Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

哈伯望遠鏡發現一對正在衝向銀河系的矮星系

臺北天文館_96
・2016/10/03 ・1841字 ・閱讀時間約 3 分鐘 ・SR值 551 ・八年級

美國太空望遠鏡科學研究所(Space Telescope Science Institute)天文學家 Erik Tollerud 等人利用哈伯太空望遠鏡(Hubble Space Telescope)觀測資料,發現有一對矮星系(dwarf galaxies)正從太空中的「荒漠區」往鄰近的「都會區」移動中。

這些天文學家估計,它們大約沉寂數十億年之後,星系內的恆星誕生速度將會暴增,從而加入星遽增星系(starburst galaxies)的行列。我們現在所見到的這對星系的狀況,或許是宇宙早期普遍存在的景象,所以或許能透過它們,進一步取得星系形成與演化的線索。

hs-2016-29-a-web_print

誕生在荒漠的兩星系,怎麼進入都會區?

這對晚熟的矮星系分別為雙魚座 A 星系與 B 星系(Pisces A and B),從它們誕生迄今,生命中的絕大部分時間都待在本地空洞結構(Local Void)裡,這是一個直徑約 1.5 億光年的大尺度結構,如其名般,空洞內僅有少數星系分佈其中。但是後來受到星系密集區的重力牽扯,這對孤單的星系對終於進入一個星系際氣體充盈的擁擠區域;在衝入這些豐富氣體的過程中,不斷有氣體落入雙魚 A 和 B 星系內,使得它們的恆星誕生速率開始加快。

不過這些天文學家有另一個猜測是這對星系可能遭逢一個氣體絲狀結構(gaseous filament),會壓縮星系內的氣體,讓星系內的恆星誕生情形加劇。考量這對星系的位置後,Tollerud 等人認為雙魚 A 與 B 星系應該是位在一個鄰近的濃密氣體纖維狀結構的邊緣,而目前這對星系各自含有約 1000 萬顆恆星。

-----廣告,請繼續往下閱讀-----

這兩個矮星系似乎不太一樣

現行理論認為在數十億年前的宇宙早期,矮星系是大型星系的建造基石。由於雙魚 A 和 B 星系大多時間是處於空曠的太空荒漠區,讓它們恰好避開宇宙中破壞力最強的一段時期。

Tollerud 表示:因為處在本地空洞結構內的關係,減緩了這對星系演化速度;之所以認為這對星系之前是位在空洞中,乃是因為它們的氫含量比類似的星系還高一些。在宇宙較早時期的星系,會含有較高的氫濃度;但是相較於同齡且化學組成豐富的,這些矮星系因為恆星形成活動不踴躍之故,使其似乎保留了更多的原始化學組成。此外,與鄰近宇宙中其他有恆星形成正常進行的典型星系相較之下,這些矮星系的結構也比較緊實一些。

科學家怎麼發現它們?哈伯望遠鏡是關鍵

與典型星系比較,矮星系小而暗,所以並不容易發現這些矮星系。Tollerud 等人是透過一個利用電波望遠鏡測量我們銀河系中的氫含量的特別巡天計畫發現雙魚座 A 與 B 這對矮星系。這項巡天計畫捕捉到數千個小而緻密的氫氣雲球,絕大部分雲球位在我們銀河系內,另外辨識出有 30~50 個可能是銀河系以外的其他星系。這些天文學家利用位在美國亞利桑納的 WIYN 望遠鏡以可見光波段研究其中最可能是星系的 15 個雲球。根據觀測結果 Tollerud 等人再選出 2 個最可能是鄰近星系的雲球,另外透過哈伯太空望遠鏡的先進巡天相機(Advanced Camera for Surveys)來進一步研究這 2 個天體,最後終於確定它們兩個,即雙魚座 A 與 B 都是矮星系。

正在組裝的先進巡天相機(Advanced Camera for Surveys)。圖/Public Domain, https://commons.wikimedia.org/w/index.php?curid=6223581
正在組裝的先進巡天相機(Advanced Camera for Surveys)。圖/Public Domain, wikimedia commons.

哈伯太空望遠鏡的敏銳解析力,可以將鄰近但昏暗的矮星系中個別恆星解析出來,這些天文學家可據估計這些矮星系的距離。距離是決定星系亮度的重要參數,而這個哈伯觀測還有一項工作就是要估算這些星系離最近的空洞結構有多遠。最後得出:雙魚 A 星系距離約 1900 萬光年,雙魚 B 星系約 3000 萬光年。

-----廣告,請繼續往下閱讀-----

追溯兩星系的恆星形成史

分析矮星系內個別恆星的顏色後,天文學家能追溯這兩個星系內的恆星形成歷史。這兩個星系各含有約 20~30 顆明亮的藍色恆星,這代表它們非常年輕,少於 1 億歲。Tollerud 等人由此判斷:在距今不到 1 億年之前,這些星系內的恆星形成率增加了一倍。但當這些星系最終成為某個大型星系的衛星星系之後,那麼它們的恆星形成率又再度減緩,這是因為沒有新的氣體補充造星所需原料,當原本的存料用罄之後,便將完全停止製造新恆星。不過目前並不清楚這個停止造星的階段何時會發生,所以合理的猜測是恆星形成率至少還會上漲一陣子。

Tollerud 等人希望能再經由哈伯觀測到類似的矮星系。他們也計畫從帕洛瑪巡天望遠鏡及泛星快速回應系統巡天計畫(Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) survey)觀測資料中篩選可能的矮星系。未來也將利用廣角巡天望遠鏡,如智利的 LSST(Large Synoptic Survey Telescope)或中國大陸的 500 米電波望遠鏡等,能發現更多這類矮小的星系鄰居,如此一來,才能進一步瞭解這些矮星系們的性質與在星系演化、宇宙演化中所扮演的角色。

資料來源:

本文轉載自臺北天文館之網路天文館網站。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
哈伯也懂漂移?3D-DASH:哈伯太空望遠鏡最大的近紅外巡天計畫
Tiger Hsiao_96
・2022/07/10 ・2933字 ・閱讀時間約 6 分鐘

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

若問當前軌道上最強的可見光太空望遠鏡是誰,那當然非哈伯太空望遠鏡莫屬。身處太空的它有著直徑 2.4 公尺的主鏡,可以在不受大氣層干擾的情況下,清晰地拍攝遙遠且黯淡的天體。然而,哈伯望遠鏡並非全能,雖然它在解析度(angular resolution)和靈敏度(sensitivity)上都無人能及,但也有不擅長的領域 ── 它的視野相當小。

哈伯太空望遠鏡。圖/NASA

即使是哈伯裝備的所有相機中視野最大的「先進巡天相機(ACS)」,其視野也只有 202 角秒 x 202 角秒而已,相當於滿月的 1.5%,或是一個十元硬幣在約 25 公尺外的大小。可以想見,想要用這麼小的視野拍攝廣大的區域,是相當緩慢而沒有效率的事。

直到最近幾年,天文學家發明了稱作「Drift And SHift (DASH)」的新型觀測模式,可以在不改變哈伯硬體設備的前提下,大大增加哈伯在近紅外線波段的拍攝效率。利用這項技術,來自多倫多大學的團隊展開名為 3D-DASH 的大型紅外線巡天計畫,其拍攝的天空範圍,是前一個紀錄保持人「CANDELS」的七倍之多。

不斷選擇「引導星」的傳統觀測模式

想了解為什麼 DASH 技術可以大大提升哈伯的觀測效率,就要先從哈伯原本是怎麼觀測的開始談起。

-----廣告,請繼續往下閱讀-----

不知道大家有沒有在黑夜中拍照的經驗呢?在低亮度的環境中,相機總需要比較長的時間進行曝光,才能拍出清楚的照片。而如果你在曝光的過程中不小心移動了相機,那拍出來的照片就會糊成一團。同理,由於天文學家想要拍攝的目標,大多是極其遙遠且黯淡的天體,所以天文觀測時單張照片的曝光時間,往往動輒數百秒以上。因此,專業天文望遠鏡常會配備「導星(Guiding)」系統,以確保望遠鏡能在數百秒的時間內,都精準的指向同一個位置。

導星的原理很簡單,就是在望遠鏡和相機觀測的同時,同時用另一套相機監測視野中星星的位置。一旦發現畫面中恆星的位置有任何小小的移動,導星系統就會命令望遠鏡調整指向(pointing),即時把誤差修正回來。在哈伯望遠鏡上,這個負責導星的相機叫作「精細導星感測器(FGS)」。而這個用來幫望遠鏡「導航」的星星,就被稱為「引導星(guide star)」。

哈伯在進行拍攝時,需要找一顆導星來隨時校正方向。圖/GIPHY

一般來說,在哈伯望遠鏡每指向一個新的目標,都需要先花費一段約十分鐘的時間選擇引導星,然後才能進行科學拍攝。然而,由於哈伯的軌道週期僅有 97 分鐘左右,因此在一次軌道中,哈伯基本上只能拍攝一或兩個固定的天區,不然就會有大量的觀測時間被浪費在尋找引導星的過程中。如此一來,天文學家若想透過哈伯來拍攝 800 個不同指向,就需要花費 800 次的軌道繞行時間才能結束這項任務。

花費很多時間有什麼問題呢?哈伯望遠鏡的觀測,是由美國「太空望遠鏡科學研究所(STScI)」向全世界天文學家公開徵求觀測企劃之後,再從中挑選出最具科學效益的企劃後實施。一個耗時 800 個軌道週期的觀測,很難在競爭激烈的觀測計劃書中脫穎而出。

-----廣告,請繼續往下閱讀-----

但如果,天文學家真的很需要用哈伯進行大面積的巡天,該怎麼辦呢?

提升效率的新方法

如前述,一般來說哈伯每指向一個新目標,都需要花費十分鐘來進行捕捉引導星。但換個角度想,如果把導星功能關掉,不就可以省下這些時間了嗎?

計画通り!圖/GIPHY

還真是沒錯,哈伯的設計的確是可以關掉導星系統,利用其中的陀螺儀來進行控制。但陀螺儀的能提供的穩定性終究不如導星系統,一旦曝光時間過長,望遠鏡的微小移動還是會造成最後曝光出來的星星像塗抹花生醬一樣糊成一片,這樣的影像是很難用於科學分析的。

開導星耗時間,不開導星又沒辦法長曝,該怎麼辦呢?

-----廣告,請繼續往下閱讀-----

這時就輪到「Drift And SHift(DASH)」技術出場了!DASH 的核心概念很簡單:

  • 為了省時,我們就關掉導星。
  • 關導星不能長曝,那我們就拍很多短曝光時間的照片,降低每張照片的模糊程度,再把它們對齊之後疊起來。

以 3D-DASH 計劃來說,關掉導星會讓哈伯的指向以每秒 0.001 至 0.002 角秒的速度緩緩飄移。因此天文學家將每張照片的曝光時間壓縮到 25 秒以下,讓星點在畫面中的移動不超過一個像素(WFC-3 的像素大小為 0.129 角秒)。利用這樣的技術,天文學家就能在哈伯的一次軌道週期中,拍攝八個不同的指向,把觀測效率提升了八倍!

3D-DASH 的觀測天區和其他觀測計畫天區大小、深度(最暗可拍到的天體星等)的比對圖。圖/arxiv

拍這些照片有什麼用?3D-DASH 的科學意義

3D-DASH 計畫的觀測資料最近已於網路上公開,不過這龐大的資料量,觀測團隊以及其他科學家們還需要更多時間進行分析。不過,在公布這個計劃的論文中,團隊已經提出了一些值得分析的科學問題。

舉例來說,天文學家認為如今多數的橢圓星系(elliptical galaxy)們,都是由較小的星系合併而來。因此尋找合併中的星系,並測量它們的各項物理性質,是研究星系演化歷史的重要方法。但很多時候,地面望遠鏡可以大略看到一個光點可能是兩或多個相鄰的天體組成,卻沒有足夠的解析度可以研究它們的細節。但有了 3D-DASH 的資料,天文學家就可以清楚的看到星系們合併的細節,並研究其中細微的結構以及測量更多複雜的物理量。

-----廣告,請繼續往下閱讀-----
合併中的星系們。圖/NASA

不過這種大範圍的巡天計畫也不是完美的。為了拍攝廣大的天區,每個天區分配到的平均觀測時間就會比較少,因此比起 CANDELS 等前輩們,3D-DASH 只能看到相對亮的星系們。雖然如此,3D-DASH 這種相對廣而淺的觀測,不僅可以提供更大量的星系樣本,幫助天文學家使用強大的統計方法進行分析;也可以讓天文學家先大概了解這片天區裡有些什麼,如果發現了有趣的目標,就可以使用哈伯或韋伯等其它強大的望遠鏡們進行更深入的觀測!

3D-DASH 的所涵蓋的天區,以及其超高的解析度。圖/arxiv

參考資料

延伸閱讀

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
哈伯望遠鏡發現一對正在衝向銀河系的矮星系
臺北天文館_96
・2016/10/03 ・1841字 ・閱讀時間約 3 分鐘 ・SR值 551 ・八年級

美國太空望遠鏡科學研究所(Space Telescope Science Institute)天文學家 Erik Tollerud 等人利用哈伯太空望遠鏡(Hubble Space Telescope)觀測資料,發現有一對矮星系(dwarf galaxies)正從太空中的「荒漠區」往鄰近的「都會區」移動中。

這些天文學家估計,它們大約沉寂數十億年之後,星系內的恆星誕生速度將會暴增,從而加入星遽增星系(starburst galaxies)的行列。我們現在所見到的這對星系的狀況,或許是宇宙早期普遍存在的景象,所以或許能透過它們,進一步取得星系形成與演化的線索。

hs-2016-29-a-web_print

誕生在荒漠的兩星系,怎麼進入都會區?

這對晚熟的矮星系分別為雙魚座 A 星系與 B 星系(Pisces A and B),從它們誕生迄今,生命中的絕大部分時間都待在本地空洞結構(Local Void)裡,這是一個直徑約 1.5 億光年的大尺度結構,如其名般,空洞內僅有少數星系分佈其中。但是後來受到星系密集區的重力牽扯,這對孤單的星系對終於進入一個星系際氣體充盈的擁擠區域;在衝入這些豐富氣體的過程中,不斷有氣體落入雙魚 A 和 B 星系內,使得它們的恆星誕生速率開始加快。

不過這些天文學家有另一個猜測是這對星系可能遭逢一個氣體絲狀結構(gaseous filament),會壓縮星系內的氣體,讓星系內的恆星誕生情形加劇。考量這對星系的位置後,Tollerud 等人認為雙魚 A 與 B 星系應該是位在一個鄰近的濃密氣體纖維狀結構的邊緣,而目前這對星系各自含有約 1000 萬顆恆星。

-----廣告,請繼續往下閱讀-----

這兩個矮星系似乎不太一樣

現行理論認為在數十億年前的宇宙早期,矮星系是大型星系的建造基石。由於雙魚 A 和 B 星系大多時間是處於空曠的太空荒漠區,讓它們恰好避開宇宙中破壞力最強的一段時期。

Tollerud 表示:因為處在本地空洞結構內的關係,減緩了這對星系演化速度;之所以認為這對星系之前是位在空洞中,乃是因為它們的氫含量比類似的星系還高一些。在宇宙較早時期的星系,會含有較高的氫濃度;但是相較於同齡且化學組成豐富的,這些矮星系因為恆星形成活動不踴躍之故,使其似乎保留了更多的原始化學組成。此外,與鄰近宇宙中其他有恆星形成正常進行的典型星系相較之下,這些矮星系的結構也比較緊實一些。

科學家怎麼發現它們?哈伯望遠鏡是關鍵

與典型星系比較,矮星系小而暗,所以並不容易發現這些矮星系。Tollerud 等人是透過一個利用電波望遠鏡測量我們銀河系中的氫含量的特別巡天計畫發現雙魚座 A 與 B 這對矮星系。這項巡天計畫捕捉到數千個小而緻密的氫氣雲球,絕大部分雲球位在我們銀河系內,另外辨識出有 30~50 個可能是銀河系以外的其他星系。這些天文學家利用位在美國亞利桑納的 WIYN 望遠鏡以可見光波段研究其中最可能是星系的 15 個雲球。根據觀測結果 Tollerud 等人再選出 2 個最可能是鄰近星系的雲球,另外透過哈伯太空望遠鏡的先進巡天相機(Advanced Camera for Surveys)來進一步研究這 2 個天體,最後終於確定它們兩個,即雙魚座 A 與 B 都是矮星系。

正在組裝的先進巡天相機(Advanced Camera for Surveys)。圖/Public Domain, https://commons.wikimedia.org/w/index.php?curid=6223581
正在組裝的先進巡天相機(Advanced Camera for Surveys)。圖/Public Domain, wikimedia commons.

-----廣告,請繼續往下閱讀-----

哈伯太空望遠鏡的敏銳解析力,可以將鄰近但昏暗的矮星系中個別恆星解析出來,這些天文學家可據估計這些矮星系的距離。距離是決定星系亮度的重要參數,而這個哈伯觀測還有一項工作就是要估算這些星系離最近的空洞結構有多遠。最後得出:雙魚 A 星系距離約 1900 萬光年,雙魚 B 星系約 3000 萬光年。

追溯兩星系的恆星形成史

分析矮星系內個別恆星的顏色後,天文學家能追溯這兩個星系內的恆星形成歷史。這兩個星系各含有約 20~30 顆明亮的藍色恆星,這代表它們非常年輕,少於 1 億歲。Tollerud 等人由此判斷:在距今不到 1 億年之前,這些星系內的恆星形成率增加了一倍。但當這些星系最終成為某個大型星系的衛星星系之後,那麼它們的恆星形成率又再度減緩,這是因為沒有新的氣體補充造星所需原料,當原本的存料用罄之後,便將完全停止製造新恆星。不過目前並不清楚這個停止造星的階段何時會發生,所以合理的猜測是恆星形成率至少還會上漲一陣子。

Tollerud 等人希望能再經由哈伯觀測到類似的矮星系。他們也計畫從帕洛瑪巡天望遠鏡及泛星快速回應系統巡天計畫(Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) survey)觀測資料中篩選可能的矮星系。未來也將利用廣角巡天望遠鏡,如智利的 LSST(Large Synoptic Survey Telescope)或中國大陸的 500 米電波望遠鏡等,能發現更多這類矮小的星系鄰居,如此一來,才能進一步瞭解這些矮星系們的性質與在星系演化、宇宙演化中所扮演的角色。

資料來源:

-----廣告,請繼續往下閱讀-----

本文轉載自臺北天文館之網路天文館網站。

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

13
6

文字

分享

0
13
6
毀滅與新生:超大質量黑洞觸發的恆星形成
EASY天文地科小站_96
・2022/03/18 ・2555字 ・閱讀時間約 5 分鐘

  • 林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

2022 年 1 月底,兩位天文學家在頂尖科學期刊《自然》發表的論文中,宣布他們發現矮星系「Henize 2-10」中的超大質量黑洞,觸發了一批新恆星的誕生。可是,我們印象中的黑洞不是會以極強的重力撕碎、吞噬周遭一切的嗎?怎麼這樣毀滅性的天體,居然還能誕生新的恆星?今天就讓我們來一探究竟!

哈伯太空望遠鏡拍攝的 Henize 2-10 矮星系。
圖/Hubblesite

黑洞:宇宙燈塔核心

多數人對黑洞的印象,大概是一個擁有強大重力、會撕碎與吞噬一切的純黑球體。由於連光也無法逃離它的魔爪,因此黑洞總是隱身在宇宙黑暗的背景中難以觀測。

這樣的圖象雖然大致正確,卻不是事情的全貌。黑洞確實會以它強大的重力吃進物質,天文學家也確實相信茫茫星海中,有許多難以觀測的黑洞漫步其中。但是被黑洞重力捕獲的物質,往往不會直直地朝黑洞落去,而是會在黑洞週遭形成一個旋轉的盤狀構造,稱為「吸積盤 Accretion Disk」。

在吸積盤上,物質之間不斷的碰撞、摩擦、緩緩向黑洞靠近,在過程中將重力位能轉化為動能、熱能、磁能等各式各樣的能量形式,並釋放出橫跨伽瑪射線到無線電波的電磁輻射。在許多系統中,還可以觀測到物質快速的從黑洞附近噴出,通常速度較慢(約每秒數百至數千公里)者通常稱為「外流 Outflow」,速度較快(接近光速)者則稱為「噴流 Jet」。

對超大質量黑洞吸積盤與噴流的數值模擬。在吸積盤上,物質以圓形軌道環繞黑洞,並緩緩的向內移動,直到最終在吸積盤的最內側被黑洞吞噬。而從黑洞兩極高速噴出的物質,則形成了噴流。
影/EHT, Hotaka Shiokawa.

黑洞產生的輻射、噴流與外流,不僅讓我們能夠用各式各樣的觀測手段去尋找和研究黑洞,它們同時也會對黑洞所在的環境產生影響。

-----廣告,請繼續往下閱讀-----

尤其當身處星系中心、質量是太陽數百萬倍以上的「超大質量黑洞 SMBH」們在大快朵頤週遭的氣體時,能夠以太陽數百萬倍、甚至數千億倍以上的功率釋放能量,成為宇宙中最明亮的天體。

如此龐大的能量,足以影響整個星系乃至於星系團的演化。它可能促進星系中恆星的形成,為星系帶來新生;或者是抑制星系中恆星的形成,讓星系變得死氣沉沉。另一方面,星系中恆星的形成、超新星爆炸等其他現象,也會決定有多少氣體能夠流到位於星系中心的黑洞上,從而影響黑洞的成長。

超大質量黑洞與星系之間互相影響、共同演化的機制,統稱為「活躍星系核回饋 AGN Feedback」,是當代天文物理非常重要的研究領域。

天文學家常用星系的「恆星形成率 SFR」來衡量一個星系的狀態。如果一個星系正在產生許多新恆星(即恆星形成率高),這就是個「生機勃勃」的星系(如左圖的 NGC 4038 / NGC 4039);反之,如果一個星系都只有年邁的恆星,那這就是個「死氣沉沉」的星系(如右圖的 IC 2006)。
圖/WikipediaESO

半人馬座 A 星系是經典的活躍星系之一。由星系中心射出的筆直藍色區域,就是超大質量黑洞的噴流。圖/ESA_Multimedia

過去 20 多年的無數理論與觀測成果,讓天文學家相信活躍星系核回饋確實對星系的演化有重要的影響。但是具體是怎麼影響?影響多大?目前仍沒有明確的結論,甚至連直接的觀測證據都十分稀少。因此,天文學家迫切的想要找到更多活躍星系核回饋的直接證據,了解黑洞究竟是怎麼與星系一同成長。

-----廣告,請繼續往下閱讀-----

瞄準目標:矮星系 Henize 2-10

在這個研究中,天文學家鎖定位在羅盤座(Pyxis)、距離地球約 3400 萬光年的矮星系「Henize 2-10」。過去其他天文學家以無線電與 X 射線觀測的結果顯示,這個星系中心可能有一個正在進食的超大質量黑洞,因此是尋找活躍星系核回饋證據的絕佳場所。

為了得到高解析度的影像,天文學家使用哈伯太空望遠鏡仔細的研究星系中心的影像與光譜,發現在星系的中心有一道長約 500 光年、由游離氣體組成的纖維狀結構,源自星系中心的超大質量黑洞噴出的外流。而黑洞東方(圖中的左手邊)約 230 光年外,有一片正在形成許多新恆星的區域(稱為恆星形成區),與外流相連。

天文學家仔細分析星系的光譜後,認為黑洞的外流正是催生這片恆星形成區的幕後推手。因為外流推擠、壓縮了星系中的氣體,增加了氣體的密度,才進一步激發了這批新恆星的形成。對研究黑洞與活躍星系核的天文學家來說,這無疑是一次振奮人心的發現!

哈伯太空望遠鏡拍攝的 Henize 2-10(左),以及其中心部分的 H alpha 波段影像(右)。在右編的影像中 Massive Black Hole 即是黑洞所在的位置,Outflow 是外流、Triggered Star Formation 即是恆星形成區。
圖/Hubblesite

結語:萬里長征的一小步

黑洞不只是能夠吞噬一切的引力怪獸。它在囫圇吞棗的過程中,其實可以釋放出巨大的能量。尤其是位於星系中心的超大質量黑洞們,它們產出的能量之龐大,甚至能夠影響整個星系的演化,稱為活躍星系核回饋。但是怎麼影響?影響多大?天文學家們仍在積極的研究。

-----廣告,請繼續往下閱讀-----

這次在 Henize 2-10 星系中觀測到的黑洞外流與其激發的恆星形成,是活躍星系核回饋相當重要的直接證據。未來,天文學家將繼續在更多的星系中,尋找黑洞與星系互動的蛛絲馬跡,直到揭開活躍星系核回饋的神秘面紗。

參考資料

-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1578 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事