Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

救命!我的大腦縮水了:談滲透壓去髓鞘症候群

朱 淯銘
・2016/08/23 ・3504字 ・閱讀時間約 7 分鐘 ・SR值 542 ・八年級

-----廣告,請繼續往下閱讀-----

突如其來的風暴

300547929_c330f90646_z
圖/Erich Ferdinand@flickr

賴先生自從兩周前的一場感冒之後就覺得渾身不對勁,這兩個禮拜以來幾乎都吃不下任何東西,原先安排好的旅遊行程全部都被打亂了。到了這天晚上甚至覺得胸口悶悶的,勉強自己吃下一點東西,但是過一會兒就全都吐了出來。後來實在覺得太不舒服,於是掛了急診就醫。

急診陳醫師來來回回問了好些問題,發現很難從一堆症狀當中判斷賴先生生了什麼病,於是安排抽血。檢驗數據當中有一項數字特別的引人注意:賴先生血液中的鈉離子濃度很低,只有 105 mmol/L。納離子的正常值應該介於 135 到 145 之間,105 真是低到嚇人!

回顧賴先生的過去病史,他服用高血壓藥物已經有十年左右的時間,一直以來都服用同一種名叫 Natrilix 的藥物,十年來都沒有換過藥,也從未感覺到不舒服。陳醫師很快就從這當中理出頭緒:Natrilix 是一種 thiazide 類的利尿劑,幫助從腎臟排出過多的水份,進而使血壓降低。它的原理是從腎臟的遠端腎小管增加鈉離子的排出,副作用就是容易造成低血鈉的情形。(Natrilix 的中文名稱十分傳神,叫做鈉催離。)

賴先生長期服用 Natrilix,可能平常就有無症狀的低血鈉現象。兩周前的一場感冒,導致食欲變差,攝取的鹽巴變少了,但是卻同時喝進大量的水,一來一往之間,稀釋了體內的鈉離子,濃度變低,於是造成了噁心嘔吐、全身虛弱等症狀。

-----廣告,請繼續往下閱讀-----

陳醫師為賴先生施打了生理食鹽水做為治療,生理食鹽水鈉離子的濃度是 154 mmol/L,恰好可以補充賴先生體內的低血鈉症(105 mmol/L)。但是經過四個小時之後再次檢測賴先生的血液,發現鈉離子濃度只些微上升到 106 mmol/L,上升的幅度不如預期,而賴先生仍然抱怨著全身不舒服。於是陳醫師改成使用高張的食鹽水溶液,鈉離子濃度高達 513 mmol/L,可以快速的矯正低血鈉。

當天晚上賴先生就被安排住院觀察,隔天早上抽血檢驗,鈉離子已經回升到 120 mmol/L。賴先生的症狀改善許多,精神奕奕的看著報紙,滑著手機,彷彿昨天的陰霾已經一掃而空,甚至還詢問是不是能夠出院了!主治醫師吳醫師告訴他,目前的血鈉濃度還是偏低,建議住院再治療幾天。

隔天早上八點,病房傳來一陣騷動。「張醫師,72 房的賴先生有狀況,請你去看一下!」病房的住院醫師張醫師走進病房裡,只見賴先生一臉驚恐,嘴巴張的大大的,但是卻一句話也說不出來!旁邊的妻子和女兒一臉焦急的模樣,女兒說爸爸幾分鐘前突然表示自己什麼也聽不見,後來就再也說不出話來了。

張醫師試著請賴先生舉起雙手、轉動眼球,但是賴先生一副似懂非懂的表情,沒有辦法溝通,也不遵照指示,他只是一臉惶恐,緊緊抱著女兒不放。緊急腦部電腦斷層顯示沒有急性腦出血的現象,抽血的數據看起來十分正常,鈉離子的濃度是 126 mmol/L,甚至比起昨天還改善了許多…

-----廣告,請繼續往下閱讀-----

細胞也會膨脹收縮

鈉離子(Na+)是血液及細胞外液裡成份最多的陽離子。從計算血清滲透壓的公式:

血清滲透壓(Plasma osmolality) = 2[Na+] + [Glucose]/18 + [BUN]/2.8

  • 註:BUN為尿素氮,Blood urea nitrogen的縮寫

可以得知血液中的鈉離子貢獻了大部份的滲透壓。另一方面,細胞內液的成份可就大不相同了,細胞內液裡成份最多的陽離子變成了鉀離子,鈉離子反而少,和細胞外液剛好相反。

細胞膜的構造是雙層脂質結構,上面漂浮著許多通道蛋白,一般的物質和離子是不能隨意通過細胞膜的,但是水分子可以經由兩邊的濃度差「擴散」通過細胞膜。當低血鈉發生的時候,會造成細胞「外」液的滲透壓減少,水分子就開始往滲透壓較高的細胞「內」液移動,於是細胞就滲水膨脹了起來。

-----廣告,請繼續往下閱讀-----
553px-Osmotic_pressure_on_blood_cells_diagram.svg
圖片以紅血球細胞顯示細胞內外滲透壓變化的狀況。圖/By LadyofHats, Public Domain, wikimedia commons.

如果水份一直往細胞裡灌,可是會把細胞給撐破呢!細胞當然不會坐以待斃,於是開始利用主動運輸把細胞裡的溶質往外頭運送,藉以降低細胞內液的滲透壓,讓水不要再滲進來了。終於,細胞內外兩邊的滲透壓重新回到了平衡,細胞也瘦身到原來的形狀。這樣的過程稱為「適應」,大約需要兩天左右的時間。

如果這時候突然給予大量的生理食鹽水,甚至是高鈉溶液,會發生什麼事呢?低血鈉會被快速的矯正,血清和細胞「外」液的滲透壓會急劇上升。這下子變成細胞裡的水份開始向外擴散了!因為細胞「內」液的滲透壓相對來說變低了。這時細胞可要反其道而行,把丟出去的溶質趕快回收回來!不然細胞一直縮水下去,也難逃破裂的命運!

身體裡大部份的細胞都能夠迅速反應這兩種情況,運輸、回收,不會造成太大的問題。只有一群細胞在這方面不大擅長——那就是大腦裡的細胞!

脆弱的腦細胞

為了讓大腦的神經細胞能在穩定的狀態下工作,大腦的微血管外頭多了一層「血腦屏障」,由內皮細胞緊密連結所構成,就像是手拉著手一樣。血腦屏障幾乎阻擋了所有東西進入腦部,除了少數的必要物質以外。當血液納離子濃度快速上升,細胞一旦開始縮水,構成血腦屏障的內皮細胞間就出現了縫隙,一些血液中的發炎物質就可以進到腦中大肆進行破壞了!

-----廣告,請繼續往下閱讀-----
640px-Blood_vessels_brain_english
腦中的血管構造。圖/By Armin Kübelbeck, CC BY 3.0, wikimedia commons.

另一方面,大腦充滿了高度分化的精細細胞,無法承受快速的膨脹或縮小,比起一般細胞更容易受傷。寡突細胞(Oligodendrocyte)負責製造神經細胞的外牆——「髓鞘」,如果他受傷了,神經細胞一旦失去了髓鞘,就不能正常運作了!於是乎,腦細胞縮水造成了大腦當機,病人的意識就出現變化了!這就是——「滲透壓去髓鞘症候群」(Osmotic demyelination syndrome)。

Saltatory_Conduction
有髓鞘(右)與沒有髓鞘的神經細胞,傳遞動作電位的速度差很多。圖/By Dr. Jana, CC BY 4.0, wikimedia commons.

當一天血清鈉離子濃度上升超過 8 mmol/L 的時候,就有可能會產生「滲透壓去髓鞘症候群」,病人會發生意識不清、無法說話、吞嚥困難等等症狀,甚至還會產生癲癇!神奇的是,這些症狀經常會延遲兩天左右才發生,這時往往血液鈉離子濃度檢驗起來已經「挺正常的」,當醫生和病人認為低血鈉已經被矯正回來的時候,可能惡夢才正要開始!

和時間賽跑

回到第一天住院時的情景,剛到院時的血清鈉離子濃度是 105 mmol/L,使用等張食鹽水溶液四小時後上升到 106 mmol/L 在使用高張食鹽水溶液補充的 12 小時後,鈉離子濃度上升到 119 mmol/L。在這 12 個小時內快速地從 106 上升到 119 mmol/L 恐怕就是關鍵!因為鈉離子濃度上升過快,造成賴先生的大腦受損。如果放任下去不管的話,恐怕神經損傷就會無法回復,和時間賽跑顯得刻不容緩!

吳醫師和陳醫師制定了一個計畫:將賴先生的血清鈉離子濃度從目前的 126 重新降回 117 mmol/L,讓水份重新回到腦細胞內,或許還能夠逆轉這一切。

-----廣告,請繼續往下閱讀-----

675px-Infuuszakjes

首先將點滴換成低滲透壓的 5% 葡萄糖溶液,也就是糖水。葡萄糖進入身體之後很快會因為胰島素的作用進入細胞當中,所以溶液的滲透壓幾乎可以忽略,等於是輸入純水進入身體,如此一來就能夠稀釋血中鈉離子的濃度,降低整體細胞外液的滲透壓。

但是光這樣還不夠,因為腎臟會自動把多餘的水份排掉,所以必須同時施打人工合成的「抗利尿激素」(Desmopressin),讓腎臟回收大部份的水份回到身體裡,使小便變少,才能夠營造快速降血鈉的效果。

雙管齊下之後,就是密集監測血清的鈉離子濃度了。小便很快就變少了,但是鈉離子濃度下降的還不夠快,將 5% 葡萄糖溶液的輸注速率從每小時 60 ml 上升到 120 ml 之後,終於達到目標–血清鈉離子濃度每小時下降 1 mmol/L。27 個小時後,終於在隔天下午一點鐘達到目標值 117 mmol/L,陳醫師於是將 5% 葡萄糖溶液停止輸注。經過了一天,病人還是說不出話來,但是情緒比較沒那麼激動了,在家屬的親餵下,勉強吃了點東西,現在能做的事情,恐怕也只有祈禱了……

當天晚上七點,護理紀錄上面記載著令人振奮的消息:「精神可,可坐於床邊使用手機,可與家屬對談。」隔天早上吳醫師和陳醫師去看他的時候,賴先生不僅可以回答問題,而且對於人事時地物都很清楚,只是說話還有點兒慢,而且還無法進行減法的計算。

-----廣告,請繼續往下閱讀-----

挽救療法奏效了!賴生生說他實在記不得前兩天發生了什麼事,但是一旁的妻子和女兒高興的眼淚流了滿面。

 

參考資料:

  • Richard H Sterns. (2016). Osmotic demyelination syndrome (ODS) and overly rapid correction of hyponatremia. In T.W. Post, M. Emmett, & J.P. Forman (Eds.), UptoDate

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

-----廣告,請繼續往下閱讀-----
文章難易度
朱 淯銘
5 篇文章 ・ 1 位粉絲
目前是一名內科住院醫師,為了專科醫師執照努力打拼。最討厭文書作業和醫院評鑑,但對於內科疾病的多樣變化和醫病間生與死的溝通感到興趣。每周工時 80 小時還是努力找時間來寫作,最懷念在非洲布吉納法索擔任外交替代役的時光,並著有《下一站,布吉納法索》一書。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃