分享本文至 E-mail 信箱

學術引用格式

MLA (點一下全選)

APA (點一下全選)

EndNote(.enw)

【極光片語】火箭,公車道,磁碟機

李世光老師

李世光老師講述磁碟機的原理和研發故事。(攝影/賀厚平)

上集的李世光老師說故事中,NASA的工程師以「If you cannot fight it, join it」的思維出發,聰明地捨棄柏油和水泥,為承載火箭的履帶車鋪了一條不容易產生皺摺(corrugation)、又能輕鬆整理的石頭路,火箭才能夠一路平穩地從棚廠前往發射台,背著人類的太空夢飛向宇宙。

在1970年代,NASA工程師為了避免地面的皺摺改變了鋪路的材料,到了1980年代,車道上的皺褶也讓深陷磁碟機出廠危機的IBM科學家找到解決方法,讓磁碟機的性能持續提升,迅速全面取代磁帶機在電腦記憶體的地位,並且促進商業資訊的連結。所以corrugation是個考試必考的重要的現象嗎?No no(搖手指),他們從生活現象聯想到的解決辦法,是在說明科普知識對科學家來說有多重要!這故事要從磁帶機和磁碟機的身世說起,很久很久以前……

Think Out of the Box,磁碟機海放磁帶機

電腦使用磁帶機的歷史可以追朔到1950年代初期,發明於1928年的磁帶是一條又長又軟的塑膠帶,上面有用來存資料的磁性物質,磁帶機讀取或改寫磁帶上的資料時,就像拉開一條捲尺尋找某個刻度,如果要修改一次資料,就要捲動一段長長的磁帶才能找到資料存放的位置;在家用電腦開始普及的1980年代,當時最先進的磁帶機運轉速度可以達到超過音速的每秒350公尺以上!假設某筆資料存在磁帶的1000公尺處,只要約三秒鐘就可以讀到資料,這種比超音速飛機還快的驚人速度,「以科技的角度來看,實在很不得了!」李老師說。

雖然磁帶機已經加足馬力跑到音速,但三秒鐘讀一筆資料的速度對一秒鐘幾十萬上下的商業市場來說還是太緩慢了。想像你去銀行要存入現金到自己的帳戶,銀行電腦中已經有你的身分證字號、帳號、存款金額等資料,現在要將原本存款的1000萬增加為1001萬元,僅僅是更動這一個數字,就要等電腦跑3秒鐘,如此低速的系統絕對無法用來建構做為今日商業行為基礎的關聯性資料庫(Relational Database),這個高速運轉的世界需要更快速的記憶體。

時間到了1980年代末期,另一種形式的記憶體——磁碟機自1956年誕生於IBM後,也歷經了30年的進步,尋覓時間(seek time)縮短到14毫秒,表示磁頭從靜止、以400倍重力加速度來加速移動到資料儲存的位置,再以同樣驚人的減速度來讓磁頭停止到震動不影響資料讀取的狀態,平均只需要約百分之一秒,相較於磁帶機讀取資料所需的3秒,磁碟機簡直快到讓磁帶機看不到車尾燈。其實磁碟機的磁頭飛行時最大速率遠不及磁帶機的音速,只有不到10m/s,其迅速讀取資料的原因不是移動速度,而是幾何結構的改變:從磁帶的一維結構(線)變成磁碟片的二維結構(面),以旋轉的磁碟片搭配在上面左右擺動的磁頭,就能隨意讀取資料,不需要從頭開始尋找存取位置,讓磁碟機成為歷史上第一個大量商業化的隨機存取記憶裝置,也逐漸取代磁帶機的地位。「『Think out of the box』是很重要的,磁帶機跟磁碟機的競爭就是這樣。」李老師說。

磁頭可以隨機存取磁碟片上的資料。來源:維基百科

磁頭可以隨機存取磁碟片上的資料。來源:維基百科

出廠危機挑戰科學家的科普力

1980年代末期,在IBM宣布最新型磁碟機3390即將誕生後,包括台灣11家新設立的銀行,全世界都在引頸期盼,希望這個高速的記憶體能促進商業資料的連結,然而3390在正式出廠的前夕卻發生重大危機,3390幾乎難產。

「我們預計產品壽命要有7年,但出廠前估算出來產品壽命卻只有3個月!」李老師眉頭一皺,「這個產品有多值錢呢?IBM一年可以靠它賺幾十億美金!」平均出貨時間延遲一天就等於幾億台幣的營利損失,研發部門的科學家全部上緊發條,想辦法盡快排除問題。3390有以下幾個異常現象:

  1. 碟片上有磁頭撞擊的規律損害。
  2. 碟片上的潤滑油產生規律的油滴。
  3. 磁頭黏在磁碟上,無法起飛。

若說磁帶機的成敗在磁帶的轉速,那磁碟機的奧秘就是如何讓磁頭跟碟片維持微妙的距離。磁碟機的主角是磁頭和碟片,存放資料的碟片是金屬的圓形薄片,上面鑲滿奈米等級的「小磁鐵」,讀寫資料的磁頭上有微小線圈能產生磁場,磁頭發出的磁場會改變碟片上小磁鐵的方向,電腦則把每個磁場方向的改變轉化為自己的語言:0 和 1。3390的磁頭以數十奈米的高度懸浮在碟片上空,這個飛行高度跟空氣分子間的平均間距相去不遠。為什麼要靠這麼近呢?由於距離會影響磁場大小,磁頭跟碟片靠得越近,碟片感應到的磁場面積越小,同樣面積的碟片上資訊就越密集,所以科學家要讓磁頭如下雨前的燕子一般低飛在碟片表面,盡可能提高磁碟的空間儲存密度。

要讓磁頭如燕子般優雅的飛行需要非常精密的高科技。碟片旋轉時會上下震動,以3390來說,碟片旋轉時的上下震動幅度約一兩萬奈米,而磁頭要隨時跟起起伏伏的碟片保持幾十奈米的距離,以流體力學的角度來看,難度就像駕駛波音747客機飛行在台大校園內,隨時跟地面建築物的屋頂保持 3 公尺高的距離,舉例而言,在椰林大道上低飛,遇到圖書館需要立即飛高,若一個不小心,就會撞到建築物,造成校園(碟片)和飛機(磁頭)的損傷。

由於磁碟機的構造,科學家可以理解為什麼磁頭會撞上碟片,但碟片上有打水漂痕跡般的規律損害卻讓他們百思不解。這個問題早在1980年代初期就發生過,研究團隊曾想出多種可能的原因,但都被一一否決了,科學家猛盯著磁碟機看了好幾個月,最後解開謎題的卻是數學部門的經理。這位數學和力學領域的專家摸著下巴端詳碟片的損傷,腦中閃過公車道上的皺褶( corrugation ),察覺兩者有異曲同工之妙,於是他用磁頭阻尼器的共振頻率、速度等項目,計算磁頭撞擊磁碟片後彈跳的距離是否與事實相符,就以半張紙篇幅的算式證明了這個假設。

慢著,corrugation看起來頗眼熟,但公車道跟磁碟片有什麼關係?在得到答案前,可以先想想,為什麼台北市的公車專用道常是鋪水泥而不是柏油呢?為什麼有些馬路在紅綠燈前的路段會有謎樣的波浪?

台北市羅斯福路上的公車專用道為什麼是水泥鋪成的呢?圖片來源:Howard61313

台北市羅斯福路上的公車專用道為什麼是水泥鋪成的呢?圖片來源:維基百科

柏油路上的皺褶(corrugaiton)。來源:FAA

柏油路上的皺褶(corrugation)。來源:FAA

當車子在紅綠燈前煞車,輪胎忽然擠壓柏油,會造成地面微微的凸起,下一台車經過這兒,就會彈起來,咚、咚、咚的往前撞擊地面直到靜止,而大部分車子的軸承、軸距(前後輪距離)、阻尼器(避震器)、車速、輪胎氣壓都差不多,所以車子往前彈跳的距離也差不多,經過多次的重複撞擊,地面就從上一個小小凸起漸漸變成一排波浪。公車道上的車種和停靠位置都很相似,公車停靠次數多,更容易產生地面皺摺,所以才會以水泥取代柏油,避免平坦的公車道變成崎嶇的天堂路。而碟片上的規則性損傷,就是貼地飛行的磁頭撞上碟片後往前跳動產生的結果。

專門研究磁碟機的科學家沒有想到地面皺褶跟碟片損傷的相似之處,反而是擁有力學知識的數學家突破了盲點,「其實那個人也不怎麼懂什麼是磁碟機,」李老師說,「跨領域的知識背後最強大的基礎經常是科普。」

磁碟機運轉時,磁頭(紅色)懸浮在旋轉的磁碟片(紫色)上飛行。

磁碟機運轉時,磁頭(紅色)以數十奈米的高度飛行在旋轉的磁碟片(紫色)上方。

磁頭飛行時撞擊碟片可能導致磁頭撞毀。

磁頭飛行時撞擊碟片可能導致磁頭撞毀。

磁頭飛行在碟片上方的高度只有數十奈米,單純以尺寸來思考,這就表示即使是一顆病毒入侵也可能會讓磁頭卡住。如同車子在柏油路上產生的顛簸,磁頭在碟片上產生第一個撞擊後會繼續往前彈跳,在碟片上產生一連串的損傷,但除了磁頭撞擊碟片的傷害,工程師還發現碟片上有油滴以相同的規則排列,這又是為什麼呢?

碟片上有一層薄薄的潤滑油,磁頭因為震動過於靠近碟片有可能會沾上潤滑油,如果發生碟片撞擊,更是會沾上潤滑油,沾有潤滑油的磁頭往前跳動就在碟片上形成一連串的油滴;科學家進一步分析油滴的性質,發現3390所用的潤滑油竟然在使用一段時間後變成黏膠了!探究其原因,不是因為黑心廠商,而是空氣剪力和撞擊造成的。原來磁頭撞擊碟片會產生超達800℃的瞬間高溫,原先所採用的長鏈潤滑油分子在高溫或高剪力的作用下被分解成短鏈分子,也就產生了黏膠的性質,一旦潤滑油變成黏膠,磁頭降落在碟片上,當然就有可能黏住而無法起飛囉。

找到了問題的方向,就能找出解決方法。在與危機搏鬥了半年後,科學家終於解決了問題,將磁頭的飛行高度調高幾個奈米,降低撞擊機率又能維持相當的空間儲存密度;再更換潤滑油,一方面選擇分子鍵結更為強韌的潤滑油,以抵抗空氣的剪力作用,一方面讓潤滑油和碟片間的聚合力大於潤滑油和磁頭材料間的聚合力,油滴就不會黏上磁頭啦!3390的危機排除,正式上市後一天內,整年的產量就被搶購一空,科學家也終於能喘口氣了。

「出現大問題時,你解決問題的工具就是科普了。」——跨領域知識就是科普的具體延伸

IBM的科學家在解決出廠危機的這段日子裡每天都在跟時間和金錢賽跑,在強大的壓力下用過往累積的知識和經驗,迅速推理、歸納、篩選出可能的原因,「但其實多人或多錢不一定可以解決問題,因為你需要的是高品質的人,而且是能整合多領域、快速思考還要當場推論的人。出現這種大問題的時候不能用太複雜的思維,你身邊有學化學、電機、分子生物……不同背景的人,你要讓他們快速瞭解這個思路為什麼正確,這時候你唯一的工具就是科普了,當然我指的是更深入的那類科普,也就是跨領域的知識。」李老師說。

其實很多高科技產品發明的關鍵是非常基礎的知識,2010年的諾貝爾物理學獎得主Andre GeimKonstantin Novoselov就曾靠著隨手可得的膠帶,從平凡的石墨中分離出材料界的超級巨星「石墨烯」(graphene)。石墨烯是碳原子排列出了六角形平面結構,石墨是由層層疊疊的石墨烯組成的,許多科學家原先認為單層的石墨烯無法穩定存在,但Geim跟Novoselov兩人卻成功的從石墨中取得單層的石墨烯,他們用的方法不太複雜,僅是以膠帶重複撕黏石墨,讓膠帶上的石墨越撕越薄,一直撕、一直撕、一直撕,撕到最後剩下一顆原子這麼厚,就得到石墨烯啦。另一項原子等級的發明「原子力顯微鏡」,當初竟不是誕生在精密的光學桌上,而是在科學家身上的吊帶!?預知詳情,請待下回分曉~

諾貝爾獎得主Geim和Novoselov捐贈給諾貝爾博物館的石墨、石墨烯電晶體和一卷膠帶。來源:維基百科

Geim和Novoselov捐贈給諾貝爾博物館的石墨、石墨烯電晶體和一卷膠帶。來源:維基百科。

【極光片語】專欄收錄李世光老師的訪談,每一段小故事、小物件的背後,都有饒富趣味的科學道理。吉光片羽比喻殘存的珍貴文物,象徵李世光老師在科學研發的高昂志氣和人生智慧;傳說見到極光會帶給人一輩子的好運,期待讀者在本專欄得到的啟發,都能像看見極光般感動。

關於作者

雷漢欣

PanSci的菜菜實習編輯,來自溫馨的動科系,心情好的時候喜歡說「你知道嗎!?」小故事,即使常得到「誰不知道阿.......」的冷眼回應,也不改其志。