1

14
2

文字

分享

1
14
2

如不確定性原理一般的人生:海森堡誕辰|科學史上的今天:12/5

張瑞棋_96
・2015/12/05 ・1380字 ・閱讀時間約 2 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

1941年9月,德軍佔領丹麥已近一年半,德國物理學家海森堡特地前來哥本哈根大學拜訪波耳(Niels Bohr)。他走進熟悉的校園,心中感慨萬千,更為曾經亦師亦友的波耳將會如何待他而忐忑不安。等到會晤結束後,海森堡沮喪地向波耳道別,他心裡明白恩師與他真的從此恩斷義絕了……。

維爾納‧海森堡。圖片來源:wikimedia

他初識波耳已是十九年前,那時他還在攻讀博士學位,隨著老師前往哥廷根聆聽波耳的講學,得以結識這位物理巨擘。想必他留給波耳極佳的印象,兩年後特地通知他有筆獎學金可以讓他前往哥本哈根接受波耳一年的指導。因此已取得博士學位,正跟著玻恩(Max Born)作研究的海森堡在獲得玻恩首肯後,欣然前往。

這短短的一學年影響深遠。他深入探討波耳的氫原子模型,發現它假設電子分佈在不同能階,就像行星一樣在特定軌道繞行。但其實我們根本無從得知這些軌道的距離遠近,甚至是不是真的有所謂的軌道;我們唯一能觀測到的只有電子躍遷前後的能量差異,以及所產生或吸收之電磁波的頻率。因此,海森堡主張無需行星軌道這種古典模型的假設,而應該用觀測到的能量與頻率來描述粒子的行為。回到德國後,在玻恩與同僚約爾丹(P. Jordan)的協助之下(幫他用數學本來就有的矩陣解決複雜的運算),海森堡於1925年發表矩陣力學,開創了量子力學的理論基礎。

第二年,在波耳的力邀之下,海森堡來到哥本哈根大學講課同時擔任波耳的助理。1927年,他發表了更令古典物理搖搖欲墜的「海森堡測不準原理」──不可能同時確定粒子的位置與動量。他曾用淺顯易懂的方式說明:想知道粒子愈精確的位置就得用波長更短的光來「照射」,而波長越短能量就越強,也就更會改變粒子的動量,所以永遠都會顧此失彼。但波耳卻給他當頭棒喝:這樣的解釋等於承認粒子有客觀的位置和動量,只是我們無法精確測出來;這還是未脫古典物理的觀念。事實上,原本就沒有精確的位置與速度,所以粒子才有波粒二象性。

-----廣告,請繼續往下閱讀-----

海森堡大澈大悟:不確定性並非測量的誤差,而是萬物的本質。問客觀事實是什麼是沒有意義的,只有觀測者所量得的結果才有意義。因此我們應該改稱為「不確定性原理」了;它為日後的哥本哈根詮釋奠下根基,海森堡與波耳並列哥本哈根學派的創立者。海森堡成為物理界耀眼的新星,1932年還獲頒諾貝爾物理獎,未來一片光明,直到納粹崛起……。

當他的科學家朋友們或為顧全性命,或不願為納粹效命而紛紛逃離德國時,海森堡卻基於愛國情操留了下來,甚至後來還接受徵召擔任原子彈計畫的主持人。很多科學家因為他為虎作倀而對他唾棄,其中也包括波耳。海森堡即是為此前來丹麥試圖向波耳解釋。

我們已經知道波耳並不接受,從此未再與海森堡見面。關於此次晤談的內容,兩人都未透露太多,因此海森堡究竟是為了克服原子彈的研發瓶頸,才來尋求波耳的協助?或只是來告訴波耳他決不會讓原子彈研發成功,尋求波耳對他為納粹服務一事諒解?至今科學家與史學家們仍各有主張,其真相究竟如何,恐怕就像海森堡的不確定性原理,永遠無法得知了。

延伸閱讀:10月7日──波耳誕辰

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
所有討論 1
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
1

文字

分享

0
2
1
量子糾纏態的物理
賴昭正_96
・2024/04/24 ・5889字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我不會稱量子糾纏為量子力學的「一般 (a)」特徵,而是量子力學「獨具 (the)」的特徵,它強制了完全背離經典的思想路線。

——薛定鍔(Edwin Schrödinger)1933 年諾貝爾物理獎得主

相對論雖然改寫了三百多年來物理學家對時間及空間的看法,但並未改變人類幾千年來對「客觀宇宙」——「實在」(reality)——的認知與經驗:不管我們是否去看它,或者人類是否存在,月亮永遠不停地依一定的軌道圍繞地球運轉。可是量子力學呢?它完全推翻了「客觀宇宙」存在的觀念。在它的世界裡,因果律成了或然率,物體不再同時具有一定的位置與運動速度……。

這樣違反「常識」的宇宙觀,不要說一般人難以接受,就是量子力學革命先鋒的傅朗克(Max Planck)及愛因斯坦(Albert Einstein)也難以苟同!但在經過一番企圖挽回古典力學的努力失敗後,傅朗克終於牽就了新革命的產物;但愛因斯坦則一直堅持不相信上帝在跟我們玩骰子!因此 1935 年提出了現在稱為「EPR 悖論(EPR Paradox)」的論文,為他反對聲浪中的最後一篇影響深遠的傑作。

1964 年,出生於北愛爾蘭、研究基本粒子及加速器設計的貝爾(John Bell),利用「業餘」時間來探討量子力學的基礎問題,提出題為「關於愛因斯坦(Einstein)-波多爾斯基(Podolsky)-羅森(Roson)悖論」的論文。貝爾深入地研究量子理論,確立了該理論可以告訴我們有關物理世界基本性質的地方,使直接透過實驗來探索看似哲學的問題(如現實的本質)成為可能。

2022 年的諾貝爾物理獎頒發給三位「用光子糾纏實驗,……開創量子資訊科學」的業思特(Alain Aspect)、克勞瑟(John Clauser)、蔡林格(Anton Zeilinger)的物理學家。讀者在許多報章雜誌(如 12 月號《科學月刊》)均可看到有關貝爾及他們之工作的報導,但比較深入討論貝爾實驗的文章則幾乎沒有。事實上貝爾的數學確實是很難懂的,但只要對基本物理有點興趣,我們還是可以了解他所建議之實驗及其內涵的。因此如果讀者不怕一點數學與邏輯,請繼續讀下去吧:我們將用古典力學及量子力學推導出在實驗上容易證明/反駁的兩個不同結果。

-----廣告,請繼續往下閱讀-----

角動量與自旋角動量

在我們日常生活裡,一個物體(例如地球)可以擁有兩種不同類型的角動量。第一種類型是由於物體的質心繞著某個固定(例如太陽)的外部點旋轉而引起的,這通常稱為軌道角動量。第二種類型是由於物體的內部運動引起的,這通常稱為自旋角動量。在量子物理學裡,粒子可以由於其在空間中的運動而擁有軌道角動量,也可以由於其內部運動而擁有自旋角動量。實際上,因為基本粒子都是無結構的點粒子,用我們日常物體的比喻並不完全準確1;因此在量子力學中,最好將自旋角動量視為是粒子所擁有的「內在性質」,並不是粒子真正在旋轉。實驗發現大部分的基本粒子都具有獨特的自旋角動量,就像擁有獨特的電荷和質量一樣:電子的自旋角動量為 ½ 2,光子的自旋角動量為 1。

量子力學裡的角動量有兩個與我們熟悉之角動量非常不同的性質:

  1. 前者不能連續變化,而是像能量一樣被量化(quantized)了,例如電子的自旋量子數為 ½,所以我們在任何方向上所能量到的自旋角動量只能是 +½(順時針方向旋轉)或 -½(逆時針方向旋轉)
  2. 後者的角動量可以同時在不同的方向上有確定的分量,但基本粒的(自旋)角動量卻不能。

EPR 論文

EPR 論文討論的是位置與動量的客觀實在性;貝爾將其論點擴展到自旋粒子的角動量上,討論兩個粒子相撞後分別往左、右兩個不同方向飛離後的實驗。因曾相撞作用之故,它們具有「關連」(correlated)的自旋角動量;但常識與經驗告訴我們,如果分開得夠遠的話,它們之間應不再互相作用影響,因此我們在任一體系所做的測量也應只會影響到該體系而已。這「可分離性」(separability)及「局部性」(locality)的兩個假設可以説是物理學成功的基石,因此沒有人會懷疑其正確性的。

讓我們在這裡假設粒子相撞後的總自旋角動量爲零。如果我們測得左邊粒子的 B- 方向自旋為順時(見圖一),則可以透過「關連」而預測右邊粒子的 B- 方向自旋應為逆時。因右邊粒子一直是孤立的,基於物理體系的「可分離性」與「局部性」,如果我們可以預測到其自旋的話,則其自旋應該早就存在,爲一「實在」的自然界物理量。

-----廣告,請繼續往下閱讀-----
EPR 與貝爾實驗裝置。 圖/作者提供   

同樣地,如果我們突然改變主意去量得左邊粒子的 C- 方向自旋為順時,則也可以透過「關連」而預測到右邊粒子的 B- 方向自旋應為逆時。但右邊粒子一直是孤立的,因此其 C- 方向自旋也應該早就存在,亦爲一「實在」的自然界物理量。所以右邊的粒子毫無疑問地應同時具有一定的 B- 方向自旋與 C- 方向自旋。同樣的論點也告訴我們:左邊的粒子毫無疑問地也應同時具有一定的 B- 方向自旋與 C- 方向自旋。如果量子力學説粒子不能同時具有一定的 B- 方向與 C- 方向自旋,而只能告訴我們或然率,那量子力學顯然不是一個完整的理論!

貝爾的實驗

貝爾將這一個物理哲學上的爭論變成可以證明或反駁的實驗!如圖一,我們可以設計偵測器來測量相隔 120 度的 A、B、C 三個方向的自旋(順時或逆時)。依照古典力學(EPR),自旋在這三個方向上都有客觀的存在定值。假設左粒子分別為(順、順、逆);則因總自旋須爲零,右粒子在三方向的自旋相對應爲(逆、逆、順)。在此情況下,如果我們「同時去量同一方向」之左、右粒子自旋,應可以發現(順逆)(順逆)(逆順)三種組合。可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,應可以發現的組合有(順逆)(順逆)(順順)(順逆)(順逆)(順順)(逆逆)(逆逆)(逆順)九種;其中相反自旋的結果佔了 5/9。讀者應該不難推出:不管粒子在三方向的自旋定值爲何,發現相反自旋的結果不是 5/9 就是 9/9,即永遠 ≥ 5/9。

量子力學怎麼說呢? 在同一個假設的情況下, 量子力學也說如果我們「同時去量同一方向」之左、右粒子自旋, 應發現的組合也是只有(順逆)(順逆)(逆順)三種。但量子力學卻說:可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,則會得到不同於上面預測之 ≥ 5/9 的結果!為什麼呢?且聽量子力學道來。

量子力學與或然率

自動角動量。圖/作者提供

在古典力學裡,如果在某個方向測得的自旋角動量為 +½,則其在任何方向的分量應為 +½ cosθ,如圖二所示。但在量子力學裡,因為不可能同時在其它方向精確地測得自旋角動量,因此分量只能以出現 +½ 或 -½ 之或然率來表示;這與古典力學不同,也正是問題所在。但古典力學到底還是經過幾百年之火煉的真金,因此如果我們做無窮次的測量,則其結果應該與古典力學相同:即假設測得 +½ 的或然率是 P,則

-----廣告,請繼續往下閱讀-----

如果角度是 120º,則解得 P 等於 1/4:也就是說有 1/4 的機會量得與主測量同一方向(+½)自旋角動量,3/4 機會量得 -½ 自旋角動量。

讓我們看看這或然率用於上面所提到之貝爾實驗會得到怎麼樣的結果。依量子力學的計算,如果在左邊 A- 方向量得的是順時鐘的話,則因「關連」,右邊 A- 方向量得的便一定(100%)是逆時鐘;但因角動量不能同時在不同的方向上有確定的分量, 故在其它兩方向量得逆時鐘的或然率依照上面的計算將各爲 1/4,因此左、右同時測得相反自旋的或然率只有 ½ [=(1+1/4+1/4)*3/9,三方向、九方向組合]而己。

實驗結果呢?1/2,小於 5/9!顯然粒子在不同方向同時具有固定自旋的假設是錯的!EPR 是錯的!古典力學是錯的!量子力學戰勝了!貝爾失望克勞瑟賭輸了!

量子糾纏態

上面提到如果左邊 A- 方向量得的是順時鐘的話,則右邊 A- 方向量得的便一定(100%)是逆時鐘;可是左、右粒子在作用後,早已咫尺天涯,右粒子怎麼知道左粒子量得的是順時鐘呢?量子力學的另一大師薛定鍔(Edwin Schrödinger)從 EPR 論文裡悟到了「糾纏」(entanglement)的觀念。他認爲在相互作用後,兩個粒子便永遠糾纏在一起,形成了一個量子體系。因是一個體系,因此當我們去量左邊粒子之自旋時,量子體系波函數立即崩潰,使得右邊粒子具有一定且相反的自旋。可是右邊的粒子如何「立即知道」我們在量左邊的粒子 A- 方向及測得之值呢?那就只有靠愛因斯坦所謂之「鬼般的瞬間作用」(spooky action at a distance)了!此一超光速的作用轟動了科普讀者3!筆者也因之接到一些朋友的詢問,為寫這一篇文章的一大動機。

-----廣告,請繼續往下閱讀-----

可是仔細想一想,在古典力學裡不也是這樣——如果左邊 A- 方向量得的是順時,則右邊 A- 方向量得的便一定是逆時——嗎?但卻從來沒有科學家或科普讀者認為有「鬼般的瞬間作用」或「牛頓糾纏態」去告訴右邊粒子該出現什麼。這「鬼般的瞬間作用」事實上是因為在未測量之前,量子力學認為右邊粒子自旋是存在於一種沒有定值之或然率狀態的「奇怪」解釋所造成的。例如我們擲一顆骰子,量子力學說:在沒擲出之前,出現任何數的或然率「存在」於一種「波函數」中。但一旦擲出 4 後,波函數便將立即崩潰:原來出現 4 之 1/6 或然率立即瞬間變成 100%,其它數的或然率也立即瞬間全部變成零了。但在日常生活中,我們(包括 EPR)從不認為那些或然率「波函數」為一「客觀的實體」,故也從來沒有人問:其它數怎麼瞬間立即知道擲出 4 而不能再出現呢?波函數數怎麼瞬間立即崩潰呢?

事實上從上面的分析,讀者應該可以看出:根本不需要用「右粒子『知道』左粒子量得的是順時鐘」,我們所需要知道的只是量子力學的遊戲規則:粒子的角動量不能同時在不同方向上有確定的分量;即如果 100% 知道某一方向的自旋,其它方向的自旋便只能用或然率來表示。一旦承認這個遊戲規則,那麼什麼「量子糾纏態」或「鬼般的瞬間作用」便立即瞬間消失!這些「奇怪」名詞之所以出現,正是因為我們要使用日常生活經驗語言來解釋量子系統中訊息編碼之奇怪且違反直覺的特性4 所致。

結論

在想用日常生活邏輯或語言來了解自然界的運作失敗後,幾乎所有的物理學家現在都採取保利(Wolfgang Pauli)的態度:

了解「自然界是怎樣的(運作)」只不過是形上學家的夢想。我們實際上擁有的只是「我們能對大自然界說些什麼」。在量子力學層面,我們能說的就是我們能用數學來說的——結合實驗、測試、預測、觀察等。因此,幾乎所有其它事物在本質上都是類比和或想像的。事實上,類比或意象性的東西可能——而且經常——誤導我們。

-----廣告,請繼續往下閱讀-----

換句話說,物理學的任務是透過數學計算5,告訴我們在什麼時刻及什麼地方可以看到月亮;至於月亮是不是一直那裡,或怎麼會到那裡……則是哲學的問題,不是物理學能回答或必須回答的。如果硬要用日常生活邏輯或語言去解釋月亮怎麼出現到哪裡,那麼我們將常被誤導。

誠如筆者在『思考的極限:宇宙創造出「空間」與「時間」?』一文裡所說的:『空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要』,我們在這裡也可以說;「量子糾纏態」根本不存在,它只是用來說明量子力學之奇怪宇宙觀的「語言」而已;沒有量子力學的或然率自然界,就沒有「量子糾纏態」的必要。

註解

  1. 讓我們回顧一下在 1925 年最早提出電子自旋觀念的高玆密(Samuel Goudsmit)及烏倫別克(George Uhlenbeck)當時所遭遇到的困擾。如果不是因為他們那時還是個無名小卒的研究生,提出電子自旋的人大概便不是他們了!底下是烏倫別克的回憶:『然後我們再一起去請教(電磁學大師)羅倫玆(Hendrik Lorentz)。羅倫玆不只以他那人盡皆知的慈祥接待我們,並且還表現出很感興趣的樣子——雖然我覺得多少帶點悲觀。他答應將仔細想一想。一個多禮拜後,他交給我們一整潔的手稿。雖然我們無法完全了解那些長而繁的有關自旋電子的電磁性計算,但很明顯地,如果我們對電子自旋這一觀念太認真的話,則將遭遇到相當嚴重的難題!例如,依質能互換的原則,磁能便會大得使電子的質量必須大於質子;或者如果我們堅持電子的質量必須為已知的實驗數值,則電子必須比整個原子還大!高玆密及我都認為至少在目前我們最好不要發表任何東西。可是當我們將決定告訴羅倫玆教授時,他回答說:「我早已將你們的短文寄出去投稿了!你們倆還年青得可以去做一些愚蠢的事!」』。後來呢?電子自旋的概念在整個量子力學的系統裏,脫出了「點」與「非點」這類的爭論,而被物理學界普遍接受。今天當物理學家用「電子自旋」這一術語時,有他們特定的運作定義,絕不虛幻,但也絕不表示電子是一個旋轉的小球(因為那將與實驗不符);但是有時把電子看為自轉的小球,可以幫助我們理解與教育初學者。
  2. 單位為普朗克常數(Planck constant)除以 2π。
  3. 玻爾(Niel Bohr):「那些第一次接觸量子理論時不感到震驚的人不可能理解它。」
  4. 這種量子效應以前一直被認為造成困擾,導緻小型設備比大型設備的可靠性更低、更容易出錯。但 1995 年後,科學家開始認識到量子效應雖然「令人討厭」,但實際上可以用來執行以前不可能處理的重要資訊任務,「量子資訊科學」於焉誕生。
  5. 薛定鍔:「量子理論的數學框架已經通過了無數成功的測試,現在被普遍接受為對所有原子現象的一致和準確的描述。」

延伸閱讀

討論功能關閉中。

賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

6
1

文字

分享

0
6
1
你聽過「量子意識」嗎?電子雙狹縫實驗讓人猜測意識會影響物質世界,真的假的?
PanSci_96
・2024/03/06 ・3800字 ・閱讀時間約 7 分鐘

在市面上,我們常會看到號稱運用量子力學原理的商品或課程,像是量子內褲、量子能量貼片、量子首飾、量子寵物溝通、量子速讀、量子算命、量子身心靈成長課程等等。有人說,量子力學代表了意識具有能量,藉由調整心靈的共振頻率,就能保持身心健康,只要你利用量子力學原理進行療癒或冥想,就能提昇自己的能量,人能長高、身體變壯、每次考試都考一百分;又像是,量子力學就代表一種信息場,讓你跟別人有心電感應,只要轉念,讓宇宙能量幫助你,你就能發大財還能避免塞車。也有人說,別人吃一個下午茶,你也馬上吃一個下午茶,別人喝一杯咖啡,你也馬上喝一杯咖啡,別人跟家人吵架,你也馬上找一件事跟家人吵架,這就是量子糾纏。

然而,量子到底是什麼?跟身心靈、宗教和玄學真的扯得上關係嗎?是否真能幫助你維持健康又賺大錢呢?

在這一系列影片裡,我們就要來討論,量子力學的原理為何?背後又是基於哪些科學的研究成果。等你看完之後,相信對於量子力學跟上述五花八門商品究竟有沒有關係,心裡自然會有所答案。

量子力學和意識有關?

坊間常會聽到量子力學跟意識有關的說法;或許也是因為這樣,量子力學被許多身心靈成長課程甚至玄學拿來作為背書。但,量子力學真的是這樣子嗎?

說到量子力學跟意識的關係,我們就必須來看看,量子力學最著名的實驗之一,20 世紀的物理學大師費曼(Feynman)甚至曾經說過,這個實驗「包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。」它,就是雙狹縫干涉實驗。

-----廣告,請繼續往下閱讀-----

雙狹縫干涉實驗

現在我拿的器材,上面有兩道狹縫,中間間隔了非常短的距離。等一下,我們會讓雷射光通過這兩道狹縫,看看會發生什麼事。

我們看到,雷射光在打向雙狹縫之後,於後面的牆上呈現有亮有暗的條紋分布,這跟我們在國、高中學過的波的性質有關。

在兩道光波的波峰相會之處,會產生建設性干涉,即亮紋的位置;而暗紋的部分,則是來自破壞性干涉,是兩道光的波峰和波谷交會之處,亦即,光的效應被抵銷了。

在歷史上,雙狹縫干涉實驗占有非常重要的地位。19 世紀初,英國科學家、也是被譽為「世界上最後一個什麼都知道的人」的湯瑪士.楊(Thomas Young),利用雙狹縫實驗,證明了光是一種波。

-----廣告,請繼續往下閱讀-----

那麼,如果我們拿不是波的東西,來進行雙狹縫實驗,會看到什麼結果呢?讓我們試驗一下。

現在我手邊有一堆的彈珠,前面是用紙板做成的兩道狹縫,後面則是統計彈珠落點的紙板。我們讓這些彈珠朝狹縫的地方滾過去,並在彈珠最後的落點劃下記號;若在同樣位置的記號越多,就代表有越多彈珠打中該位置。

在丟了一百顆彈珠之後,我們可以看到,扣除掉一部份因為路徑被擋住、通不過狹縫的彈珠之外,彈珠最終抵達的位置,大致分別以兩道狹縫的正後方為最多,呈現兩個區塊的分布,不像先前光的雙狹縫干涉實驗中,出現明暗相間的變化。

所以,我們得到結論:若是拿具有物理實體的東西進行雙狹縫實驗,因為其一次只能選一邊通過,所以落點最終只會聚集在兩個狹縫後方的位置;而且要是行進的路徑不對,還可能會被擋住。

-----廣告,請繼續往下閱讀-----

至於波的情形,那就不同了,只要狹縫的大小適當,波可以同時通過兩個狹縫,並互相干涉,產生明暗相間的條紋。

換言之,是波,還是物質,兩者在雙狹縫實驗的表現是截然不同的。

只不過,以上的實驗似乎並沒有什麼太令人感到意外的地方,我們也看不出來,它跟量子,還有意識,到底有什麼關係?事實上,若要真正顯示出它的獨特之處,就要來看電子的雙狹縫干涉實驗。

電子的雙狹縫干涉實驗

我們知道,電子是組成原子的基本粒子之一,而原子又組成了世間萬物。可以說,電子是屬於物質的一種極微小粒子。

-----廣告,請繼續往下閱讀-----

在電子的雙狹縫干涉實驗,科學家朝雙狹縫每次發射一顆電子,並在發射了很多顆電子之後,觀察電子的最終落點分布會怎麼呈現。

既然電子是物質的微小粒子,那麼在想像中,應該會跟我們前面使用彈珠得到的結果差不多,電子會分別聚集在兩道狹縫後方的區域。

從實驗的記錄影片中可以看到,在一開始、電子數量還很少的時候,其落點比較難看得出有明顯規律,但隨著電子的數目越來越多,我們慢慢能夠看出畫面上具有明暗分布,跟使用光進行雙狹縫實驗時得到的干涉條紋,有著類似的結構。

這樣的結果,著實令人困惑。直覺來想,既然電子是一顆一顆發射的,它勢必不可能像光波一樣,同時通過兩個狹縫,並且兩邊互相干涉,產生明暗相間的條紋。

-----廣告,請繼續往下閱讀-----

但無可否認,當我們用電子進行雙狹縫實驗時,最後得到的結果,看起來就跟干涉條紋沒什麼兩樣。

對這出人意表的觀測結果,為了搞清楚發生什麼事,科學家又做了更進一步的實驗:

在狹縫旁放置偵測器,以一一確認這些電子到底是通過哪一個狹縫、又如何可能在通過狹縫後發生干涉。

這下子,謎底就能被解開了――正當大家這麼想的時候,大自然彷彿就像在嘲笑人類的智慧一樣,反將一軍。

科學家發現,如果我們去觀測電子的移動路徑,只會看到電子一顆一顆地通過兩個狹縫其中之一,並最終分別聚集在兩個狹縫的後面――換言之,干涉條紋消失了!

-----廣告,請繼續往下閱讀-----

在那之後,科學家做過無數類似的實驗,都得到一樣的結果:只要你測量了電子的路徑或確切位置,那麼干涉條紋就會消失;反過來說,只要你不去測量電子的路徑或位置,那麼電子的雙狹縫實驗就會產生干涉條紋。

在整個過程中,簡直就像是電子知道有人在看一樣,並因此調整了行為表現。

在日常生活中,若有人要做壞事,往往會挑沒人看得到的地方;反過來說,當有其他人在看,我們就會讓自己的言行舉止符合公共空間的規範。

量子系統也有點像這樣,觀測者的存在與否,會直接影響到量子系統呈現的狀態。

-----廣告,請繼續往下閱讀-----

只不過,這就帶出了一個問題:到底怎麼樣才算是觀測?如果我們在雙狹縫旁邊只放偵測器不去看結果算嗎?我們不放偵測器只用肉眼在旁邊看算嗎?或是,整個偵測過程沒有人在場算嗎?

這就是量子力學裡著名的觀測問題(measurement problem)。

結語

在量子力學剛開始發展的數十年,有許多地方都還不是那麼清楚,觀測問題就是其一。在歷史上,不乏一些物理學家,曾經認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。

如果真是這樣的話,那麼「意識」就存在非常特別的意義,而且似乎暗示人的意識能夠改變物質世界的運作。

有一些物理學家曾認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。圖/envato

可以想見地,上述出自量子力學觀測問題的猜測,後來受到部分所謂靈性導師跟身心靈作家的注意,於是,形形色色宣揚心靈力量或利用量子力學原理進行療癒、冥想或身心靈成長的偽科學紛紛出籠,直到近年都還非常流行。

另一方面,可能因為量子兩個字帶給人一種尖端科學的想像,坊間琳瑯滿目的商品即使跟量子力學一點關係都沒有,也都被冠上量子兩字;除此之外,商品宣傳裡也常出現一堆量子能量、量子共振等不知所謂的概念,不然就是濫用量子力學的專有名詞如量子糾纏、量子穿隧等,來幫自己的商品背書。只要有量子兩字,彷彿就是品質保證,讓你靈性提升、身體健康、心想事成。

對此,我就給三個字:敢按呢(Kám án-ne)?

事實上,量子力學至今仍是持續演進的學問,我們對量子力學的理解也隨時間變得越來越豐富。現代的物理學家,基本上不認為我們可以用意識改變物質世界,也不認為「意識」在「觀測」上佔據一席之地,甚至可以說正好相反,人的意識在觀測上根本無關緊要。

不過,我們不會那麼快就直接進入觀測問題的現代觀點。在之後接下來的幾集,我們會先從基本知識開始說起,循序漸進,讓你掌握量子力學的部分概念。而在本系列影片的最後一集,我們才會重新回到觀測問題,並介紹量子力學領域近幾十年來在此問題上獲得的進展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
《奧本海默》中被遺忘的火星人數學家馮紐曼和波利亞——《科學月刊》
科學月刊_96
・2023/11/03 ・5466字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/劉柏宏
    • 勤益科技大學基礎通識教育中心教授
  • Take Home Message
    • 電影《奧本海默》中,對於幾位匈牙利數學家如馮紐曼、波利亞等人的描述篇幅較少,但他們其實對科學界影響深遠。
    • 馮紐曼在曼哈頓計畫中建議以內爆透鏡設計原子彈,不僅所需的裂變材料較少,又可以防止原子彈過早引爆,達成更對稱與高效的爆炸。
    • 波利亞提出以「捷思法」等強調歸納實驗的方式思考數學問題,例如觀察找出數學公式的形成,此法也掀起了數學教育革命。

遊艇緩緩流動在分隔布達區(Buda)與佩斯區(Pest)的多瑙河上,絲絨般的水波、柔棉沁涼的河風,兼容哥德式與文藝復興建築風格的匈牙利國會大廈(Hungarian Parliament Building)圓頂,在夕陽的烘托之下宛如紅寶石般璀璨,流瀉出昔日奧匈帝國的風華。

筆者來到此地,終於可以想像為何 100 年前這條河的兩岸能夠孕育出一批改變科學面貌,甚至改變人類歷史的數學家與科學家。趁著今(2023)年暑假到布達佩斯開會之便,筆者也試著踏尋這些科學家的足跡。

回臺灣之後恰逢電影《奧本海默》(Oppenheimer)上映,儘管許多人聚焦在主角奧本海默(Julius Oppenheimer)的內心世界,不過筆者更關心的是幾位被火星人遺留在地球上的匈牙利數學家。

地球上的火星遺民

20 世紀初歐美科學圈流傳著一個神祕的傳說,記錄下這傳說的是匈牙利物理學家馬克思(György Marx),但傳說起源卻得從義大利物理學家費米(Enrico Fermi)說起。

-----廣告,請繼續往下閱讀-----

1950 年某個夏日午後,費米在美國原子彈曼哈頓計畫(Manhattan Project)的基地——洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),和幾位科學家聊到當時有關幽浮的報導時,提出了一個問題:

「宇宙如此浩瀚,包含無數恆星,許多恆星和太陽沒什麼差別,也有行星圍繞著它們旋轉。一部分的行星地表也會有水和空氣,而來自恆星的能量將促使有機化合物合成。

這些化學物質將相互結合產生一個自我複製系統。最簡單的生物會通過自然選擇繁殖、進化並變得更加複雜,直到最終出現活躍的、會思考的生物,文明、科學和科技隨之而來。

由於對美麗新世界的渴求,他們會旅行到附近行星,然後到另一個恆星的行星。他們最終應該遍布整個銀河系。這些非凡和傑出的人很難忽視像地球這樣美麗的地方。

所以,如果真是如此,他們必定來過這裡。那麼,他們到底在哪裡?」

關於這個「費米問題」,匈牙利物理學家西拉德(Leo Szilard)的回應是:「他們就在我們身邊啊!只是他們自稱匈牙利人!」(They are among us, but they call themselves Hungarians.)。

西拉德的高級幽默,點燃匈牙利人是火星遺民的想像,各種附和的說法紛紛出籠。有一種說法是 19 世紀末至 20 世紀初,一艘來自火星的太空船降落在地球,由於發現匈牙利的女子美麗又性感因而定居下來,繼而繁衍後代。

後來太空船要返回火星時超重,不得不將一些人留下,這些人包括建議當時美國總統羅斯福(Franklin Roosevelt)發展原子彈的信函主要起草人西拉德、協助潤稿的泰勒(Edward Teller)和諾貝爾物理學獎得主維格納(Eugene Wigner),還有化學獎得主歐拉(George Olah)與波拉尼(John Polanyi)、經濟獎得主哈薩尼(John Harsanyi);以及數學家艾迪胥(Paul Erds)、波利亞(George Pólya)、馮紐曼(John von Neumann)、哈爾默斯(Paul Halmos)、拉克斯(Peter Lax)等人。

-----廣告,請繼續往下閱讀-----

這幾位科學界的火星遺民有許多共同點:他們都出生於匈牙利。

除了喜歡雲遊四海的艾迪胥外,他們後來都移居並任教於美國的大學;他們思考問題時都喜歡來回踱步;另有一個最不可思議的共同點——他們都是猶太人。

至於為何火星人特別鍾情猶太人?這可能又是另一個「費米問題」。

《奧本海默》的最大遺珠——馮紐曼

筆者本次開會的地點在羅蘭大學(Eötvös Loránd University),該校在過去不同時期曾名為布達佩斯大學(University of Budapest)、帕茲馬尼-彼得大學(Pázmány Péter Catholic University)。

-----廣告,請繼續往下閱讀-----

該校培育出不少數學家與科學家,而馮紐曼是箇中翹楚。

馮紐曼出身於布達佩斯的富裕猶太家庭,父親是位對他有很深期待的銀行家,希望兒子能往化學工程發展,但馮紐曼卻對數學情有獨鍾。有許多關於他的數學傳奇事蹟,例如 6 歲能心算八位數除法,8 歲熟悉微積分,15 歲開始學高等微積分,19 歲已經發表兩篇數學論文。

最後馮紐曼不違父願也無逆己志,不僅在蘇黎世理工學院(Eidgenössische Technische Hochschule Zürich, ETH)讀化工,同時也在帕茲馬尼-彼得大學研修數學博士。

有鑑於在 19 世紀末和 20 世紀初,德國數學家康托爾(Georg Cantor)的集合論導致某些推論會產生矛盾難題,即使在當時產生的矛盾並非集合論的核心,但在嚴格檢驗非核心的部分時,邏輯上還是會發現一些瑕疵,因此馮紐曼選定了與集合論基礎有關的內容深入研究。

-----廣告,請繼續往下閱讀-----

他的博士論題目為〈一般集合論的公理化構造〉(Az általános halmazelmélet axiomatikus felépítése),並於 1926 年同時取得兩所大學的博士學位。

而後在洛克菲勒基金會(Rockefeller Foundation)的資助下,他前往德國哥廷根大學(University of Göttingen),師從德國數學家希爾伯特(David Hilbert)。

1933 年為逃避納粹對猶太人的迫害,馮紐曼應聘前往美國普林斯頓高等研究院(Institute for Advanced Study),在那裡開始專研計算機科學,同時也結識了奧本海默。

馮紐曼(右)和奧本海默(左)。圖/科學月刊

建議原子彈採用「內爆式」設計的馮紐曼

由於馮紐曼的博學與優異數學計算能力,奧本海默聘請他作為曼哈頓計畫的顧問,主要負責兩項任務:一是研究內爆透鏡的概念和設計,二是負責預估炸彈爆炸的規模、死亡人數,以及炸彈爆炸的離地距離以達到最大效果。

-----廣告,請繼續往下閱讀-----

什麼是內爆透鏡?當時曼哈頓計畫考慮的核分裂方式有兩種,一種是「槍式核分裂」(gun-type fission)設計,另一種則是「內爆透鏡」(implosion lens)的設計。

槍式核分裂設計是仿造子彈的射擊方式,利用常規炸藥將一塊次臨界物質射向另一塊可裂變物質,使可裂變物質達到臨界質量(圖一)。

圖一、槍式核分裂設計的原子彈。原理是利用炸藥將一塊次臨界物質射向另一塊可裂變物質(鈾),使可裂變物質達到臨界質量,投擲於廣島的「小男孩」就是採用此設計。圖/科學月刊

槍式核分裂使用鈾(uranium, U)作為裂變材料,二戰時投擲於日本廣島的「小男孩」(Little Boy)就是採用槍式設計。但由於當時鈾的存量並不足夠,因此必須發展另一種形式的原子彈,也就是內爆透鏡設計。

內爆透鏡設計以鈽(plutonium, Pu)作為裂變材料,在空心的球狀空間內放置鈽,並在球形鈽彈周圍放置炸藥。這些炸藥爆炸同時產生的強大內推壓力將會擠壓球形鈽彈,引發連鎖反應造成核爆(圖二)。

-----廣告,請繼續往下閱讀-----
圖二、內爆透鏡設計的原子彈。它以鈽為裂變材料,空心的球狀空間內含鈽,並在鈽彈周圍放置炸藥,炸藥爆炸時產生的強大內推壓力會擠壓鈽彈,引發連鎖反應造成核爆,這也是投放到長崎的「胖子」設計原理。圖/科學月刊

馮紐曼評估之後,認為「內爆式」設計優於「槍式」設計,且內爆型原子彈所需的裂變材料較少,又可以防止過早引爆以達成更為對稱與高效的爆炸,因此建議奧本海默改發展內爆式核彈,這就是二戰時被投放到日本長崎的原子彈——「胖子」(Fat Man)。馮紐曼在曼哈頓計畫中的角色如此關鍵卻被電影所忽略,確實令許多人不平。

馮紐曼從小嶄露他的優異天賦且記憶力驚人,除數學領域之外在諸多科學分支也有所涉獵且精通。他的聰慧早已獲得同儕的認同與讚譽,常被稱為數學界最後一位通才。有一個流傳甚廣的傳說是某次宴會中女主人問馮紐曼一個問題:

「兩列相距 200 英里的火車正在相向行駛,每輛火車的行駛速度均為每小時 50 英里。一隻蒼蠅從其中一列火車的前面出發,以每小時 75 英里的速度在火車之間來回飛行,直到火車相撞並將蒼蠅壓死為止。蒼蠅在這段期間總共飛行了多少距離?」

一般人解這一題可能是先算第一段時間蒼蠅飛行的距離,再算第二段時間蒼蠅飛行的距離,由於蒼蠅來回飛行無限多次,距離愈來愈短,可以用無窮等比級數求和的方法得出解,但這樣的計算相當繁複。有一個更快捷的技巧是直接算出兩輛火車將於兩小時後相撞,因此得知蒼蠅總共飛行 150 英里。

馮紐曼聽完問題不一會兒就答出 150 英里,女主人對於馮紐曼沒有陷入計算無窮等比級數的陷阱感到失望,但馮紐曼竟回答:「我是用求和的啊!」若此傳說當真,顯見他驚人的計算能力。

-----廣告,請繼續往下閱讀-----

1963 年諾貝爾物理學獎得主維格納表示,他認識當代許多頂尖科學家,包含德國理論物理學家普朗克(Max Planck)、英國理論物理學家狄拉克(Paul Dirac)、西拉德、泰勒、愛因斯坦,但沒有一個人像馮紐曼般才思敏捷。曾有人問維格納為什麼匈牙利出現這麼多天才,維格納的回答是:「真正的天才只有馮紐曼一人。」

引發數學教育革命的波利亞

本文要介紹的第二位匈牙利數學家是波利亞。1912 年,他於布達佩斯大學取得數學博士學位後,便前往德國哥廷根大學從事博士後研究。他在哥廷根大學結識許多當代最傑出的數學家,例如希爾伯特和克萊因(Felix Klein),之後便到蘇黎世理工學院任教。相較於一般嚴謹木訥的數學家,波利亞相當擅長說故事,包含數學家的軼事和「說數學」的功力。

馮紐曼在蘇黎世理工學院修讀博士時,也曾上過波利亞的書報討論課。有次波利亞提到一個尚未解決的數學問題,他認為要證明這問題很困難,沒想到五分鐘之後馮紐曼舉手,然後在黑板上寫下證明,從此之後馮紐曼變成他最敬畏的學生。

另外,波利亞也曾談論有關希爾伯特的故事。在德國盛傳一個傳說,深受德國人敬愛的皇帝腓特烈一世(Friedrich I)沒有死亡、只是沉睡,等到德國需要他時他就會挺身而出。因此便有人問希爾伯特:「你若在死後 500 年復活,你會做什麼事?」希爾伯特說:「我會問是否有人證明了黎曼猜想(Riemann hypothesis)?」

黎曼猜想與質數分布具有密切的關係,是希爾伯特於 1900 年提出的 23 個最重要數學問題之一。有些數學家將證明黎曼猜想形容為「數學界的聖杯」,因此它的重要性可見一斑。2018 年 9 月 24 日,英國數學家阿蒂亞(Michael Francis Atiyah)宣稱他證明了黎曼猜想,此事件也曾轟動一時。

但阿蒂亞的證明還來不及得到同儕認證,便不幸於 2019 年 1 月 11 離世,截至目前為止數學界仍對阿蒂亞的證明有所質疑。所以如果希爾伯特現在真的死而復活,那他恐怕要失望了。

波利亞於 1945 年出版《怎樣解題》(How To Solve It)一書,展現他「說數學」的功力。他常強調數學有兩面,數學結果的呈現方式有如歐幾里得(Euclid)幾何學般的演繹論證形式,但數學知識發展過程卻更像是一門實驗歸納的科學。書中提倡以捷思法(heuristic)思考數學問題,例如高中時老師通常教學生如何證明 13+23+33+43+⋯+n3=,但卻很少說明究竟如何得到此公式。

波利亞則要學生先做探索觀察。例如從圖三可以發現前五個自然數的立方恰好都等於另一個自然數的平方,這樣的特殊性可以推廣為「前 n 個自然數的立方和等於某個自然數的平方嗎?」若可以推廣,某個自然數到底是哪個數?我們進一步觀察可以得到:1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, 15=1+2+3+4+5,將這觀察和圖三結合就得到圖四中令人驚訝的結果。

圖三、前五個自然數的立方和。圖/科學月刊
圖四、前五個自然數的立方和等於前五個自然數和的平方。圖/科學月刊

這麼美麗的結果應該不會只是巧合,所以一個合理的臆測也因此誕生:「前n個自然數的立方和等於前n個自然數和的平方」,也就是 13+23+33+43+⋯+n3=(1+2+3+4+⋯+n)2。由於 1+2+3+4+⋯+n=,所以得到 13+23+33+43+⋯+n3這個「合理的」公式,接著就可以證明此結果的正確性。

由此我們看到捷思法可以展現一個數學公式形成的過程,如同在《奧本海默》電影中丹麥物理學家波耳(Niels Bohr)建議奧本海默改到哥廷根大學跟從玻恩(Max Born)學習理論物理。

波耳問奧本海默數學程度如何,並提醒他:「代數就像一本樂譜,重點不是你能否讀懂音樂,而是能否聽懂音樂。」(Algebra is like a sheet music. The important thing isn’t if you can read music; it’s if you can hear it.),波利亞的捷思法就是教我們如何聽懂音樂而不光是讀懂音樂。

在 1960 年代,美國由於憂慮太空競賽落後蘇聯,因而發起所謂「新數學」的中學數學課程改革,強調數學的抽象性,試圖讓學生早一點熟悉數學邏輯的演繹過程,但這種罔顧知識發展脈絡的改革註定以失敗告終。

1980 年代,波利亞強調歸納實驗思考過程的捷思法逐漸受到重視,掀起一波「數學問題解決」(mathematical problem-solving)的浪潮,而這股浪潮的影響也猶如核分裂的連鎖反應,持續至今。

  • 〈本文選自《科學月刊》2023 年 11 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3498 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。