似乎沒脫節,接著三頂降落傘帶著火箭緩速從空中落下,現場氛圍又轉為興奮,「第一次看到這麼漂亮的降落傘!」吳宗信笑著說:「這是80%成功!」

-----廣告,請繼續往下閱讀-----

DSC_5787(by游允赫)
火箭衝向天際。圖/游允赫提供。

IMG_2010
降落傘成功全開,帶著火箭緩速落下。攝影/劉珈均。

IMG_2021
幾個成員辛苦跋涉過濕地,把火箭撿回來。攝影/劉珈均。

IMG_2027
ARRC撿回火箭後在一旁的竹筏休息,一邊推敲第一節沒脫節的原因,一邊等採蚵車前來運載火箭。攝影/劉珈均。

-----廣告,請繼續往下閱讀-----

始作俑者是兩顆螺栓

APPL-9β主要任務為測試脫節與空中點火的設計,這也是團隊接下來的大型雙節火箭HTTP-3的重點。成員魏世昕和賴冠融解釋,火箭的加速度規會偵測火箭由高速至減速的重力變化(類似搭電梯上升時,電梯停止前一刻的感受),當第一節推力漸失,便會發指令讓火箭脫節,第二節偵測到脫節訊號後就會啟動點火。

成員們將火箭搬回交大後還顧不得休息,隨即在實驗室拆解火箭,尋找脫節失敗的原因。扣連第一節和第二節火箭的金屬環有兩顆「爆炸螺栓」,螺栓內部空腔含有火藥和點火裝置,點燃火藥、螺栓斷開便能使固定的物體分離。

APPL-9β有發出點火指令、也引燃了螺栓中的黑色火藥,但螺栓只微微鼓起,沒有斷開,導致火箭沒有脫節,而基於安全,團隊設計第二節火箭沒偵測到脫節訊號便不會點火、開閥。「地面測試時明明都OK!現在居然兩根同時出問題。」

first stage
藍色框線處為預設在空中脫離的第一節火箭。攝影/劉珈均。

-----廣告,請繼續往下閱讀-----

IMG_2095
這兩顆爆炸螺栓是火箭沒脫節的始作俑者。攝影/劉珈均。

過去十幾架APPL火箭只有APPL-2是雙節設計,但APPL-2設計簡單:一二節皆為固態火箭;第二節往內縮套入第一節再固定;點火時間事先分別設定好,時間到了自動點火。魏世昕說:「不過當時第二節太慢點火了,火箭飛得很水平,可能直接飛到海上了吧。」

APPL-9β小檔案

APPL-9β為雙節火箭,直徑15公分,2.7公尺長,重約23公斤。火箭第一節為固態糖燃料,第二節為混合式推進器(以N2O一氧化二氮作為氧化劑,塑膠PE為燃料)。火箭搭載中央大學張起維老師團隊製作的罐頭衛星,量測高度與溫度、衛星電力續航,蒐集日後設計將衛星彈射出火箭的資料。

火箭外殼是以PLA材料3D列印而成,需要較大強度的地方(如鼻錐)結合玻璃纖維。成員周子豪說,3D列印好處是可以節省「奇形怪狀」切割的加工時間,「孔洞也可以直接印出來,裁切玻纖比較麻煩。」

-----廣告,請繼續往下閱讀-----

APPL-9β前身為一月在香山濕地試射的APPL-9,當時火箭脫離發射架前就迸裂分解。賴冠融說,上次「失事」原因推估為燃料配方與結構設計沒配合好,他們換過糖與硝酸鉀的來源,但延續舊參數設計APPL-9,新配方燃燒速率較快,高溫又助長整個反應,壓力容器承受不住就爆開了。

後記:

ARRC於2016年1月31日試射2.7公尺長的「APPL-9C」,火箭順利脫節,飛試相當成功。ARRC正如火如荼準備大型雙節火箭試射,APPL-9這系列小火箭主要就為了測試日後大火箭會用到的系統,特別是如何脫節──火箭一邊飛行,一邊拋棄不再必要的部分以減輕重量,讓火箭飛得更高。這相當考驗團隊技術,ARRC足足用了三支小火箭,脫節設計才成功運作(第一支爆炸、第二支脫節不成)。

 

回顧第一支APPL-9縮時與發射影片:

APPL火箭名字取自交大成員所屬的機械所實驗室縮寫,過去APPL系列以糖精和硝酸鉀,加上少許氧化鐵反應作為火箭動力,又暱稱為「蔗糖火箭(Sugar Rocket)」。APPL火箭主要由交大成員製作,目的不在於飛高(設計的飛行高度不超過一公里),而是作為日後大型火箭HTTP設備與次系統的事前測試,算是大火箭的小型測試版。

-----廣告,請繼續往下閱讀-----

延伸閱讀:

劉珈均
35 篇文章 ・ 1 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。