0

0
0

文字

分享

0
0
0

首度在疏散星團中發現熱木星

臺北天文館_96
・2012/08/21 ・1421字 ・閱讀時間約 2 分鐘 ・SR值 553 ・八年級

目前已確認的系外行星數量多達800顆左右,找到具有特殊意義的系外行星,似乎變得愈來愈難,愈來愈遠。發現多重行星系統已經不是新聞,發現質量比地球小的系外行星也已經聽到很多次,偵測到系外行星有大氣層也已經不太能引起大眾的驚艷。不過,最近有篇論文卻找到系外行星研究領域的另一個「突破點」:首度在疏散星團中偵測到熱木星(hot Jupiter)。除了發現地點讓人覺得新奇外,還因發現熱木星的這個疏散星團是對天文學家具有特殊意義、非常著名的蜂巢星團(Praesepe, 或Beehive Cluster,M44,又稱鬼宿星團或馬槽星團)。

這項發現是由美國喬治亞州立大學(Georgia State University)的天文學家Samuel Quinn等人,藉由「擺動法(wobble)」來偵測系外行星,也就是母恆星受其行星的重力擾動,使得恆星的位置隨行星公轉而週期性來回擺動,如此一來,這顆恆星的光譜譜線也會隨之週期性的來回擺動,天文學家因而得以從譜線的移動來反推這顆恆星是否具有行星、行星的公轉週期與可能的質量下限等等訊息。所謂的「熱木星」是指那些質量與木星差不多,且因非常接近其母恆星而使其公轉週期非常短、表面被母恆星加熱到高溫狀態的氣體巨行星。

Quinn等人之所以挑選巨蟹座M44星團的主因,是因為它夠近,僅約577光年左右,但星團成員數量多達1,000顆以上,其中許多恆星都與太陽相似。此外,這個星團的金屬豐度比平均值還高,是可能具有行星系統的特徵之一;再者就是天文學家曾對此星團做過比較詳盡的研究,可取得比較精確的星團形成年齡等訊息。

天文學家也曾在其他疏散星團奮鬥過,但迄今僅在兩顆巨星旁發現行星,且行星距離其母恆星都很遠,並非所謂的熱木星。居然只有發現這麼少的疏散星團恆星擁有行星,讓天文學家們覺得很奇怪,因為目前認為恆星幾乎都是在星團中形成,而後有些逐漸擴散鬆開,才有部分恆星成為像太陽一樣的單星,因此按理來說,星團中的恆星擁有行星的比例應該幾乎與單星相同。

-----廣告,請繼續往下閱讀-----

這些天文學家利用位在美國亞利桑納州霍普金斯山(Mt. Hopkins)上的惠爾普天文臺(Fred L. Whipple Observatory)1.5米 Tillinghast反射式望遠鏡來觀測M44裡的其中53顆恆星,結果在其中兩顆還在主序星階段的恆星旁發現2顆靠母星很近的熱木星,其中一顆熱木星Praesepe 0201b(縮寫為Pr0201b),質量下限約為木星的0.54倍,繞母星一周約需4.426天;其母恆星Praesepe 0201(Pr0201)是顆F型矮星,視亮度約10.52等,質量約為1.234倍太陽質量,表面溫度約6174K,比太陽的5778K高一些。另一顆Praesepe 0211b(Pr0211b)的質量下限則約為木星的1.844倍,環繞母星公轉一周約為2.145天;其母星Praesepe 0211(Pr0211)是顆與太陽相同的G型矮星,視亮度約12.06等,質量約為太陽的0.952倍,表面溫度約5326K,比太陽略低。

這項發現將有助於天文學家逐步縮減在年輕的星團系統中,行星如何形成與遷徙的條件範圍。既然大直量行星一般是在離恆星比較遠、比較冷的地方形成,那麼在鄰近恆星之處發現熱木星,顯示這些大質量行星在形成之後,將逐漸向行星系統內側遷移,才能抵達現在觀測到的位置。向內遷移的時間長短一直是天文學家還搞不定的問題之一;不過,既然目前已知M44星團的年齡僅有6億年左右,而新發現的這兩顆熱木星已經這麼靠近其母恆星,代表大質量恆星形成後向內遷移所需的時間應該短於6億年。

雖然這是第一次在疏散星團中發現靠母恆星很近的熱木星,不過這項發現顯示未來在疏散星團中發現更多熱木星並不是夢想,或許將來所發現的數量將與從疏散星團脫離的單星相差無幾,擺脫先前在疏散星團發現行星數量遠低於預期的矛盾現象。

資料來源:Two “b”‘s in the Beehive. universetoday [AUGUST 14, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
如何運用 Google AI的機器學習,發現新的系外行星 Kepler-90i ?
PanSci_96
・2017/12/19 ・1966字 ・閱讀時間約 4 分鐘 ・SR值 476 ・五年級

-----廣告,請繼續往下閱讀-----

  • 作者| Chris Shallue,Google人工智慧研究員 / Andrew Vanderburg,德州大學奧斯汀分校天文學家

幾千年來,人們仰望星星,記錄、觀察天文現象,並從中發現其運行模式。第一批天文學家所認定的天體是行星,由於行星在夜空中看似不規則的移動,因此也被希臘人稱之為「planētai」或「漫遊者 (wanderers)」。經過幾個世紀以來的研究,人們已經了解太陽系的運行模式,是地球和其他行星圍繞著太陽公轉,而太陽是一個恆星,就如同我們肉眼所看見會發光的星星一樣。

Image credit: NASA

如今,在望遠鏡光學(telescope optics)、太空飛行、數位相機和電腦等技術的幫助下,我們得以將對宇宙的了解擴展到太陽系之外,偵測並探究其他恆星周圍的行星。這些圍繞在其他恆星周圍的行星也稱之為「系外行星(exoplanet)」,而研究系外行星能幫助我們更深入探索宇宙與人類的奧秘。太陽系之外的宇宙是什麼樣子呢?外太空還有像太陽系一樣的其他行星恆星嗎?

雖然技術的進步有助於我們探索宇宙,但尋找系外行星仍不容易。與火熱的恆星相比,系外行星是冷的、小的、沒有光亮的,這就像要從幾千英里的地方,看見探照燈旁邊飛來的螢火蟲一樣困難。

-----廣告,請繼續往下閱讀-----

不過藉助機器學習(Machine Learning),我們在最近有了一些新的進展。

克卜勒任務與 Google AI 的相遇

天文學家搜尋系外行星的方式,其中一個是分析來自NASA 克卜勒任務(Kepler Mission)中的大量資料數據,並透過自動化軟體和手動方式來執行。克卜勒任務用了四年的時間觀察近20萬顆恆星,每30分鐘拍一次照片,並創造了近140億個資料點。這140億個資料點相當於大約2千兆個可能的行星軌道。這個龐大的資料量即使用最強大的電腦來分析也是非常耗時、費力的。為了讓這個分析的過程可以更有效率,我們導入機器學習來加速分析時程。

圖/Google台灣

凌星法是指,當一顆運行中的行星擋住了恆星的光線時,恆星的亮度會減小。我們以此概念為基礎,將其特徵訊號用來辨識周圍運行的行星,並運用克卜勒天文望遠鏡,在四年之間觀察並分析了20萬顆恆星的亮度。

機器學習能夠訓練電腦認識運作模式,而這對於分析大量數據來說尤其有用。機器學習技術的重點在於讓電腦從範例中學習,而不是透過編寫特定的規則。

我是Google人工智慧團隊的機器學習研究員,對於宇宙的世界相當感興趣。因此,我善用「20%計畫」(在Google,你可以利用20%的時間來做你喜歡或感興趣的事情)來開始執行這個專案。我和德州大學奧斯汀分校的天文學家 Andrew 接洽,共同執行這個專案。我們將機器學習技術應用在宇宙探索,並教導機器學習系統如何識別遙遠恆星周圍的行星。

我們利用超過 15,000 個被標記的克卜勒訊號,創造一個 TensorFlow 模組來辨別行星與非行星。為此,這個模型必須能辨認出真正的行星所形成的圖像,與其他天體如 星斑(starspots)雙星(binary stars)所形成的圖像。當我們讓 TensorFlow 模組辨識從未見過的訊號時,它能以96%的準確率辨認出哪些訊號是行星,哪些是非行星。因此,我們知道這個模組成功了!

克卜勒90i,發現!

有了可行的模組後,我們拍攝恆星,並利用這個模組在克卜勒數據中尋找新的行星。為了縮小搜尋範圍,我們研究了 670個已知可容納兩顆或更多的系外行星的恆星。在這樣的過程中,我們發現兩顆新行星:克卜勒80g 和克卜勒90i。其中值得注意的是,克卜勒90i 是第八個被發現圍繞著克卜勒90的行星,這使它成為除了太陽系之外,第一個已知的八大行星系統。

圖/Google台灣

我們利用15,000個被標示的克卜勒訊號,來訓練機器學習模組去辨認行星訊號,並利用這個模組,從670顆恆星的數據中發現新的行星,且成功發現了兩個先前被忽略的行星。

另外也發現了一些有趣的事:這個行星比地球大了30%;擁有大約華氏800度的地表溫度,絕對不是你下一趟旅行的好選擇;它以14天的週期繞著恆星公轉,這代表你每兩個星期就會過一次生日喔。

圖/Google台灣

克卜勒 90是太陽系以外第一個已知的八大行星系統。在這個星系中,行星運行的軌道更靠近恆星,而克卜勒90i每14天公轉一次。(請注意,行星的大小,以及行星與恆星的距離不在測量範圍內。)

當我們運用科技來嘗試了解宇宙時,會以為已經可以一窺一二,但其實不然。目前為止,我們只用TensorFlow 模組搜尋了20萬個恆星當中的670個,而克卜勒的數據中可能還有更多系外行星尚未被發現,未來機器學習的新思維和技術將能幫助人類進行宇宙探索,發現更多未知的領域!

PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
NASA湊齊七龍珠:TRAPPIST-1星系有七顆與地球大小相近的系外行星
PanSci_96
・2017/02/23 ・2032字 ・閱讀時間約 4 分鐘 ・SR值 525 ・七年級

TRAPPIST-1 星系中,其中一顆代號 TRAPPIST-1f 的星球表面模擬圖。科學家利用史匹哲太空望遠鏡和地面上的天文望遠鏡發現了 TRAPPIST-1 星系中有七顆近似地球大小的星球。

文 / 泛科學編輯部(據說是 j 編、k 編、v 編、y 編合寫的)

美國太空總署的「史匹哲太空望遠鏡」(Spitzer Space Telescope)發現了人類首知、第一個由七顆近似地球大小的行星環繞著一顆恆星的星系(TRAPPIST-1)。目前七顆行星中有三顆被確信位於「適居帶」,也就是與恆星的距離適中,而且很可能有液態水。(延伸閱讀:科學家是怎麼找系外行星的?

這是人類首次在太陽系外發現一個星系同時擁有這麼多顆位於適居帶的星球。這個星系中的七顆星球都很可能有著人類生存所必要的液態水和適宜的大氣層,其中又以在適居帶內的三顆星球機會最高。

-----廣告,請繼續往下閱讀-----

任職於 NASA 科學任務理事會(Science Mission Directorate)的朱伯肯(Thomas Zurbuchen)說,這是一個非常有意義的發現,我們獲得了回答「宇宙中是否有其他生物」這個重大科學問題的一大線索;一次找到這麼多顆在適居帶的星球讓我們朝問題的解答往前邁進了值得紀念的一大步。

「TRAPPIST-1」星系位在水瓶座,離我們不算很遠,如果你能飛的跟光一樣快,從地球出發大概 40 年(約 378 兆公里)就能抵達這群系外行星囉。

TRAPPIST-1 星系的名字來自於位在智利的 TRAPPIST 望遠鏡。2016 年 5 月, TRAPPIST 望遠鏡的研究員就發現這個星系中的三顆行星。在其他地面大型望遠鏡的幫助下,史匹哲望遠鏡不只確認其中兩顆的存在,還發現了其他五個,讓星系家族的行星成員一口氣增長到七個。研究結果發表在今(2017)年 2 月 22 日的期刊《自然》(Nature)。

美國時間 2017 年 2 月 23 日刊登在《自然》(Nature)期刊的封面,七顆近似地球大小的行星環繞著紅矮星 TRAPPIST-1 。圖/NASA

-----廣告,請繼續往下閱讀-----

根據史匹哲太空望遠鏡的觀測資料,研究團隊準確量出這七顆行星的尺寸,並初步推算其中六顆的質量和密度。研究員根據密度推測這群行星都是岩石硬漢,但還需要進一步觀察它們是否有豐富的水?地表有沒有液態水?而最遠,也是唯一沒被推測出質量的第七顆行星則可能是冰球。

研究報告的主要作者,比利時烈日大學 TRAPPIST 系外研究團隊的主研究員吉倫(Michael Gillon)解釋,這是我們首次發現七顆類似地球大小的行星,又繞著此等規模恆星轉的星系,「這也是有史以來研究規模近似地球的潛在移居星球的最好材料!」

根據觀測資料(星球的大小、質量、軌道距離)所繪製而成的示意圖,顯示 TRAPPIST-1 星系中每顆行星的大小比例還有與恆星之間的相對位置。

與太陽不同的是,TRAPPIST-1 星系的恆星是一顆極低溫紅矮星(ultra-cool dwarf),亮度比太陽還暗兩千倍,即便行星們離恆星很近,仍有可能保有液態水。TRAPPIST-1 星系的七顆行星的軌道離恆星的距離,比太陽系中水星與太陽的距離還要近。甚至這七顆行星間的距離也非常靠近,NASA 指出如果一個人站在其中一顆行星上,他們可能可以看到鄰近的另一顆行星上的地貌或雲。

-----廣告,請繼續往下閱讀-----

不過這些行星可能被母恆星潮汐鎖定(Tidal locking),像月球一樣只有一面固定面向恆星,所以會造成行星上有一半是永晝、一半是永夜的狀態。而 NASA 推測這個現象,行星上的氣候會與地球完全不同,例如會出現強風不斷從永晝面吹向永夜面,或是極端溫度變化等。

史匹哲太空望遠鏡於 2016 年秋季連續 500 小時持續觀測 TRAPPIST-1 星系。科學家藉由探測 TRAPPIST-1 恆星發出的紅外線,以及行星從恆星前經過的動態,藉此分析 TRAPPIST-1 星系的結構。

這張海報是人類利用太空旅行前往 TRAPPIST-1e 星球的想像圖。圖/NASA

2016 年 5 月哈伯團隊也觀察了 TRAPPIST-1 星系最內側的兩顆行星,並沒有發現它們有蓬鬆大氣的證據,更加強了這些行星的本質很有可能是岩石。哈伯研究的共同主持人、巴爾的摩太空望遠鏡科學研究所天文學家尼科爾.路易斯(Nikole Lewis)說:「TRAPPIST-1 星系提供了很好的機會,讓科學家能在接下來的十年中去研究地球尺寸行星的大氣。」

-----廣告,請繼續往下閱讀-----

另外,NASA 尋找系外行星的行星獵人計畫中,克卜勒太空望遠鏡也正在研究 TRAPPIST-1 系統,藉由測量恆星由於行星經過時的亮度微小的變化,觀察其凌星現象。

那這就是追尋系外行星的最高峰了嗎?

之前也有眾多的系外行星被點名為「地球 2.0」,在適居帶的系外行星其實也多不勝數(延伸閱讀:Kepler-452b 真的是「地球2.0」?),而這次的發現雖然是「人類首知、第一個由七顆近似地球大小的行星環繞著一顆恆星的星系」,這或許讓我們對於移民、外星生命、藉此探索地球和生命的起源……等眾多地想像又前進了一步;但只要追尋系外行星的計畫仍在持續進行(2018 年還會有更高性能,可以檢測水、甲烷、氧氣、臭氧和其他大氣組成份,還能分析行星溫度以及表面壓力的 Webb 太空望遠鏡加入戰場喔!),這樣令人興奮的發現就不會停止!

資料來源

-----廣告,請繼續往下閱讀-----
PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
首度在疏散星團中發現熱木星
臺北天文館_96
・2012/08/21 ・1421字 ・閱讀時間約 2 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

目前已確認的系外行星數量多達800顆左右,找到具有特殊意義的系外行星,似乎變得愈來愈難,愈來愈遠。發現多重行星系統已經不是新聞,發現質量比地球小的系外行星也已經聽到很多次,偵測到系外行星有大氣層也已經不太能引起大眾的驚艷。不過,最近有篇論文卻找到系外行星研究領域的另一個「突破點」:首度在疏散星團中偵測到熱木星(hot Jupiter)。除了發現地點讓人覺得新奇外,還因發現熱木星的這個疏散星團是對天文學家具有特殊意義、非常著名的蜂巢星團(Praesepe, 或Beehive Cluster,M44,又稱鬼宿星團或馬槽星團)。

這項發現是由美國喬治亞州立大學(Georgia State University)的天文學家Samuel Quinn等人,藉由「擺動法(wobble)」來偵測系外行星,也就是母恆星受其行星的重力擾動,使得恆星的位置隨行星公轉而週期性來回擺動,如此一來,這顆恆星的光譜譜線也會隨之週期性的來回擺動,天文學家因而得以從譜線的移動來反推這顆恆星是否具有行星、行星的公轉週期與可能的質量下限等等訊息。所謂的「熱木星」是指那些質量與木星差不多,且因非常接近其母恆星而使其公轉週期非常短、表面被母恆星加熱到高溫狀態的氣體巨行星。

Quinn等人之所以挑選巨蟹座M44星團的主因,是因為它夠近,僅約577光年左右,但星團成員數量多達1,000顆以上,其中許多恆星都與太陽相似。此外,這個星團的金屬豐度比平均值還高,是可能具有行星系統的特徵之一;再者就是天文學家曾對此星團做過比較詳盡的研究,可取得比較精確的星團形成年齡等訊息。

天文學家也曾在其他疏散星團奮鬥過,但迄今僅在兩顆巨星旁發現行星,且行星距離其母恆星都很遠,並非所謂的熱木星。居然只有發現這麼少的疏散星團恆星擁有行星,讓天文學家們覺得很奇怪,因為目前認為恆星幾乎都是在星團中形成,而後有些逐漸擴散鬆開,才有部分恆星成為像太陽一樣的單星,因此按理來說,星團中的恆星擁有行星的比例應該幾乎與單星相同。

-----廣告,請繼續往下閱讀-----

這些天文學家利用位在美國亞利桑納州霍普金斯山(Mt. Hopkins)上的惠爾普天文臺(Fred L. Whipple Observatory)1.5米 Tillinghast反射式望遠鏡來觀測M44裡的其中53顆恆星,結果在其中兩顆還在主序星階段的恆星旁發現2顆靠母星很近的熱木星,其中一顆熱木星Praesepe 0201b(縮寫為Pr0201b),質量下限約為木星的0.54倍,繞母星一周約需4.426天;其母恆星Praesepe 0201(Pr0201)是顆F型矮星,視亮度約10.52等,質量約為1.234倍太陽質量,表面溫度約6174K,比太陽的5778K高一些。另一顆Praesepe 0211b(Pr0211b)的質量下限則約為木星的1.844倍,環繞母星公轉一周約為2.145天;其母星Praesepe 0211(Pr0211)是顆與太陽相同的G型矮星,視亮度約12.06等,質量約為太陽的0.952倍,表面溫度約5326K,比太陽略低。

這項發現將有助於天文學家逐步縮減在年輕的星團系統中,行星如何形成與遷徙的條件範圍。既然大直量行星一般是在離恆星比較遠、比較冷的地方形成,那麼在鄰近恆星之處發現熱木星,顯示這些大質量行星在形成之後,將逐漸向行星系統內側遷移,才能抵達現在觀測到的位置。向內遷移的時間長短一直是天文學家還搞不定的問題之一;不過,既然目前已知M44星團的年齡僅有6億年左右,而新發現的這兩顆熱木星已經這麼靠近其母恆星,代表大質量恆星形成後向內遷移所需的時間應該短於6億年。

雖然這是第一次在疏散星團中發現靠母恆星很近的熱木星,不過這項發現顯示未來在疏散星團中發現更多熱木星並不是夢想,或許將來所發現的數量將與從疏散星團脫離的單星相差無幾,擺脫先前在疏散星團發現行星數量遠低於預期的矛盾現象。

資料來源:Two “b”‘s in the Beehive. universetoday [AUGUST 14, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!