0

0
0

文字

分享

0
0
0

災害預測新技術 (二):無山不崩 雷達測雨全面網羅

陳 慈忻
・2013/04/11 ・2147字 ・閱讀時間約 4 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

台灣降雨時節不均、山地又佔了三分之二,水災、土石流成為台灣常見的天災,為了達到災害預警,「到底雨量測站夠不夠?」也變成許多政府單位及民眾關切的問題。究竟國內的雨量監測有哪些技術?目前又是如何運作的呢?台大地理環境資源學系(簡稱地理系)的黃誌川教授與台大大氣科學系(簡稱大氣系)的周仲島教授將為大家介紹。

天下無山不崩

颱風結束之後,不代表危險消失了,因為在下雨之後,大概接著就有山坡地開始崩塌(landslide),台灣100公尺以上的地方約有2%的崩塌地。「南部崩塌發生較快,因為南部的板塊上升速度比較快,如果日降雨超過200mm,大約就要開始崩了。」地理系的黃誌川教授說。造山運動的作用使地勢更加陡峭,因此崩塌會集中在造山帶上,而全球崩塌地分布最密集的地區大約就在東亞。

天下無山不崩,再堅固的工程也終究阻擋不住,在這樣的事實下,我們要怎麼用軟性的態度去處理他?「我們需要先了解,什麼情況我們要啟動災害預防的機制,我們歸納出一些指標,然後特別注意超出指標的地區。」黃誌川教授說。

譬如就地震強度及降雨量而言,台灣會發生比較嚴重的崩塌大約是地震強度6級以上,而降雨事件約超過600mm的時候,初步了解這些條件之後,進一步關注哪些地方容易發生大於600mm的降雨事件,以及近期地震強度較大的區域。

-----廣告,請繼續往下閱讀-----

雨量測站足夠嗎?

既然土石流及崩塌地發生與降雨量息息相關,雨量監測變成了相關防災的重要工作。從小學起,我們就學到雨量筒能用來測量降雨量的原理,而比較精密的雨量筒擺在雨量測站,設置雨量測站的地方,就能直接測量該位置的雨量。沒有雨量筒的地方怎麼辦?可以利用周遭的雨量測站數據推估出來。

這麼一來,雨量測站越密集,應該就能夠得到越準確的雨量數值,因此許多地方政府或民眾擔心:台灣的雨量測站夠嗎?「中央氣象局的測站大約有四百多個,水利署有一百七十幾個,加起來號稱有600個;如果加上農改場或者中小學自行架設的雨量測站,大概全台灣總共有1,000個雨量站,而每1個雨量站大約能管60平方公里。」黃誌川教授說。

這樣的雨量站數量夠不夠?在平地是夠的,但在山區確實不足,「山坡地的降雨可能換一個坡面,雨量就不同了,如果要真的精準量測山區雨量,雨量站是設不完的。」周仲島教授說。

雨量監測技術不只1種

有些地方政府希望轄區內能夠架設更多雨量測站,以輔助土石流及洪水的預警,但是可能會面臨到經費問題,因為精密的雨量監測儀器可能所費不貲,如果要遍地架設,可能會耗費大筆公帑。有沒有雨量測站以外的監測方案?

-----廣告,請繼續往下閱讀-----

在新技術的面向上,中央氣象局整合了一套「雷達雨量監測系統」,使用全台灣的4個降雨雷達:墾丁、台南、花蓮、五分山,來觀測全台灣的雨量資料,雷達的掃描(scan)是以面為單位監測,不像雨量測站是以點為單位測量。所以儘管1個雷達的成本比1個雨量測站還高,一個雷達測站所能夠獲得的資料卻往往是上百個雨量測站才能蒐集而成的,所以總體的成本不見得比較高。

「雷達的降雨資料解析度可以達到1.3平方公里1個網格」黃誌川教授說,「雷達能夠監測的是連續資料,可以記錄降雨的時空動態及強弱變化。」周仲島教授說,這些都是雷達的優點,監測面積廣、資料連續、解析度高等等,因此雷達得到的資料很適合作為如何預警的研究資料。

有了雷達,一般雨量測站就不需要了嗎?其實不然,雖然雷達監測的時間解析度很高,能夠比較精準的掌握連續時間下的變化,但是雷達的監測資料卻是推估而來的,換句話說有「猜」的成分。

而雨量測站的測量是屬於直接的測量,一般認為量到的數字貼近真實,這是雨量測站相較於雷達最大的優勢。但是雨量站所量測的雨量值都不會失誤嗎?「雨量站的維護其實相當耗費人力,偏遠地區的雨量測站有時候被樹葉塞住了,可能好幾個月沒去檢查,看到這個地方都不下雨才發覺不對勁。」周仲島教授說。

-----廣告,請繼續往下閱讀-----

抉擇:雨量測站還是降雨雷達?

既然雨量測站與降雨雷達兩種監測技術各有優劣,氣象局如何在考慮成本、效益之下選擇合適的技術?「其實目前是hybrid system,也就是混用的方式。」周仲島教授說。

雷達能發揮大面積監測的效果,但又擔心非直接測量會有不準確的疑慮,因此氣象學家從數百個雨量站中挑選幾個維護較為嚴謹的「標準測站」,可以避免上文提到的測站故障,然後用這些數據來修正雷達監測結果,找出出降雨雷達資料的「修正係數」,最後得到經實際值校正的時空連續的監測資料。

過去沒有雷達技術,單靠雨量測站來監測雨量會面臨好幾個問題,除了上文提及雨量測站很多,逐一去檢查維護有其困難,資料的傳輸及整合又經過多重手續,最後如何修正檢查出錯誤的數據也是一個問題,「但是現在不必然需要一個一個設置雨量測站,因為有遙測技術(雷達)。」周仲島教授說,目前水利署預計要在新北市樹林、台中大肚山、高雄建立3個降雨雷達,兩分鐘就掃描1次,比現在10分鐘1次的雷達資料詳細。

科技的進展是瞬息萬變的,但是不同的技術不一定是取代的關係,如何掌握優劣使他們搭配、互補,也是學習發明之外的另一種智慧。

-----廣告,請繼續往下閱讀-----

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸學習:防災降雨雷達網104年完工

文章難易度
陳 慈忻
55 篇文章 ・ 1 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2213 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

4
3

文字

分享

2
4
3
精準預測氣象的「掩星技術」,讓你知道颱風放不放假!
科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

-----廣告,請繼續往下閱讀-----

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

-----廣告,請繼續往下閱讀-----

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

所有討論 2
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

1

12
0

文字

分享

1
12
0
我已經鎖定你了!多頻譜影像處理演算法於軍事監測系統的應用
科技大觀園_96
・2021/11/04 ・2878字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

戰場上,分秒之差就能是決定勝敗生死的關鍵。因此如何更迅速捕捉敵軍的動向蹤跡,便成為國防軍備的一大研發重點。多頻譜影像技術能確切捕捉到物體反射的光譜資訊,並已在衛星、醫學、動植物辨識領域取得可行的成果。來自中正大學的研究團隊,便致力於建立多頻譜影響處理演算法的資料庫,期望能應用在軍事目標物的偵測追蹤上,為前線戰士助一臂之力!

掌握物體的「本色」:多頻譜影像技術

色差,是日常生活中會碰到的困擾:不管是印刷品的呈色與預想不符,或是網購的衣服顔色與想象中有所落差。這與傳統的色彩影像量測技術,如電腦電視使用的 RGB 三原色光模式及彩色印刷的 CMYK 四分色模式,在不同裝置上檢測及重現時出現的差異有關。但是,只要回歸到視覺與色彩形成的根本——光線,我們可以解決這些問題。

兩種模式最大的差異在於,三原色光模式的原理是紅、藍、綠的光線同時照射在視網膜上,我們眼睛會辨識成白光。四分色模式則是青色、洋紅、黃色顏料疊色後會變成黑色。RGB模式常用在螢幕等發光產品上,而CMYK模式則使用在印刷上。

大家都知道,光源照射物體後,會根據物體特性產生反射、吸收和透射等現象,人眼接收了物體反射的光線,會經由大腦分析視網膜收到的電子訊號,產生視覺色彩的感知。光線是一種電磁波,不同顔色的光有不同的頻率。而所謂的頻譜,就是物體的反射頻譜、投射頻譜或發光頻譜。頻譜影像,顧名思義即是每個畫素都帶有頻譜資訊的影像。

號稱可以捕捉物體本色的多頻譜影像技術(Multi-spectral imaging),厲害之處在於它可以直接擷取畫面頻譜的反射值。這個反射值是唯一值,不會受到不同廠牌的擷取技術或光源影響,因此是十分準確的影像資訊。一般頻譜影像的波段範圍落在可見光範圍(380 – 780nm),在定義上高光譜影像(hyper-spectrum)泛指使用儀器設備所拍攝到的多頻譜影像資料;超頻譜影像,則是以演算法將影像進行計算所得。其所具備的豐富影像資訊,也成為近年來醫學影像判識(如早期癌症病變的診斷)及衛星遙測的一大福音。

衛星遙測也可以使用多頻譜影像技術來提升影像資訊品質。圖/國家太空中心

從依靠人力,到交給演算法裝置代勞的自動目標識別演算法

自動辨識技術(Automatic target recognition,ATR)的源起,可以追溯至二戰前的雷達(註1)。雷達的操作原理,便是將電磁能量以定向方式發射至空間中,藉由接收空間中的物體所反射回來的電波,計算出物體的方向、高度及速度,並探測物體的形狀。過去的雷達偵測技術,仰賴訓練有素的操作員去解讀雷達訊號,如辨識戰機的大小、型號,以幫助戰場上的同胞第一時間掌握敵營的部署。

-----廣告,請繼續往下閱讀-----

不過,人的經驗能力終究有限,因此軍方目標偵測系統也逐漸從人力辨識,逐步發展至交由演算法或裝置來代勞,即自動辨識技術 ATR。準確率更高、速度更快的 ATR,除了可辨識海陸空的軍武,也能偵測生物性目標如動物、人類和植被。目前軍事上通常僅利用一個波段,如近或遠紅外光的資訊來判別目標物,但利用多頻譜影像或超頻譜影像豐富的資訊來進行目標物識別,卻有待發展。

雷達能夠計算出物體的方向、高度及速度,並探測物體的形狀。圖/pixabay

利用多頻譜影像技術,打造鎖定目標的軍事鷹眼!

如果能將多頻譜影響處理演算法帶來的豐富影像資訊,與 ATR 結合,將有望能提升偵測目標的準確率,在戰場上占盡先機。但這不是一件簡單的事:首先,軍武裝載空間有限,因此需以極精簡的光學裝置,來擷取到光路相同的不同波段影像;再來,多頻譜影像資料龐大,因此需整合不同波段的影像特性,以精確辨識俊基、船艦、坦克和建築等目標物;而如何將複雜的演算法轉化成運算夠快的晶片,應用在真實的武器上,也考驗科學家的能耐。

作為影像辨識技術領域的專業,來自國立中正大學的王祥辰教授研究團隊,就志在建立一套適於分析不同目標物特性的超頻譜影像資料庫、開發目標物偵測的多頻譜演算法程式庫,並打造一個方便高效的模擬及演算平台,讓軍方研究者可以進一步建立合適的 ATR 偵測法則。

這項計劃包含三個子系統,子系統 1 是建立多光譜及高光譜拍攝影像的資料庫。就像過去的雷達系統,是依賴熟練的操作員調度腦中記憶的資訊,去與雷達訊號進行比對辨識。要訓練機器裝置去指認出目標物,首先就得提供它一個可靠的影像資料庫作為基礎。為此,研究團隊在不同的天候條件下,拍攝不同波段下的各種目標物如電塔、水泥建築、海面船艦及空中飛行物,來建立一個涵蓋陸、海、空特性的多頻譜與高光譜影像資料庫。

-----廣告,請繼續往下閱讀-----

接著,上述涵蓋不同波段的影像,可以經過子系統 2,進行超頻譜展開運算。在子系統 2 時,為了減少計算量,使用者可設定挑選效果最好的數個頻帶,讓目標與其背景的差異達至最大化。這個過程如同指導電腦來玩「大家來找碴」的游戲,讓電腦可以學會如何在不同的場景、天氣條件下,快速辨識出指定的目標物。

子系統 2 將原本有限頻段的多頻譜影像,轉換為特定目標物適用的超頻譜影像,作為子系統 3 的輸入。在這個友善而直覺的圖形化人機介面,軍事研究人員可以在複雜的影像資料庫及法法則程式庫中不斷進行模擬,找出不同目標物的最佳化演算法則,縮短軍事研發所需的時間,提高所開發武器的效能。

如今,王教授的研究團隊已完成三個子系統的建設。此項研究成果,預計可以應用在各式對地、對空及對海飛彈,以及各式影像偵蒐系統的 ATR 設計開發上,成為新一代的鷹眼。而該研究的系統,也能幫助縮減開發測試的時間,對演算法和超頻譜頻帶最佳化都將有所助益。

【注解】

1.雷達(Radio Detection and Ranging,縮寫為 RADAR),是始於二戰前的偵測技術,其原理是利用將電磁能量以定向方式發射至空間中,藉由接收存在於空間中的物體所反射回來的電波,就可以計算出該物體的方向、高度及速度,並探測物體的形狀。

-----廣告,請繼續往下閱讀-----

參考文獻

所有討論 1
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。