0

0
0

文字

分享

0
0
0

深入了解臺灣原生鳥類保育等級調整之緣由——保育名錄大風吹,吹什麼?

活躍星系核_96
・2018/07/02 ・5198字 ・閱讀時間約 10 分鐘 ・SR值 551 ・八年級

編按:2018 年 6 月農委會林務局野生動物保育諮詢委員會討論了新一波保育類野生動物名錄的調整,其中鳥類部分修改調整牽涉了共 21 種鳥類。
參與評估分類專家會議(鳥類類群)的丁宗蘇老師、方偉宏老師應邀撰文,針對本次的保育等級調整作出說明。除釋疑名錄調整考量之主要內容,亦提要說明近年台灣鳥類值得注意之保育、研究情況。
延伸閱讀:為何調整保育名錄?獼猴降級與農損有關嗎?哺乳類保育類名錄檢討省思——保育名錄大風吹,吹什麼?

  • 丁宗蘇│國立臺灣大學森林環境暨資源學系副教授,林務局第 11 屆野生動物保育諮詢委員
    方偉宏│國立臺灣大學醫學檢驗暨生物技術學系副教授,林務局鳥類群野生動物評估分類專家會議召集人

林務局於 2018年 6月25日召開野生動物保育諮詢委員會第 11 屆第 2 次委員會議,會中重要提案之一是調整保育類動物之名單,引起社會大眾的關注及討論。我們出、列席參加本次這諮詢委員會議,同時在調整名錄過程中,也參與了鳥類群野生動物評估分類專家會議,很高興能藉由泛科學的討論平臺,來說明本次臺灣原生鳥類保育等級調整之原則及理由。

野生動物保育法的主要目的與精神

首先要請大家了解,野生動物保育法(以下簡稱「野保法」)之精神與目的是「保育」,野保法並沒有完全禁止野生動物的利用,也無法確保所有野生動物個體的福祉。野保法的主要目的,是阻止原生野生動物的物種滅絕。依照野保法的定義,保育類野生動物都是指「生存已面臨危機」之野生動物物種,而不同的保育類分級,則是依據其族群量之稀有程度及面臨之壓力程度而定。

我們當然希望看到每個野生動物個體都是安居樂業、過著幸福快樂的日子,但這並不是單憑野生動物保育法所能達成的境界。

「野生動物保育」最主要的目的,是阻止原生野生動物物種滅絕。圖/Pexels@pixabay

野生動物等級如何進行評估?

野生動物保育法於 1989 年頒布施行後,多年運作也經多次修改,在野生動物等級的評估與調整,已經有相當成熟的原則與程序。保育類野生動物的決定,都是依循「野生動物評估分類作業要點」來執行,這作業要點之目的,就是要提供具體、明確、一致的基準來評估野生動物保育等級,類似於「 IUCN 紅皮書」的物種瀕危等級評估。

-----廣告,請繼續往下閱讀-----

林務局將野生動物分成哺乳類、鳥類、兩棲爬蟲類、淡水魚類、及昆蟲等類群。各生物類群由 10-20 位該領域的專家,組成專家會議來共同評估,各類群的評分原則也不盡然相同。陸域的哺乳類、鳥類、兩棲類、爬蟲類的分級計分標準是一樣的,評估計分有六個面向(族群地理分布、目前族群量、族群變化趨勢、分類地位、棲地流失威脅、獵捕利用威脅)。各物種在這六個面向,可分別得到 1-5 分,總共可得到最低 6 分、最高 30 分的評估計分。各生物類群的專家都是依據這要點的規範,公正、客觀、獨立地為每個物種每個項目評分,再交給林務局保育組統籌平均評分。之後各生物類群的專家再齊聚開會,檢視大家的評分結果,並討論出保育類名錄建議清單,提交給野生動物諮詢委員會。

最近幾次的鳥類專家會議,進入保育類鳥種名單的分數標準大約是 15 分。野生動物諮詢委員會對於各生物類群專家會議的保育等級調整建議,一般都會予以尊重而照案通過。

以下的表格即是現行野生動物評估分類作業要點的附表(適用陸域之兩棲類、爬蟲類、鳥類及哺乳類動物)。關心保育類野生動物等級的人,大多也是熟悉野生動物現況的達人,可以試著針對熟悉的野生動物類群,依據以下的原則,挑幾個物種來嘗試給分。

一、野生族群之分布
(備註:由專家依現有資料決定採用描述性基準或量化基準做為評估依據。)

-----廣告,請繼續往下閱讀-----
野生族群之分布。(點圖放大)

二、 野生族群(成年個體)目前族群量
(備註:由專家依現有資料決定採用描述性基準或量化基準做為評估依據。)

野生族群目前族群量評估。(點圖放大)

三、野生族群之族群趨勢
(備註:由專家依現有資料決定採用描述性基準或量化基準做為評估依據。)

野生動物族群之族群趨勢。(點圖放大)

四、分類地位

野生動物分類地位評估。

五、面臨威脅

-----廣告,請繼續往下閱讀-----

(一)棲地面積消失之速率

野生動物等級評估中,對於基地消失之評估基準。

(二)被獵捕及利用之壓力

野生動物等級評估中,對於被獵捕及利用之壓力評估基準。

當要依據這評估分類作業要點來打分數時,一定會發現有很多猶豫吧。很可能會遭遇目前所掌握的資訊不足,難以明確判斷的情況,這樣的困擾也發生在專家身上。這六個面向,只有分類地位比較沒有爭議,其他五個面向都不容易明確給分,而且還有三個面向(分布、趨勢、棲地)牽涉到時間變遷,要看十年或百年的變化。即使鳥類專家會議成員,每個人觀察或研究臺灣鳥類都超過 20 年,我們所給的評分也不會完全一致。

有哪些台灣鳥類調查資料可供參考?

生物分布、數量與趨勢等基礎資訊不足的問題,過去及現在一直都在困擾著生態學、保育生物學、環境保護等等牽涉到野生動植物的議題,未來恐怕也難以快速改善。但是,受惠於眾多業餘愛好者的投入,無論在全球或是臺灣,鳥類可說是我們目前了解相對充分的生物類群。

-----廣告,請繼續往下閱讀-----
有賞鳥報告嗎?上傳到 eBird Taiwan 為鳥類調查盡一份心力吧!圖/網站截圖

以臺灣來說,除了專家學者所進行的研究調查外,也有眾多公民科學家所收集的大量資料。中華民國野鳥學會的鳥類紀錄資料庫,累積了過去四十年、超過一百萬份的賞鳥報告。特有生物保育研究中心、中華鳥會也與美國康乃爾大學鳥類研究室合作,開發 eBird Taiwan,三年前成立後,目前已累積超過 16 萬份賞鳥報告。特生中心在過去十年,也推動了繁殖鳥類大調查 (BBS)新年數鳥嘉年華 (NYBC) 等全民鳥類監測計畫,讓我們可以固定樣區、季節、方法的調查資料來確認鳥類族群的分布與數量變動。此外,特生中心也花了二年時間,盤點評估臺灣陸域脊椎動物,於 2016 年發表臺灣鳥類紅皮書名錄,仔細評估臺灣 316 種鳥類之族群現況及威脅。這 2016 年臺灣鳥類紅皮書名錄的評估準則,類似於「野生動物評估分類作業要點」,但是卻採用更多的標準與更精細的分級。

以上這些相關研究調查、鳥類紀錄資料庫、紅皮書評估資料,大大增加了我們對臺灣鳥類族群現況的掌握,讓我們更有信心地提出與時俱進的臺灣保育類鳥種名錄。

今年哪些鳥種保育等級經過變動?

2018 年臺灣鳥類保育等級變動整理。資料來源:農委會公告。泛科學整理

這次保育類等級有所變動的鳥種,基本上都是依最新的資料,認為其受脅等級有所改變而做的對應調整。

林鵰、黃鸝、遊隼這三種鳥類,在臺灣的數量仍然稀少,但是族群數量已有上升之趨勢,且短時間內並無面臨重大威脅,因此由「瀕臨絕種野生動物」調整為「珍貴稀有野生動物」。大田鷸(大地鷸)在全球未受生存威脅,近年來調查研究顯示,這種候鳥在臺灣很稀少,是因為臺灣並未位於本種主要遷移路徑上,而由「其他應予保育野生動物」調整為一般類。

-----廣告,請繼續往下閱讀-----
林鵰數量仍然稀少,但在台灣的族群數量已經有上升的趨勢。攝影/白欽源@TaiBIF

納入保育類的鳥類名單

金鵐、青頭潛鴨、琵嘴鷸這三種鳥類,全球族群數量非常稀少或是快速下降。例如,過去在臺灣的過境季節並不難看到金鵐,但近年已經大幅減少。這主要是因為金鵐在其主要度冬地(中國華南)遭到大量獵捕(近十年每年交易量超過一百萬隻),使得金鵐全球族群急遽減少,2004 年在 IUCN 紅皮書,金鵐的瀕危等級仍是最低的「略需關注」(Least Concern),2017 年已調整為最嚴重的「極度瀕危」(Critically Endangered)。青頭潛鴨與琵嘴鷸也是類似的情況,目前全球數量皆不超過一千隻,在 IUCN紅皮書都是「極度瀕危」。由於臺灣是這三個鳥種的穩定過境/度冬地,因此金鵐及青頭潛鴨由一般類連跳二級,調整為「珍貴稀有野生動物」,琵嘴鷸則由「其他應予保育野生動物」調整為「珍貴稀有野生動物」。

金鵐曾經並不少見,但近年來在中國華南的渡冬地受到大量獵捕壓力。攝影/林孫鋒@flickr

紅腰杓鷸、黑尾鷸、大濱鷸、紅腹濱鷸這幾種遷移性水鳥也是類似的情況,在全球及臺灣都有數量下降的趨勢。在東亞—紐澳這條遷移線上的水鳥,很多鳥種在近年都有數量下降的問題。雖然這狀況是這區域內所有國家的共同問題,臺灣是這條遷移線上的重要水鳥過境/度冬地,我們希望能善盡臺灣在國際上的保育責任。因此紅腰杓鷸、黑尾鷸、大濱鷸、紅腹濱鷸這四種遷移性水鳥的保育等級,由一般類調整為「其他應予保育野生動物」。

幾種遷移性水鳥都有數量下降的狀況,圖為大濱鷸。攝影/蕭世輝@TaiBIF

林三趾鶉、長尾鳩、董雞、黑頭文鳥這四種臺灣繁殖鳥類,也是因為在臺灣的族群數量相當低,而且在臺灣的分布範圍侷限,因此由一般類調整為「其他應予保育野生動物」。其中,黑頭文鳥還面臨外來亞種雜交的問題。

臺灣朱雀與岩鷚,分別是臺灣特有種及特有亞種,都棲息在高海拔山區。近年調查指出,這二種鳥的分布範圍愈來愈侷限於高山山頭,棲地消失的威脅增高,值得保育界持續關注。因此由一般類調整為「其他應予保育野生動物」。

-----廣告,請繼續往下閱讀-----
黃胸藪眉、白耳畫眉、冠羽畫眉、栗背林鴝這幾種台灣特有種鳥類雖然數量不少,卻明顯遭遇獵捕壓力。攝影/張俊德@TaiBIF

黃胸藪眉、白耳畫眉、冠羽畫眉、栗背林鴝這四種臺灣特有鳥種,也是由一般類調整為「其他應予保育野生動物」。很多人會納悶,這四種鳥在臺灣的族群數量並不低,為何也會調整成保育類呢?

其實,在 2008 年之前,這四種鳥類以及臺灣紫嘯鶇與金翼白眉,也都是「其他應予保育野生動物」。在 2008 年的鳥類專家會議,由於這六種臺灣特有種鳥類分布廣且數量多,整體評分並不高,因此這六種鳥類被調整為一般類。這個決定,當初在鳥類專家會議中引起廣泛的討論,因為部分專家認為這些鳥種一旦變成一般類,很可能會面臨不小的獵捕壓力。但是,依據「野生動物評估分類作業要點」,我們只能以被獵捕及利用的現況來評分,並不能以假設性的可能獵捕壓力來評分,因此這六種鳥類在 2008 年仍是被調整為一般類。

但是,當時鳥類專家會議要求,林務局要監控調查這些鳥種被移出保育類名錄後的被利用壓力。林務局也的確委託學者,進行全臺灣三百多家鳥店的訪查。結果發現,黃胸藪眉、白耳畫眉、冠羽畫眉、栗背林鴝被移出保育類後,在鳥店的展售數量明顯增加。由於這樣的證據,讓這四種鳥在這次評估中,被獵捕壓力評分增高,而調整為「其他應予保育野生動物」;臺灣紫嘯鶇與金翼白眉由於獵捕壓力並無明顯改變,仍維持一般類的地位。

野保法主要目的「物種的救亡圖存」

野生動物的愛好者,大多會希望看到每個野生動物個體,都受到最完善的保護,最好所有物種都是保育類動物,都獲得最高的保護等級。但是,野生動物保育法之目的是「物種的救亡圖存」,並不是要維護每個動物個體的福祉。對野生動物保育法來說,所有物種都在「保育類動物名錄」及「已滅絕物種清單」之外,就是最成功的境界。

-----廣告,請繼續往下閱讀-----

這二個路線的拉扯,也是保護與保育的核心價值差異。個人價值觀的取捨,我們交給大家來自己決定。我們不評論是非,也尊重大家的決定。在此,我們很感謝「泛科學」,讓我們可以完整說明,在「野生動物評估分類作業要點」的規範下,我們如何決定保育類鳥種。





文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
55 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

5
2

文字

分享

1
5
2
馬斯克不屑一顧;比爾蓋茲卻視若珍寶!氫能源會成為永續發展的救世主嗎?
PanSci_96
・2024/02/04 ・5542字 ・閱讀時間約 11 分鐘

馬斯克的「氫能愚蠢說」被打臉了嗎?

馬斯克曾多次斷言發展氫能是個愚蠢的決定,更說氫氣不會自然出現在地球上。

然而今年 7 月,美國新創公司 Koloma 從比爾蓋茲與其他投資者手中,獲得了總計 9100 萬美元的融資,準備開採地下氫氣。今年 9 月,地質學家更是直接在法國的地底下發現大量氫氣,總量估計有 4,600 萬噸。
而且比起需要搭配綠能或是熱裂解設備才能製造的綠氫與灰氫,這些氫氣價格將會十分低廉,難道,氫氣的時代要到來了嗎?為了環保,我們得挖呀挖呀挖?

地球上真的還有氫氣嗎?

這張照片就能證明地底中含有氫氣?

這拍攝於澳洲的珀斯盆地,大大小小的圓圈被稱為仙女圈,在仙女圈內沒有植物生長,甚至向內凹陷形成鹽湖。當科學家調查這些仙女圈,他們意外發現土壤中竟然含有氫氣。氫氣與仙女圈之間的確切關係還未知,有人推測可能氫氣抑制了植物或是微生物菌落的生長,使得該區光禿甚至土壤流失。

我們知道氫氣是世界上最輕的氣體,一旦進入大氣,就會向上飄散,直至被拋至太空,離開大氣層。然而地球的大氣層中還是有少量的氫氣被束縛住,大氣濃度約為 0.55 ppm ,是臭氧的 13 倍。

-----廣告,請繼續往下閱讀-----
圖/pexels

但只要沒有進入大氣,還是被封在地底的氫氣因為不容易溢散,至今存量還很豐富。不只在澳洲,世界各地都觀察到了氫氣從地底向地表洩漏的情形。

第一炬奧運聖火至今還在燃燒?

位於土耳其奧林匹斯山山谷,就在希臘火神赫菲斯托斯的神廟廢墟上方,大大小小的火焰從土石間冒出,就好像赫菲斯托斯至今都還存在在該處一樣。該地的冒火處有十幾個,總燃燒面積高達 5000 平方公尺。

根據地質學家推估,這片火焰已經燃燒了 2500 年,根據史料比對,很有可能就是最早奧林匹克聖火的發源地。

圖/wikipedia

地質學家調查了這股火焰的形成原因,發現從岩石中噴出的氣體,除了含有 87 % 的甲烷以外,還含有百分之 7.5 到 11 是氫氣。這股持續 2500 年間不斷冒出的氣體,根據地質學家推估,與石油、天然氣成因不同,並不是因為遺骸或微生物等生物原因才產生的。而是大地之母地球源源不斷提供給我們的,這又是怎麼一回事?

-----廣告,請繼續往下閱讀-----

氫氣知多少:哪來這麼多地底氫氣?

地底的氫氣怎麼來?

這與岩石的變質作用息息相關,我們知道火成岩、沉積岩會在高溫高壓下產生變質作用,轉為性質截然不同的變質岩。而富含鎂與鐵的矽酸鹽類礦物,例如橄欖石、輝石,當他們在高溫環境下與水作用,會轉為蛇紋石、水鎂石、磁鐵礦等礦物,這個過程稱為蛇紋石化作用。

圖/wikipedia

這種作用是一種化學反應,會將大量的水吸入岩石,讓岩石的密度下降。在反應結束後,除了礦物特性產生變化以外,還會生成副產物,也就是氫氣。如果地層中又剛好有二氧化碳存在,就會在高溫的環境下進一步甲烷化,將氫氣與二氧化碳轉成甲烷。

目前科學家認為,大部分地層中非生物性原因產生的的氫氣與甲烷,多是由這樣的過程產生的。奧林匹斯山的聖火,推測也是這樣產生的。

而對於地質學家來說,也代表尋找天然氫氣這一目標,也可以從盲目搜尋,轉為限縮在尋找有經歷過蛇紋石化作用的地層上。

-----廣告,請繼續往下閱讀-----
圖/usgs

但除了蛇紋石化作用以外,大自然還有兩種生產氫氣的主要方式:深層蘊藏與水的輻解。

地球內的氫氣

在地底深處,推測蘊藏著大量氫氣。它們深達地底,甚至可能存在於地函與地核之中。

我們現在的技術當然無法直接來個地心探險開採這些氣體,但科學家陸續從美國、俄羅斯、東歐等地的岩石鑽探結果可以觀察到,在越深的地方氫氣濃度越高。因此地質學家推測這些氫氣可能來自更深的地方,並正從橄欖岩緩緩地擴散,進入靠近地表的岩層之中。

然而,因為我們還無法進入地底,因此即便我們知道它們存在,但對於這些氫的形成原因目前還未有結論。有些科學家放眼整個太陽系的形成過程,推測在原始地球形成時,整顆行星包含地核之中就有氫的存在。而也有人認為,地核中的鐵元素與水反應,形成氧化鐵與一氫化鐵兩種物質型態,將氫存在地核之中。

-----廣告,請繼續往下閱讀-----

這個問題的解答,就等待地球科學家為我們帶來解答吧。而且了解這些元素存在於地核、地函的形式,也可以解開許多未知謎團,例如地核的詳細組成分、地函存在異常低電阻區的原因、改善地函動力學模型,以及找出哥吉拉到底在哪裡等等。

圖/giphy

輻射也能產生氫氣?

地殼中的釷、鈾等放射性元素,在漫長的衰變過程中,會緩慢地將地層中的水分子鍵結破壞,形成氧氣與氫氣。例如一顆 1 MeV 的 α 粒子,平均足以讓 10 個水分子解離。而當岩石擁有更高的孔隙率, α 粒子會更有機會與水分子產生作用,會有更高的氫氣產量。

但其實,考慮到衰變的速度以及放射性元素存在於地底的超低含量,這個方式的效率並不高,而且實際上 α 粒子用來解離水分子的能量只消耗了 1 % ,剩餘的能量都還是被附近的岩層吸收,以熱的形式消耗掉。

除了產量不高以外,理論來說在輻射發生的地方,應該要能看到氫氣與氧氣同時存在,但目前實地調查的結果,都只有發現氫氣。氧氣是否進一步參與了其他反應,或是已經逸散,或甚至這個理論需要再做調整,還需要更多的研究。

-----廣告,請繼續往下閱讀-----

好的,我們知道氫氣是怎麼產生的,那麼重點是,我們到底有多少氫氣能用呢?

地底有多少氫氣?

世界各地都有發現自然氫氣的存在。對了,雖然這張地圖看起來氫氣的發現地點都集中在北亞與東歐,但這只是因為目前的探勘都聚集在這邊,並不代表真實的氫氣分布。

這些來自地底的氫氣,我們稱為地質氫,如果用顏色來分類,則稱為白氫或是金氫。如果氫氣的開採規模能像天然氣一樣龐大,白氫的價格,預計會落在每公斤 1 美元。

相比之下其他的氫氣生產方式,例如我們上次提到,由蒸汽重組產生的灰氫,售價約為 0.9~3.2 美元。由綠能生成的綠氫則是 3~7.5 美元。因此,如果白氫正式被大量使用,將大幅降低現在的氫氣價格,甚至帶動氫氣運輸、儲存、發電機組等產業鏈的發展,連帶降低其他顏色氫氣的隱含成本。

-----廣告,請繼續往下閱讀-----

比爾蓋茲與氫能產業

與馬斯克看衰氫能不同,比爾蓋茲不僅投資白氫的開發,也投資了不少氫能產業。

例如他就投資了西班牙公司 H2SITE ,一間致力於氫能運輸與氫氣製造的公司。因為現在運輸氫氣的成本是製造氫氣的三倍,如果能降低運輸成本,將有助於整個氫氣產業的發展。在開採方面,各國也都開始投入地質氫的調查與開採技術研發。

美國地質調查局初步估計,全球地底下可能藏有百億噸的氫氣等著被開發,能滿足全人類數千年的能源需求。當然,這個數字並沒有考慮到開發的困難度,只是單純地以全球存量作分析。

但也有人正打算轉個念頭,何不將熱水注入富含鐵的岩層中,促使更多的氫氣產生?類似於地熱發電會使用的增強型地熱系統,只是我們獲得的不是直接的熱能,而是氫氣。

-----廣告,請繼續往下閱讀-----

什麼?氫氣也是溫室氣體?

話說回來,氫氣真的會成為救世主嗎?先等等,事情可能沒那麼簡單。

氫氣作為最輕的氣體,存在於大氣的壽命大約只有兩年。但氫氣在存在的這段時間中,會與大氣中的羥自由基和其他氣體作用,產生一系列的反應。造成的結果包含增加甲烷停留在大氣的時間、臭氧的增加、與平流層中水氣的增加。

圖/wikipedia

因此,氫氣屬於一種「間接」溫室氣體,氫氣的一百年全球暖化潛勢 GWP 100 ,被評估為 11.6 ,也就是以 100 為區間進行評估,氫氣的溫室效應是二氧化碳的 11.6 倍。

此外,我們對氫氣的研究還太少,所以才到現在才發現它就在我們的身邊。而就跟我們上次提到的一樣,大量使用天然氣,就意味會有許多天然氣洩漏。而伴隨著氫氣被大量開採,一定會有更多的氫氣被釋放到大氣之中。這對我們的大氣是否會產生負面效應,甚至於弊大於利,都還需要更多研究。

最後想問問大家,馬斯克與比爾蓋茲,對氫能的看法十分兩極。你呢?你認為氫能會改變未來的能源形式嗎?

  1. 會,不論是什麼顏色的氫,大家都很認真的在進行研究,一定很快就有好結果。
  2. 不會,氫能運輸、儲存成本怎麼看都還太高
  3. 不論有沒有氫能,人類懂不懂得節制,才是關鍵中的關鍵

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1220 篇文章 ・ 2223 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。