Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

羅塞塔始源小菊虎:9900萬年前失足,從此凝結在時間中

蕭昀_96
・2016/10/09 ・1558字 ・閱讀時間約 3 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

琥珀是由古代植物分泌的樹液經長時間掩埋於地底下並歷經化石化的過程,最終形成的珍貴半寶石,要是當形成琥珀的樹脂在流出時包埋了週遭環境中的生物,就會穿越時空的限制成為珍貴的琥珀生物化石,為人類探索古代生物的珍貴研究材料。

包裹著羅賽塔始源小菊虎的琥珀生物化石。圖/作者蕭昀提供。
包裹著羅賽塔始源小菊虎的琥珀生物化石。圖/作者蕭昀提供。

緬甸出產的琥珀產量大、品質優良,定年的結果指出其年代約為 9900 萬年前(晚白堊紀,森諾曼階),緬甸琥珀保存大量完好的植物、昆蟲、節肢生物、小型爬蟲類,甚至是小型鳥類的翅膀,因而成為近年研究琥珀生物群的學者所專注的其中的焦點之一。

蓬萊異角菊虎 Fissocantharis formosana (Pic, 1910)異角菊虎屬是物種多樣性相當高的屬別,而蓬萊異角菊虎是臺灣產異角菊虎中常見的種類,棲息於低海拔森林且白天會訪花,部份種類的異角菊虎雄蟲具有特化的膨大構造,蓬萊異角菊虎則無(圖中為雄蟲)。圖/作者蕭昀提供
蓬萊異角菊虎 Fissocantharis formosana (Pic, 1910)異角菊虎屬是物種多樣性相當高的屬別,而蓬萊異角菊虎是臺灣產異角菊虎中常見的種類,棲息於低海拔森林且白天會訪花,部份種類的異角菊虎雄蟲具有特化的膨大構造,蓬萊異角菊虎則無(圖中為雄蟲)。圖/作者蕭昀提供

菊虎是一群色彩斑斕、身體修長且翅鞘柔軟的陸生甲蟲,目前已記錄超過 5000 個現生物種,有關菊虎的介紹可參考本文〈兩種以臺灣原住民族命名的菊虎新種:賽德克狹胸菊虎、鄒狹胸菊虎〉。已知的菊虎科化石紀錄多為琥珀包埋化石,而其中最早的報導紀錄則來自約 1.25 到 1.35 億年前的黎巴嫩琥珀(早白堊紀),只可惜該標本身體後方完全損毀,以致無法確認的正確的分類地位。

目前已被完整描述並發表的化石菊虎種類共 25 種,其中年代最古老的物種是今年上半年由奧瑞岡州立大學整合生物系的名譽教授 George Poinar 和義大利的菊虎專家 Fabrizio Fanti 發表的 Ornatomalthinus elvirae,屬於菊虎亞科的成員。

-----廣告,請繼續往下閱讀-----

而我們這個研究則發現並描述了保存於緬甸琥珀的另外一個種類,我們根據其形態特徵,判定這個 9900 萬年前不幸失足而被包裹入樹脂的苦主為尖鬚菊虎亞科(Malthininae)、小菊虎族(Malthodini)的成員,為已知尖鬚菊虎亞科年代最早的化石物種。我們將其命名為:羅塞塔始源小菊虎Archaeomalthodes rosetta, Hsiao, Ślipiński & Pang, 2016)屬名語源來自「古」(Archaeo-) 和「小菊虎屬」(malthodes);種小名來自「羅塞塔石碑」(Rosetta Stone),暗喻本種為探索早期菊虎演化進程中的關鍵線索。

羅塞塔始源小菊虎Archaeomalthodes rosetta,琥珀形成年代約為白堊紀晚期,從外觀特徵推測本種可能同其現生族裔般有著訪花行為。圖/作者提供
羅塞塔始源小菊虎(Archaeomalthodes rosetta),琥珀形成年代約為白堊紀晚期,從外觀特徵推測本種可能同其現生族裔般有著訪花行為。圖/作者蕭昀提供

除了上述兩個已描述的緬甸琥珀菊虎種類外,一些有關緬甸琥珀生物群的研究文獻,也不時提到菊虎科昆蟲的紀錄,推測本科的昆蟲在中生代末期應該已相當的豐富。此外,在已描述的化石菊虎科成員中,尖鬚菊虎亞科的物種占了大多數,顯示本亞科在菊虎科的演化初期中可能已具備了相當的物種多樣性。

羅塞塔始源小菊虎的整體外形特徵已和現生的尖鬚菊虎亞科相當接近,同時緬甸琥珀中亦有相當豐富的開花植物,推測本種可能同現生族裔有相同的訪花行為,有關於此部份則需要未來更多的化石證據去證實。

此研究成果於 2016 年 9 月 15 日,電子版線上刊載於古生物學領域國際期刊《白堊紀研究》(Cretaceous Research)。

-----廣告,請繼續往下閱讀-----
  • 此文由國立臺灣大學昆蟲學系學生蕭昀撰寫,響應 PanSci 「自己的研究自己寫」,以增進眾人對基礎科學研究的了解。

參考文獻:

  • Hsiao, Y., Ślipiński, A., Deng, C., Pang, H. 2017. A new genus and species of soldier beetle from Upper Cretaceous Burmese amber (Coleoptera, Cantharidae, Malthininae). Cretaceous Research 69: 119-123.
    Doi: http://dx.doi.org/10.1016/j.cretres.2016.09.002
-----廣告,請繼續往下閱讀-----
文章難易度
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
兩種以臺灣原住民族命名的菊虎新種:賽德克狹胸菊虎、鄒狹胸菊虎
蕭昀_96
・2015/04/08 ・1649字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

Figure

講到新種就好讓人興奮!雖然圖中的菊虎看起來只像是「觸角又長又不發光的螢火蟲」(咦?怎麼聽起來跟蟑螂也有點像?),但卻有好帥氣的原住民名字,牠們是新種菊虎:賽德克狹胸菊虎和鄒狹胸菊虎。

菊虎科(Cantharidae)是一群色彩斑斕、體態修長且翅鞘柔軟的陸生甲蟲。臺灣的菊虎已知有165種並複分3個亞種,其分類學研究始於二十世紀初,主要由歐洲學者發表了多數的種類,至今國內尚未有專家針對此類群進行專門研究。

黑足隱翅菊虎(Ichthyurus klapperichi Brancucci, 1983) 隱翅菊虎族是一群外型奇特的菊虎類群,牠們的腹部細長且翅鞘短小而無法完全覆蓋後翅。黑足隱翅菊虎是臺灣春夏季十分常見的隱翅菊虎,牠們喜歡聚集於殼斗科花叢間訪花,具有相當好的飛行能力。
黑足隱翅菊虎(Ichthyurus klapperichi Brancucci, 1983)
隱翅菊虎族是一群外型奇特的菊虎類群,牠們的腹部細長且翅鞘短小而無法完全覆蓋後翅。黑足隱翅菊虎是臺灣春夏季十分常見的隱翅菊虎,牠們喜歡聚集於殼斗科花叢間訪花,具有相當好的飛行能力。

由於菊虎的體色變異範圍非常大,所以很難從牠們的外表來鑑定種類。直到20世記中葉,堪稱菊虎分類之祖的Wittmer建立了以雄蟲外生殖器結構作為種類劃分的診斷性特徵後,全球菊虎科分類研究才開始有了系統性的發展。那為何要這麼害羞的以雄蟲的外生殖器結構作為物種定界的依據?

-----廣告,請繼續往下閱讀-----

這跟昆蟲學中的鎖鑰假說(lock-and-key hypothesis)有關。這是一種解釋昆蟲種間機械隔離的學說,認為昆蟲的雌、雄兩性的生殖器的相應如鎖與鑰匙般吻合,不同種間的關係明顯不同,走錯家門、帶錯鑰匙可是不得其門而入。

臺灣的地形變化多樣,除了地形隔離外,生物本身也因生態習性而導致的播遷能力不佳,長時間下來即使外表上變異不大,卻產生了物種分化。狹胸菊虎屬(Stenothemus)有別於多數喜於春季現身的菊虎,出沒夏末至冬季的中高海拔森林,夜晚具有趨光性,會被水銀燈的燈光吸引,臺灣本屬成員已知有四種,是筆者非常有興趣的類群之一。

粗腿單爪菊虎 Habronychus (Monohabronychus) multilimbatus (Pic, 1911) 單爪菊虎由於其爪子不開裂或基部不具齒凸而得名,粗腿單爪菊虎是臺灣產單爪菊虎中常見的種類,雄蟲的腿節膨大,雌蟲則否(圖中為雌蟲),白天會訪花而夜晚則具有趨光性。
粗腿單爪菊虎 Habronychus (Monohabronychus) multilimbatus (Pic, 1911)
單爪菊虎由於其爪子不開裂或基部不具齒凸而得名,粗腿單爪菊虎是臺灣產單爪菊虎中常見的種類,雄蟲的腿節膨大,雌蟲則否(圖中為雌蟲),白天會訪花而夜晚則具有趨光性。

2013年寒風刺骨的11月天,筆者與學長姐一同前往南投仁愛鄉中高海拔山區採集,一路上各種不順、意外連連,例如才剛出門筆者就把採集用具忘在搭車處的椅子上(等發現的時候人已經在海拔2100公尺的地方了……)以及臨時無法在預訂地點進行燈光誘集的窘境等等諸如此類,最後筆者隨意指向的一處路邊當採集點(就決定是這裡了!!),結果意外地在一群大和田氏狹胸菊虎(Stenothemus owadai)中發現一種外觀上與其他已知種略有差異的狹胸菊虎。

-----廣告,請繼續往下閱讀-----

直覺告訴我這可能是個尚未被描述的種類,回到實驗室後,筆者立刻開始進行雄蟲外生殖器的解剖以及比對,當那個擁有特殊幾何結構的外生殖器就這樣「啵!」的拉出來後,已經快要貼在目鏡睡著的我瞬間眼睛亮了,外生殖器結構跟已知種有著顯著的差異,證實這是一種新種的狹胸菊虎。

興奮之餘開始著手進行新種的發表,然而在2014年初夏一個意外的契機,筆者向農業試驗所和倫敦自然史博物館商借到一批產地為南投信義鄉、嘉義阿里山鄉,與筆者採集到的這種非常相似的標本,原來以為是同一種,沒想到檢查雄蟲生殖器結構後,竟然又是一另一個獨立的新種。由於兩個種類的模式產地與賽德克族和鄒族的世居地重疊,便以兩個臺灣原住民族命名為賽德克狹胸菊虎(Stenothemus seediq)、鄒狹胸菊虎(Stenothemus cou)。

  • 此研究成果於2015年3月25日,發表於國際期刊【動物分類群】(Zootaxa)
  • 此文由國立臺灣大學昆蟲學系大三生 蕭昀撰寫,響應PanSci 「自己的研究自己分享」,以增進眾人對基礎科學研究的了解。
  • 參考文獻:Hsiao, Y (2015) Description of two new species of the genus Stenothemus from Taiwan (Coleoptera: Cantharidae). Zootaxa 3937: 386–392. doi: 10.11646/zootaxa.3937.2.9
-----廣告,請繼續往下閱讀-----
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。