0

0
0

文字

分享

0
0
0

哈柏觀測呈現GJ 1214b是個怪異物質組成的水世界

臺北天文館_96
・2012/02/23 ・1336字 ・閱讀時間約 2 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

我們的太陽系行星基本上可分成三大類:第一類是岩質的類地行星,包括水、金、地、火等4顆;第二類是氣體巨行星(gas giant),包括木星和土星;第三類則是冰質巨行星(ice giant),包括天王星和海王星。太陽系以外的行星種類更多,已知有熔岩行星和所謂的「熱木星(hot Jupiter)」。哈佛史密松恩天文物理中心(Harvard-Smithsonian Center for Astrophysics,CfA)Zachory Berta等人藉助哈柏太空望遠鏡(Hubble Space Telescope)的幫助,發現一種新型態的系外行星—被濃厚、水汽蒸騰的大氣包圍的水世界。

這顆編號為GJ 1214b的系外行星由CfA的David Charbonneau於2009年利用地面望遠鏡發現,直徑約為地球的2.7倍,質量則約為地球的6.5倍,介在天王星和地球地球之間,是個所謂的「超級地球(super-Earth)」。它的母星是顆M4.5型的紅矮星,直徑約為太陽的1/5,質量約為太陽的10%,表面溫度僅約3000K。GJ 1214b距離母星約200萬公里,公轉一周僅需38小時,天文學家由此估計它的表面溫度約為攝氏230度左右。當時就認為這顆行星上一部份的水可能是所謂的冰7(Ice VII),這是種在高於20,000倍地球表面平均大氣壓的極高壓狀態下才能存在的水結晶晶形。

CfA學者Jacob Bean等人曾於2010年時測量GJ 1214b有大氣層,發現可能絕大部分是由水所組成的(請參見天文新知 2010-12-02 超級地球的大氣層可能充滿水蒸氣或霧霾)。然而,他們的測量也可以用大氣中出現全球性的霧霾現象來解釋。Berta等人於是決定利用哈柏太空望遠鏡3號廣角相機(Wide Field Camera 3, WFC3),趁它越過其母恆星前方的凌日(transit)時機來觀察研究GJ 1214b的紅外光譜。在凌日期間,母恆星發出的光會先透過行星的大氣層才能抵達地球,行星大氣因而會吸收一部份特定波長的光而形成吸收譜線,天文學家便可藉由這些譜線反推行星大氣中的組成成分。

若GJ 1214b大氣中是霧霾,那麼在紅外波段的透明度就會比可見光波段高,因此由哈柏觀測結果便可判定這顆行星的大氣究竟是富含水蒸氣,還是霧霾。結果發現,GJ 1214b的光譜在很寬的一大帶波段中都沒什麼特徵。最接近哈柏觀測資料的大氣模型,便是由水蒸氣所組成的濃厚大氣層。

-----廣告,請繼續往下閱讀-----

既然這顆行星的質量和體積大小均為已知,天文學家便可計算行星的密度,估算僅為2g/cm3。純水的密度是1g/cm3,地球的平均密度則為5.5g/cm3。由此可知,GJ 1214b所含有的水量比地球多很多,岩石含量則比地球少很多。換言之,GJ 1214b的內部是個與地球截然不同的世界。Berta表示:這顆系外行星的內部很可能是高溫高壓下產生的怪異物質,例如「熱冰(hot ice)」或「超流體水(superfluid water)」等。

理論學家猜測在該行星系統形成初期,GJ 1214b應該在離母星比較遠、含水量比較豐富的地方形成,之後軌道位置才逐漸向母恆星逐漸靠近。在往母星靠近的過程中,穿越這顆恆星的適居區(habitable zone),即行星表面溫度與地球相當,行星表面的水可以以液態方式存在的區域。不過,它曾在適居區逗留過多久,就不得而知了。

GJ 1214b位在蛇夫座方向,距離地球僅約40光年,因此才會被選為下一代太空望遠鏡—韋柏太空望遠鏡(James Webb Space Telescop)發射升空後將要進行的主要研究觀測目標之一。

資料來源:2012.02.21, KLC

-----廣告,請繼續往下閱讀-----
  1. http://www.spacetelescope.org/news/heic1204/
  2. http://hubblesite.org/newscenter/archive/releases/2012/13
  3. http://www.cfa.harvard.edu/news/2012/pr201204.html

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
1

文字

分享

0
1
1
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----

0

5
2

文字

分享

0
5
2
馬斯克不屑一顧;比爾蓋茲卻視若珍寶!氫能源會成為永續發展的救世主嗎?
PanSci_96
・2024/02/04 ・5542字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

馬斯克的「氫能愚蠢說」被打臉了嗎?

馬斯克曾多次斷言發展氫能是個愚蠢的決定,更說氫氣不會自然出現在地球上。

然而今年 7 月,美國新創公司 Koloma 從比爾蓋茲與其他投資者手中,獲得了總計 9100 萬美元的融資,準備開採地下氫氣。今年 9 月,地質學家更是直接在法國的地底下發現大量氫氣,總量估計有 4,600 萬噸。
而且比起需要搭配綠能或是熱裂解設備才能製造的綠氫與灰氫,這些氫氣價格將會十分低廉,難道,氫氣的時代要到來了嗎?為了環保,我們得挖呀挖呀挖?

地球上真的還有氫氣嗎?

這張照片就能證明地底中含有氫氣?

這拍攝於澳洲的珀斯盆地,大大小小的圓圈被稱為仙女圈,在仙女圈內沒有植物生長,甚至向內凹陷形成鹽湖。當科學家調查這些仙女圈,他們意外發現土壤中竟然含有氫氣。氫氣與仙女圈之間的確切關係還未知,有人推測可能氫氣抑制了植物或是微生物菌落的生長,使得該區光禿甚至土壤流失。

我們知道氫氣是世界上最輕的氣體,一旦進入大氣,就會向上飄散,直至被拋至太空,離開大氣層。然而地球的大氣層中還是有少量的氫氣被束縛住,大氣濃度約為 0.55 ppm ,是臭氧的 13 倍。

-----廣告,請繼續往下閱讀-----
圖/pexels

但只要沒有進入大氣,還是被封在地底的氫氣因為不容易溢散,至今存量還很豐富。不只在澳洲,世界各地都觀察到了氫氣從地底向地表洩漏的情形。

第一炬奧運聖火至今還在燃燒?

位於土耳其奧林匹斯山山谷,就在希臘火神赫菲斯托斯的神廟廢墟上方,大大小小的火焰從土石間冒出,就好像赫菲斯托斯至今都還存在在該處一樣。該地的冒火處有十幾個,總燃燒面積高達 5000 平方公尺。

根據地質學家推估,這片火焰已經燃燒了 2500 年,根據史料比對,很有可能就是最早奧林匹克聖火的發源地。

圖/wikipedia

地質學家調查了這股火焰的形成原因,發現從岩石中噴出的氣體,除了含有 87 % 的甲烷以外,還含有百分之 7.5 到 11 是氫氣。這股持續 2500 年間不斷冒出的氣體,根據地質學家推估,與石油、天然氣成因不同,並不是因為遺骸或微生物等生物原因才產生的。而是大地之母地球源源不斷提供給我們的,這又是怎麼一回事?

-----廣告,請繼續往下閱讀-----

氫氣知多少:哪來這麼多地底氫氣?

地底的氫氣怎麼來?

這與岩石的變質作用息息相關,我們知道火成岩、沉積岩會在高溫高壓下產生變質作用,轉為性質截然不同的變質岩。而富含鎂與鐵的矽酸鹽類礦物,例如橄欖石、輝石,當他們在高溫環境下與水作用,會轉為蛇紋石、水鎂石、磁鐵礦等礦物,這個過程稱為蛇紋石化作用。

圖/wikipedia

這種作用是一種化學反應,會將大量的水吸入岩石,讓岩石的密度下降。在反應結束後,除了礦物特性產生變化以外,還會生成副產物,也就是氫氣。如果地層中又剛好有二氧化碳存在,就會在高溫的環境下進一步甲烷化,將氫氣與二氧化碳轉成甲烷。

目前科學家認為,大部分地層中非生物性原因產生的的氫氣與甲烷,多是由這樣的過程產生的。奧林匹斯山的聖火,推測也是這樣產生的。

而對於地質學家來說,也代表尋找天然氫氣這一目標,也可以從盲目搜尋,轉為限縮在尋找有經歷過蛇紋石化作用的地層上。

-----廣告,請繼續往下閱讀-----
圖/usgs

但除了蛇紋石化作用以外,大自然還有兩種生產氫氣的主要方式:深層蘊藏與水的輻解。

地球內的氫氣

在地底深處,推測蘊藏著大量氫氣。它們深達地底,甚至可能存在於地函與地核之中。

我們現在的技術當然無法直接來個地心探險開採這些氣體,但科學家陸續從美國、俄羅斯、東歐等地的岩石鑽探結果可以觀察到,在越深的地方氫氣濃度越高。因此地質學家推測這些氫氣可能來自更深的地方,並正從橄欖岩緩緩地擴散,進入靠近地表的岩層之中。

然而,因為我們還無法進入地底,因此即便我們知道它們存在,但對於這些氫的形成原因目前還未有結論。有些科學家放眼整個太陽系的形成過程,推測在原始地球形成時,整顆行星包含地核之中就有氫的存在。而也有人認為,地核中的鐵元素與水反應,形成氧化鐵與一氫化鐵兩種物質型態,將氫存在地核之中。

-----廣告,請繼續往下閱讀-----

這個問題的解答,就等待地球科學家為我們帶來解答吧。而且了解這些元素存在於地核、地函的形式,也可以解開許多未知謎團,例如地核的詳細組成分、地函存在異常低電阻區的原因、改善地函動力學模型,以及找出哥吉拉到底在哪裡等等。

圖/giphy

輻射也能產生氫氣?

地殼中的釷、鈾等放射性元素,在漫長的衰變過程中,會緩慢地將地層中的水分子鍵結破壞,形成氧氣與氫氣。例如一顆 1 MeV 的 α 粒子,平均足以讓 10 個水分子解離。而當岩石擁有更高的孔隙率, α 粒子會更有機會與水分子產生作用,會有更高的氫氣產量。

但其實,考慮到衰變的速度以及放射性元素存在於地底的超低含量,這個方式的效率並不高,而且實際上 α 粒子用來解離水分子的能量只消耗了 1 % ,剩餘的能量都還是被附近的岩層吸收,以熱的形式消耗掉。

除了產量不高以外,理論來說在輻射發生的地方,應該要能看到氫氣與氧氣同時存在,但目前實地調查的結果,都只有發現氫氣。氧氣是否進一步參與了其他反應,或是已經逸散,或甚至這個理論需要再做調整,還需要更多的研究。

-----廣告,請繼續往下閱讀-----

好的,我們知道氫氣是怎麼產生的,那麼重點是,我們到底有多少氫氣能用呢?

地底有多少氫氣?

世界各地都有發現自然氫氣的存在。對了,雖然這張地圖看起來氫氣的發現地點都集中在北亞與東歐,但這只是因為目前的探勘都聚集在這邊,並不代表真實的氫氣分布。

這些來自地底的氫氣,我們稱為地質氫,如果用顏色來分類,則稱為白氫或是金氫。如果氫氣的開採規模能像天然氣一樣龐大,白氫的價格,預計會落在每公斤 1 美元。

相比之下其他的氫氣生產方式,例如我們上次提到,由蒸汽重組產生的灰氫,售價約為 0.9~3.2 美元。由綠能生成的綠氫則是 3~7.5 美元。因此,如果白氫正式被大量使用,將大幅降低現在的氫氣價格,甚至帶動氫氣運輸、儲存、發電機組等產業鏈的發展,連帶降低其他顏色氫氣的隱含成本。

-----廣告,請繼續往下閱讀-----

比爾蓋茲與氫能產業

與馬斯克看衰氫能不同,比爾蓋茲不僅投資白氫的開發,也投資了不少氫能產業。

例如他就投資了西班牙公司 H2SITE ,一間致力於氫能運輸與氫氣製造的公司。因為現在運輸氫氣的成本是製造氫氣的三倍,如果能降低運輸成本,將有助於整個氫氣產業的發展。在開採方面,各國也都開始投入地質氫的調查與開採技術研發。

美國地質調查局初步估計,全球地底下可能藏有百億噸的氫氣等著被開發,能滿足全人類數千年的能源需求。當然,這個數字並沒有考慮到開發的困難度,只是單純地以全球存量作分析。

但也有人正打算轉個念頭,何不將熱水注入富含鐵的岩層中,促使更多的氫氣產生?類似於地熱發電會使用的增強型地熱系統,只是我們獲得的不是直接的熱能,而是氫氣。

-----廣告,請繼續往下閱讀-----

什麼?氫氣也是溫室氣體?

話說回來,氫氣真的會成為救世主嗎?先等等,事情可能沒那麼簡單。

氫氣作為最輕的氣體,存在於大氣的壽命大約只有兩年。但氫氣在存在的這段時間中,會與大氣中的羥自由基和其他氣體作用,產生一系列的反應。造成的結果包含增加甲烷停留在大氣的時間、臭氧的增加、與平流層中水氣的增加。

圖/wikipedia

因此,氫氣屬於一種「間接」溫室氣體,氫氣的一百年全球暖化潛勢 GWP 100 ,被評估為 11.6 ,也就是以 100 為區間進行評估,氫氣的溫室效應是二氧化碳的 11.6 倍。

此外,我們對氫氣的研究還太少,所以才到現在才發現它就在我們的身邊。而就跟我們上次提到的一樣,大量使用天然氣,就意味會有許多天然氣洩漏。而伴隨著氫氣被大量開採,一定會有更多的氫氣被釋放到大氣之中。這對我們的大氣是否會產生負面效應,甚至於弊大於利,都還需要更多研究。

最後想問問大家,馬斯克與比爾蓋茲,對氫能的看法十分兩極。你呢?你認為氫能會改變未來的能源形式嗎?

  1. 會,不論是什麼顏色的氫,大家都很認真的在進行研究,一定很快就有好結果。
  2. 不會,氫能運輸、儲存成本怎麼看都還太高
  3. 不論有沒有氫能,人類懂不懂得節制,才是關鍵中的關鍵

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
賽道上高溫與摩擦的平衡!賽車最重要的配件「剎車」——《黏黏滑滑》
晨星出版
・2023/01/06 ・3272字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

度影響剎車的抓力

雖然似乎有點違背直覺,但是煞車是高速駕駛不可或缺的一環。不管是在哪個賽車場,駕駛的目標之一就是保持在賽道的最佳路徑(racingline)—繞行賽道的最短路徑。所以駕駛過彎時不會沿著急轉彎處長長的外彎道前進,而是「夾著」彎道的內側,稱為彎頂點(apex,即過彎路線中最接近彎道內側的點)的地方,以將他們必須行駛的距離縮到最短。

這麼做需要非常精準的煞車:要在剛剛好的時間對煞車踏板施予剛剛好的壓力。當他們辦到時,駕駛就會出現在賽道轉彎處的絕佳位置,且依然帶有征服下一段賽程所需的速度。但是這樣的開車方式會耗損煞車;而且有些賽道沒什麼機會可以讓煞車冷卻。

以世界知名的摩納哥街賽道來說。雖然僅長3.34 公里(2 哩多),是F1 賽程中最短的賽道,但是卻必須不斷踩煞車和加速。煞車製造商布雷博(Brembo)指出,2019 年賽季中,駕駛們每一圈使用煞車 18.5 秒,多過總賽程的四分之一。

在需求最高的轉彎處,汽車要在不到 2.5 秒的時間內將時速從 297 公里(185 哩)減至 89 公里(55 哩);這會將大量動能快速轉換成熱能,難怪煞車碟盤會冒出火花。為了要負荷這樣龐大的熱負載,製造商在每個煞車碟盤的邊緣鑽入細小的徑向孔—數量超過 1000 個。

-----廣告,請繼續往下閱讀-----

這樣的小孔可以增加煞車碟盤的表面積,比較容易散熱。但是也具有通氣孔的功能。與安裝在各個輪框上的大型冷卻管相結合時,可以把冷空氣拉入煞車碟盤中心,把熱空氣從邊緣帶走。還有個額外優點,這些F1 煞車碟盤相當輕,重量約各為1 公斤(2.2 磅),相較之下,差不多大小的鑄鐵煞車碟盤則為 15 公斤(33 磅) 。

所以為什麼不全面使用這種煞車碟盤呢?有個原因是價格—每片煞車碟盤可能要價高達 2000 美元(約 1500 英鎊) ,而且要六個月的時間才能製成。它們也不太耐久,通常每次比賽後就得更換。最後,它們受限於一定的工作溫度,只能處於 350 ∼ 1000℃。

低於溫度下限時,它們幾乎不具有停止能力—煞車片與煞車碟盤無法產生足夠的抓力。但是如果煞車的溫度高於上限值太久,則會災難性地失靈。如馬歇爾對我描述的,「彷彿在踩縫紉機。當這種狀況發生時,煞車碟盤耗盡『材料』的速度有多快,簡直難以置信。」

科技有助於車隊和駕駛控制他們的煞車,但是就跟 F1 的大部分狀況一樣,沒那麼簡單。冷卻管的大小與形狀可控制流經煞車碟盤的空氣量,所以你可以想像管子愈粗愈好。

-----廣告,請繼續往下閱讀-----

但是如 F1 傳奇工程師帕特.西蒙茲(PatSymonds)告訴《賽車工程》(Racecar Engineering)雜誌的,冷卻有其後果:「遇到像蒙特羅這樣需要一直踩煞車的賽道,我們被迫使用一些該賽季最粗的管子。從最細的冷卻管換到最粗的冷卻管,會犧牲 1.5%的空氣動力學效率,這代表最高速度時速會減少 1 公里。」

我可以想像這會引發車隊的煞車工程師與他們的空氣動力學家爭辯。就連測量煞車配件的溫度都不容易。馬歇爾告訴我,在奧斯頓馬丁 F1 車隊中,他們會在煞車片的安裝托架中埋入高溫的熱電偶,和一系列直接朝向煞車碟盤的遠紅外線感測器。電視轉播賽事時偶爾會出現的彩色熱影像,主要是為了給我們這些觀眾看—顯示出他們建議的最高溫度。

剎車片的抓力在彎道時高速剎車時至關重要。圖/envatoelements

摩擦介面與溫度控制

煞車片與煞車碟盤之間還有另一個重要的過程是磨耗。所有滑動與摩擦都會對兩個表面造成實質傷害;每次煞車作動,兩者都會有微粒破裂。在煞車系統的使用期間,這會逐漸降低材料的摩擦係數—換句話說,會失去它們的抓力。

但這不只是因為彼此的表面被「磨光」,或是失去黏性。磨耗也會形成摩擦膜(tribofilm)這種東西—煞車片與煞車碟盤相接觸時壓碎的一層非常薄的細粒狀材料。「談到磨耗與摩擦力,摩擦膜非常有影響力,」英國里茲大學(University of Leeds)的沙赫里爾.柯沙利(Shahriar Kosarieh)說。

-----廣告,請繼續往下閱讀-----

「我們把這層膜視為『第三體』,因為儘管它是由互相滑動的那兩種材料製成,其化學與機械性質還是與那兩種材料不同。」關注各式各樣市售鑄鐵煞車片的德國研究人員發現,無論煞車片是什麼材質,形成的摩擦膜總是會受到氧化鐵(Fe3O4)控制,其他成分的影響力則相當微弱。

「摩擦膜會控制散熱,且能減少摩擦力—它會主導性能,」柯沙利繼續說道。「煞車製造商很清楚這一點,調配自己的煞車片配方時會考量這一點。煞車片與煞車碟盤要互相搭配,才能產生最佳性能。只要你更動了任一個材料,就會改變界面產生的結果。」

柯沙利最近的研究關注鑄鐵煞車碟盤輕量替代物的摩擦表現,這些輕量煞車碟盤主要都是鋁製。不只有他這麼做—整個汽車產業都對減輕重量很執著,主要是因為汽車的重量愈輕,消耗的燃料就愈少,環境影響也愈少。目前是以鋁為主流。

「那是一種低密度金屬,約比灰鑄鐵(grey cast iron)還低 2.5 倍,所以減輕重量的可能性很高,」他跟我在電話中閒聊。「鋁的導熱性也很高,在表面形成的氧化物也具有一些防蝕效果。」把鋁合金與碳化矽等硬質陶瓷材料結合也能提升其強度。

-----廣告,請繼續往下閱讀-----

「但是鋁的問題在於當溫度高於400℃時會開始熔化。就煞車而言,這代表摩擦力突然銳減,也是你能想像最糟的狀況。所以更加促使工程師更努力找出方法,既能讓表面有比較好的熱穩定性,使用壽命又能更持久。」

工程師致力於找出剎車在溫度與磨損上的平衡。圖/envatoelements

對柯沙利而言,最有意思的其中一種方法是電漿電解氧化(plasmaelectrolytic oxidation, PEO),這是用一個電場在鋁的表面形成一層複雜又高度耐磨的薄層。當他測試各種不同以電漿電解氧化處理過的鋁盤性能時,發現有些可以撐過約 550℃。不過,許多案例的摩擦係數太低—低於實際煞車系統所需的最低閾值。

柯沙利並不洩氣。「煞車是整個系統一起作動。如果你拿到一個新的煞車碟盤,那你也需要把對位碟盤調整到最佳狀態。製造商設計出專供電漿電解氧化塗層煞車碟盤使用的新煞車片配方。」我只找到幾篇已發表的研究,結合了電漿電解氧化煞車碟盤與這些新的摩擦片,但是結果看起來大有希望。輕量的鋁製煞車在未來的道路車輛上可能有機會亮相。

F1 在 1970 年代晚期為它們的煞車碟盤和煞車片找到了不同的解決方法,從那時候起就沿用至今:一種稱為碳-碳(carbon-carbon)的材料,在石墨基質裡包埋高度有序的碳纖維。其散熱效果非常好,所以也用在太空梭上。雖然它聽起來可能跟F1 賽車底盤用的碳纖維很類似,但其實是非常不一樣的猛獸。

-----廣告,請繼續往下閱讀-----

製造碳-碳很緩慢且複雜,此材料是由原子薄層堆疊成層。它在摩擦力方面勝出,提供的抓力比傳統煞車配件高 2 倍(在其理想工作溫度範圍內)。但是那並非魔法。在競速的壓力之下,這種材料終究會磨耗殆盡,部分是由於摩擦,但也有化學方面的因素。溫度上升時,碳-碳會與空氣中的氧氣產生反應,而氧氣會提高其劣化程度。你有時候會看到F1 駕駛大力踩煞車時冒出黑塵,這就是原因。

藉由感測器數據調整剎車系統

這個過程代表車隊需要監測的煞車項目不只是溫度。馬歇爾跟我說,他們會使用壓力感測器留意流經管子的氣流。他們也有針對磨耗的電子感測器,可以測量胎側的活動。

「我們使用這些儀器測量煞車片還能接觸煞車碟盤多久。由此可以推論總磨耗程度—也就是煞車片與煞車碟盤的磨耗總和。」為了推算總磨耗比例與煞車片的關係,以及對煞車碟盤的磨耗程度,車隊會把感測器數據對照以往試駕和賽事所蒐集的煞車數據。

「我們可以從所有資料中追溯比賽時的磨耗速率。如果太快,我們可以調整煞車平衡,以免磨耗最高的車輛壽終正寢,或可以請駕駛找一些乾淨的空氣冷卻煞車。」不管怎麼做,目標都是確保駕駛在需要的時間和地點擁有阻擋能力。任一賽季都會面臨數以千計的彎道,這些系統,當然還有駕駛,都表現卓越。

-----廣告,請繼續往下閱讀-----

——本文摘自《黏黏滑滑》,2022 年 11 月,晨星出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----