0

0
0

文字

分享

0
0
0

每到冬天就流感,你可能缺乏維生素D了

營養共筆
・2016/11/23 ・1753字 ・閱讀時間約 3 分鐘 ・SR值 492 ・五年級

-----廣告,請繼續往下閱讀-----

文/席尼|營養共筆

天氣變涼了,你身邊是不是又多了許多感冒的人了呢?圖/Allan Foster@flickr
天氣變涼了,你身邊是不是又多了許多感冒的人了呢?圖/Allan Foster@flickr

不知道你是不是有這樣的感覺——比較容易在冬天聽到關於流感的事情(感冒也是),而確實研究調查發現,除了赤道四季都有之外,南北半球在一定緯度以上的地區,流感發生會集中在冬季。在維基百科上的查詢流感內容時,偶然看到了流感與維生素 D 缺乏之間的關聯,因而忍不住想了解維生素 D 在這當中是如何發揮作用,底下就來聊聊我找到了些什麼吧!

維生素 D 可說是陽光維生素

summer-1169771_960_720
曬太陽有助於體內形成維生素 D

冬季與維生素 D 之間最明顯的連結在於「陽光」,冬天是一年四季當中日照最短的季節,再加上外頭溫度低的關係,人們在這個時候可是很少曬太陽的呀!(更別說有些地方總是陰雨綿綿…… 好久好久才看到得太陽一次呢。)

短日照會帶來什麼問題呢?就是維生素 D 很容易缺乏!原因在於我們只要伸出手臂來晒一晒太陽,肌膚就能合成維生素 D,接著先由血液運送到肝臟做第一階段處理,最後再送到腎臟處理,產出具有生理活性的維生素 D

-----廣告,請繼續往下閱讀-----
從這個過程我們可以知道,如果肝或腎哪個有問題,也會連帶影響體內維生素 D 的狀態。

雖然我們也能從飲食獲取維生素 D,但含有它的食物其實不多。基本上只要有充足的日曬,人體自產的維生素 D 其實就已足夠,但要注意,如果做了萬全的防曬防護的話,例如塗高防曬係數的防曬乳,即使是在夏季也是注意一下維生素 D 是否會有缺乏的可能。(主要讓肌膚生成維生素 D 的光是紫外線(UVB),它的穿透力弱,只要雲層厚一點或是你躲在室內,就不太容易接觸到。)

咳……離題了,總之,冬季是個很可能缺乏維生素 D 的季節。

維生素 D 與流感的關係

在沒有打正確的流感疫苗之前,人體是用先天免疫來對抗流感病毒的,發燒、喉嚨痛、流鼻水、肌肉酸痛……等症狀大多是對抗病毒而起的免疫反應。而維生素 D 的眾多生理功能之一就是幫助先天免疫,它能幫助巨噬細胞吐出更多的活性氧來殺死病毒。

在此提到的活性氧(ROS)就是我們一般常聽到可能有害身體健康的自由基。儘管它普遍名聲不好,但它其實也是體內細胞用來對抗外來入侵病原的武器喔!要是完全沒有 ROS,我想我們也很難健康的活下去吧。

-----廣告,請繼續往下閱讀-----

由於冬天比較容易缺少維生素 D 的關係,因而連帶著免疫能力會下降下來,這時候如果遇到病毒入侵的話,很可能會是一場硬仗。為了準備好面對病毒的身體,除了均衡營養,也要把維生素 D 的需要放在心上。

維生素 D 的食物來源

自然界中含有維生素 D 的食物種類不多
自然界中含有維生素 D 的食物種類不多,鮭魚是其中比較常見的選項之一。

冬天就是陽光不夠呀,總不能把祂給拖出來吧!儘管含有維生素 D 的食物不多,但也提供給大家參考一下(以下資料參考自 WebMD),有吃有保佑:

.魚肝油:也是維生素 A 的豐富來源,記得看好標示吃,吃太多是會中毒的……(記住,它跟魚油是不同的東西喔。)

.維生素 D 營養補充品(市面上的產品大多會強調 Vitamin D3,由於維生素 D 其實是一群這類化合物的總稱,當中 D3 生理活性最強。)

-----廣告,請繼續往下閱讀-----

.鮭魚、鯖魚……等魚類。(野生的含量會比較多)

.有被紫外線照射過的蘑菇,含量會比較豐富。

.雞蛋。(作為參考,一顆 50 公克的雞蛋約含有 17.5 IU 的維生素 D,是每日建議量的 4%,來源:nutritiondata.self.com

.鮪魚、沙丁魚罐頭。

-----廣告,請繼續往下閱讀-----

.額外添加的乳製品。(添加在牛奶、起司…等)

參考文獻

本文轉錄自 營養共筆

文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
0

文字

分享

0
5
0
維生素 D 與免疫力有關嗎?何美鄉的新書這樣解釋——《從一個沒有名字的病開始》
商周出版_96
・2022/11/15 ・3031字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

一項針對參加冬季訓練的跆拳道選手所進行的研究[2],探討了維生素 D 與呼吸道感染的關係。科學家確定選手們血液中維生素 D 稍微缺乏後,將其隨機分組,一組給維生素 D 5000 IU/日,另一組給安慰劑。四週內,有吃維生素 D 那組的上呼吸道症狀明顯減少很多。類似的維生素 D 臨床試驗,在 20 世紀就已被執行過,且證實在冬天給予維生素 D 補給的人,會比沒有補給的人,較少出現呼吸道感染症狀。

維生素 D 的天然來源需透過陽光照射。圖/Envato Elements

不論是人體本來就具備的免疫反應,或是藉由疫苗的刺激來產生抗病毒的特異性免疫反應,都需要正常運作的免疫功能。想像人體是一座大工廠,免疫反應是我們的防護罩,要提供防護罩足夠的能力抵禦外來病毒,勢必要供給它足夠的能量。而我們體內的多種維生素(含維生素 D 在內),就是維持這些免疫機制正常運作的重要分子。例如,維生素 A、β-胡蘿蔔素可以維持我們上呼吸道黏膜濕潤,降低病毒附著的機率;維生素 D 可以活化我們體內的免疫細胞,促進免疫反應;鋅可以調節免疫細胞,甚至具備干擾 RNA 病毒複製的能力。

所以多種微營養素,包含維生素 D,皆與免疫功能相關[3]

若是身體工廠缺乏了這些維生素、礦物質,我們就要想辦法把它補滿、補齊,這樣一來,當我們注射了疫苗,也比較容易使每一個免疫反應的步驟最佳化,更可以降低感染後重症的風險。

-----廣告,請繼續往下閱讀-----

幫助新冠病患對抗病毒的神奇療方

西班牙巴塞隆納有一家醫院(Hospital del Mar)把新冠病人分成實驗組(447 人)與對照組(391 人),所有病患除了接受當時醫療體系可以提供的最適當療法之外,實驗組還多添加了一個口服療方[4]

之後,院方持續追蹤病人的身體狀況 30 天,結果顯示(單變項分析),對照組有 20.9% 需要住進加護病房,實驗組只有 4.5%,死亡率則是 15.9% 與 4.7% 之別。

以多變項分析來看,在年齡、性別、入院時血液中的維生素 D、其他疾病等變因受到控制之下,醫生發現,實驗組需要進加護病房的風險減了 87%,風險是對照組的 0.13;死亡率減了 70%,死亡的風險是對照組的 0.30。

這是什麼神奇的療方?效果豈不是比瑞德西韋所公布的臨床試驗的結果更好嗎?我們看瑞德西韋最終的臨床實驗效果是:治療組在第 29 天的死亡率為 11.4%,相對於對照組 15.2%,只減低了 3.8%。

-----廣告,請繼續往下閱讀-----

這並不是藥物治療的實驗,此研究實驗組的受試者,只不過是被醫生多添加了維生素 D 的攝取而已。這些人是經過篩選後,剔除了平時有常規攝取維生素 D 補劑的人。所以醫生所做的事,不過就是幫這些明顯缺乏維生素 D 的人補上而已。

但維生素 D 並不是多吃多好,本來就缺乏的人,補上了當然會更好,不缺的自然也就不用補。至於這個實驗如何控制維生素 D 的劑量呢?以口服的維生素 D3 來說,入院第一天醫生就會給 532ug,之後在第 3、7、15、30 天給 266ug,算是短期內高劑量的補給。

維生素 D 如此重要,為何至今仍未列入治療新冠病人的指引?甚至確診病人入院時,都沒有將檢測血液中維生素 D 的濃度列入常規檢驗項目,以做為治療指引?為什麼?

因為醫生們有潔癖,要百分百無誤才能列入醫囑。況且醫師不知道要如何訂定給予營養素的指引。

-----廣告,請繼續往下閱讀-----

比起藥物臨床試驗的嚴謹度,至今維生素 D 是沒有足夠嚴格的實驗資料可以引用。但從另一個角度來看,如果在營養師的建議下,補一補原來就缺乏的營養素,不是應該的嗎?況且可能很有幫助。

以台灣人普遍缺乏維生素 D 的情形來看,約 30% 國人血液中的維生素 D 少於 30ng/mL(建議的正常值)。若要減低癌症或心血管疾病的發生率,有些學者認為維生素 D 的濃度最好介於 50~70 ng/mL,甚至更高可能會更好。在如此缺乏的情況下,由營養師建議補充,是不是可以對我們的健康帶來長遠且正面的影響呢?

或者更進一步,把血清營養素檢驗,列為健保給付的常規體檢項目。缺乏者可取得營養師諮詢,如此更具預防功能。

維生素 D 與你的長期健康息息相關

我們對於因為新冠病毒感染而重症、死亡的人,總是會尋找各種理由加以解釋。但從流行病學的角度,找到可被改變的因子、降低國人新冠重症率與致死率,才是重要目標。

-----廣告,請繼續往下閱讀-----

新冠疫情固然趨緩,但病毒會持續存在。對大部分的人而言,因為接種過疫苗,或因重複感染而有足夠的免疫力,就算感染新冠病毒,最多就是出現嚴重的上呼吸道症狀。

但你有沒有想過,那些無症狀的人與嚴重症狀的人,差異在哪裡?兒童感染都是以無症狀、輕症居多,為什麼?是否重症者與孩童的差別,在於體內尚未老化的免疫力?

再想一想,我們總是要先讓免疫力能夠維持正常運作,才有機會讓它不老化或延遲老化。而包括維生素 D 在內的多種維生素,正是維持免疫力正常運作的重要因子。有什麼理由不正視我們缺乏維生素的事實呢?況且從全國健康營養調查報告來看,我們缺的不只是維生素 D!

此時,我們必須更徹底地檢討我們的生活模式,尤其是飲食習慣。或許整個社會對於健康生活模式的執行,並不是一個很友善的環境,比如說高纖、低升醣指數的健康食物,需要花時間尋覓,常常一時找不到只好隨便吃,而可口的高糖、高熱量又不健康的食物,卻是滿街都在誘惑你。

-----廣告,請繼續往下閱讀-----
滿街可口的高糖、高熱量又不健康的食物都在誘惑著我們。圖/Pixabay

我們的下一代生來就處在這樣不健康的生活模式中,未來只會更難翻身。而且不要懷疑,所有慢性病的發病年齡都在年輕化,原因正與我們逐漸惡化的生活模式息息相關。

在許多營養調查的報告中,其實各年齡層皆呈現不同程度的營養不足,為什麼我們只專注於兒童?因為這件事攸關我們大人沒有努力維護「兒童健康權」,他們在沒有選擇的情況下,就被賦予不健康的生活模式。當然,父母無辜,他們在非故意的狀況下讓小孩吃得營養不足;但公共衛生學界看見了,卻沒有作為,這就非常違反專業良知了。

新冠疫情不會是最後一個全球大流行。整體健康環境似乎趨向緩慢沉淪,對人類健康的負面影響就像是溫水煮青蛙,只會一代一代逐漸惡化。

在疫情蔓延的過程,我們經歷了親人離世、醫護人員損傷等慘痛經驗,也讓我們因此看見新冠重症的風險共病。而這些其實很多都可以透過行為、生活模式的調整,就能預防或延緩發病。

-----廣告,請繼續往下閱讀-----

隨著疫情就要結束,我們是否可以用一種更前瞻性、永續性的思維,重建已經被我們破壞的一切?

——本文摘自《從一個沒有名字的病開始》,2022 年 11 月,商周出版,未經同意請勿轉載。

參考資料

  1. Chen CM, Mu SC, Chen YL, Tsai LY, Kuo YT, Cheong IM, Chang ML, Li SC. Infants’ Vitamin D Nutritional Status in the First Year of Life in Northern Taiwan. Nutrients. 2020 Feb 4;12(2):404.
  2. Jung, et al.. Vitamin D3 Supplementation Reduces the Symptoms of Upper Respiratory Tract Infection during Winter Training in Vitamin D-Insufficient Taekwondo Athletes: A Randomized Controlled Trial. Int J Environ Res Public Health. 2018 Sep 14;15(9):2003.
  3. Wimalawansa SJ. Rapidly Increasing Serum 25(OH)D Boosts the Immune System, against Infections-Sepsis and COVID-19. Nutrients. 2022 Jul 21;14(14):2997.
  4. Nogues X, et al. Calcifediol treatment and COVID-19-related outcomes. J Clin Endocrinol Metab. 2021 Jun 7:dgab405.
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

1
3

文字

分享

1
1
3
歐洲人克服乳糖不耐,少拉肚子就是達爾文贏家?
寒波_96
・2022/09/16 ・3812字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

牛奶、羊奶等生乳中含有乳糖(lactose),可以被乳糖酶(lactase)分解。但是小朋友長大以後,乳糖酶基因便不再表現,失去消化乳糖的能力。幾千年前,世界各地卻出現多款基因突變,讓人能一輩子保有乳糖酶。2022 年一項針對歐洲的研究提出觀點:這項能力之所以受到天擇喜好,是因為能避免拉肚子!?

人類如今也發明去除乳糖的牛奶。圖/被拍電影耽誤的置入性行銷之神──Michael Bay 麥可貝

史上最強遺傳適應,演化過程出乎意料?

人類原本和眾多哺乳動物一樣,小時候依賴母乳餵食,長大後不再喝奶,乳糖酶也失去作用。但是隨著人類馴化牛、羊等動物,即使是成年人也常有機會吃奶。

另一方面,由於乳糖酶基因外頭的調控位置突變,使得許多歐洲、非洲人的酵素在成年後可以持續作用,稱為乳糖酶持續性(lactase persistence,簡稱 LP,也就是乳糖耐受),而且同樣效果的不同突變,至少獨立誕生過 5 次。

具有某方面優點,使得存在感增加的 DNA 變異,稱作遺傳適應(genetic adaptation)。已知的人類案例非常多,天擇的影響力有強有弱,LP 算是受到最強烈天擇力量的基因之一。

-----廣告,請繼續往下閱讀-----

由此推敲,當人類開始養牛、養羊,又吃奶以後,同時衍生 LP 應該是順理成章的事?然而,一系列考古學、遺傳學、古代遺傳學的探索,卻徹底打破上述看似合理的推論。

首先,考古學調查發現人類在中東馴化牛、羊,吃奶的歷史至少有 9000 年,接著距今 7000 年前已經引進歐洲多處。再來,由遺骸中直接取得古代 DNA 得知,LP 遺傳變異要等到 4000 多年前才出現,而且超過 3000 年前都還很小眾,最近 2000 年內才大幅提升存在感。

顯而易見,人類開始吃奶的年代,比獲得成年後消化乳糖的能力,更早好幾千年。 2022 年新發表的研究透過更廣泛的取樣分析,再度確認這件事。

由陶器中取樣乳脂質的地點和年代。圖/參考資料 1

再度確認:吃奶比遺傳突變更早好幾千年

隨著技術進步,如今有好幾種方法判斷古代人會不會吃奶,像是分析牙結石中的乳蛋白、容器中的乳脂質等等。新研究偵測陶器中的乳脂質,包括以前發表 188 處,以及新取得 366 處,總共 554 處中東、歐洲的遺址中,得知 6899 件乳製品存在的紀錄。

-----廣告,請繼續往下閱讀-----

吃奶的文化能追溯到中東,新石器時代擁有農業的人群,帶著他們的牛、羊一起移民歐洲,也將吃奶文化傳入歐洲。到了距今 7000 年前,歐洲各大地區已經出現乳製品。也許不見得會直接喝生乳,不過肯定存在起司等生乳加工的食品。

比較特殊的是巴爾幹半島,現在的希臘。那時居民會養牛,養羊,吃肉肉;但是分析超過 870 件陶器,完全見不到乳脂質的蹤影。此處或許更晚才建立起吃奶文化。

總之,7000 年前吃奶文化已經廣傳歐洲各地。相比之下,比對不同年代、地點的死人骨頭取樣,消化乳糖的 LP 遺傳變異最早在 4600 年前現蹤,比吃奶晚很多。

而且 LP 出現一段時間後,存在感依然非常低,距今 3000 到 5000 年前的青銅時代,LP 並沒有什麼過人之處。到此為止,LP 只能說是人類族群中的一款普通變異,還不能算是遺傳適應。

-----廣告,請繼續往下閱讀-----
不同年代,歐洲各地的吃奶狀況。距今 7000 年前之際(5000 BC)吃奶已經相當普及。圖/參考資料 1

現代社會:能代謝乳糖沒有好處,不能代謝只有小小壞處

儘管比本來以為的晚很多,LP 遺傳變異在歐洲族群的比例,還是於最近 3000 年內明顯上升。它到底因為什麼優點才受到天擇青睞,歷來爭論不休,有人提出營養、維生素D 等假說,可是都缺乏決定性的證據。

搜集幾十萬人遺傳資訊的英國生物樣本庫(UK Biobank),近來被大量用於各色分析。這項研究從中探討 LP 的影響,分析對象中大部分人具有 LP,少數人沒有(論文用語是 lactase non-persistent,縮寫為 LNP,也就是乳糖不耐)。比對得知,LP 並不會影響喝奶、食用乳製品的行為。

直接喝奶才有乳糖代謝的問題,加工成起司等乳製品可以避免,但是「問題」也許不是真的問題。更進一步比對,LP 對於健康狀況也沒什麼影響。簡單說就是:對 33 萬位英國人的分析發現,LP 與否,無關緊要。

加上其餘資訊推論,現代社會在正常情況下,缺乏 LP 大概就是喝奶拉肚子,不是什麼嚴重的問題。例如隨著中國經濟發展,沒有 LP 的中國人大量喝奶,多數也沒怎麼樣。

-----廣告,請繼續往下閱讀-----

這也符合台灣人的經驗,台灣人配備 LP 的比例不高,可是隨著飲食習慣改變,多數人也就是這樣喝奶。另外喝奶會改變人的腸道菌,影響消化狀況,也是一個影響因素。

普遍缺乏 LP 的台灣人,很多人也是生乳照樣喝。圖/[廣宣] 牛奶妹 徵求中興大學牧場鮮奶長期訂戶

飢荒、疾病,時代力量的逆境考驗?

為了解釋歐洲歷史上 LP 比例的大幅上升,許多論點提出喝奶的優點,但是想想頗有可疑。把鮮奶加工製成乳製品,就能輕易抵銷 LP 問題,即使是飢荒時節也不例外;不能直接喝奶也不會餓死,吃起司就好。在營養加分方面,能喝奶真的有什麼優勢嗎?

由人群中遺傳變異的比例變化,我們能評估天擇影響的結果,但是不見得能抓到當初天擇真正的目標。新研究的分析指出,LP 的意義似乎不在創造優勢,而是避免劣勢。

跑完一大堆統計分析後,有兩項因素和 LP 的關聯性最高。一項是人口數量的波動,另一項是人口的密度。論文的解釋是,人口數量波動和飢荒有關(飢荒讓人口減少),密度和傳染病有關(人變多會增加傳染病的機率)。

-----廣告,請繼續往下閱讀-----

沒有 LP 的人直接喝奶,副作用往往是腹瀉,在豐衣足食的現代社會多半沒有大害,還能刺激代謝,順便減肥;雖然對某些人而言,拉肚子依然是困擾的問題。

至於營養不良的人,腹瀉更可能出問題;某些疾病下,拉肚子造成脫水,容易重傷害健康。時常被營養不良、傳染病、飢荒等災厄糾纏,是古代的常態。

由此推論,不論是饑荒的短期逆境,或是傳染病的長期逆境(論文沒有特別討論,我想也包括寄生蟲?),配備 LP 的人由於能少拉肚子,生存機率也會大一點。

不同地區的人群,在不同年代的 LP 人口比例。圖/參考資料 1

魔鬼藏在拉肚子?

影響最大的年齡層可能介於 5 到 18 歲。此一小大人的階段,乳糖酶將漸漸失去作用;營養不良、體弱多病的人身體比較脆弱,拉肚子是要命的事,這或許正是天擇的目標!

-----廣告,請繼續往下閱讀-----

古時候衛生狀況不佳,拉肚子大概很常見,而未成年人的死亡率也遠勝現在,小孩死掉並不意外。在此之下,能減少拉肚子的 LP 遺傳變異,長期累積下來,正面影響力或許頗為可觀。

這項研究的說法是否正確?它仍不足以算是決定性的證據,不過脈絡頗有道理。非洲也有多個獨立誕生的 LP 遺傳變異,相較於歐洲了解少很多,這是個潛在的研究方向。

另外不可忽視,讓乳糖酶維持作用的 LP 遺傳變異,也受到飲食習慣、生活背景影響,不單純是遺傳的事。例如自古牧業發達的蒙古、哈薩克,居民的 LP 比例一直很低,幾千年來也活得很好。少拉肚子也許能解釋歐洲的狀況,其餘地區不宜過度延伸。

延伸閱讀

參考資料

  1. Evershed, R. P., Davey Smith, G., Roffet-Salque, M., Timpson, A., Diekmann, Y., Lyon, M. S., … & Thomas, M. G. (2022). Dairying, diseases and the evolution of lactase persistence in Europe. Nature, 1-10.
  2. The mystery of early milk consumption in Europe
  3. Famine and disease drove the evolution of lactose tolerance in Europe
  4. How humans’ ability to digest milk evolved from famine and disease
  5. Ancient Europeans farmed dairy—but couldn’t digest milk

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。