Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

仿生材料學的新星─披鐵甲的深海螺

科景_96
・2011/02/10 ・751字 ・閱讀時間約 1 分鐘 ・SR值 583 ・九年級

[Original publish date:Feb 09, 2011]

編輯 / JYWu 報導

披鐵甲的深海螺─Crysomallon squamiferum外殼為硫化鐵的“三明治”層狀結構,具備耐高壓、耐溫及耐腐蝕的特性,對改善承重和防護工程材料的發展,擁有極大的潛力。

一般的螺貝類外殼結構,外層為角質層由殼蛋白構成,往內為棱柱層及珍珠層由碳酸鈣結晶組成,2001年印度洋2420公尺深的熱泉噴口(Kairei Indian hydrothermal vent field)中所發現的C. squamiferum ,卻擁有不同於眾所皆知的構造,殼最外層為硫化鐵成份,內層為碳酸鈣組成。因此,美國麻省理工學院材料科學與工程學系Christine Ortiz的研究團隊利用奈米尺度的壓痕實驗(nanoindentation experiments),還有電腦模擬捕食者如螃蟹攻擊時對C. squamiferum各殼層的破壞程度、力的消散等,對殼進行了一系列的材料力學的分析研究。

-----廣告,請繼續往下閱讀-----

研究團隊發現C. squamiferum外殼具有獨特性的三層(剛─軟─剛)結構:最外層由奈米至微米粒狀的硫化鐵組成提供第一線防禦,含有硫複鐵礦(greigite, Fe3S4),約有30μm 的厚度,在受到攻擊時,就會使這層防禦的粒狀結構分裂,此犧牲性的裂痕導致攻擊力量被分散,可防止整個外殼產生破壞性的裂痕;中間是具彈性的有機層,由殼蛋白組成,厚度約為150μm,能在外殼受到攻擊時吸收能量,以緩解來自外部的衝擊和壓力,並可減緩環境溫度變化所造成的影響;內層由碳酸鈣片狀的霰石晶體組成(aragonite),厚度約為250μm,其堅硬度可提供外殼結構上的支撐,並且抵抗彎曲變形,以達保護脆弱的軟組織之功能。藉由這種生物防護材料原理的發現,可望開發出高負載的保護材料、防爆裝備等實用於生物材料、航空及航太等科學。

參考來源:

  • H. Yao et al., PNAS 107, 987-992, 2010

相關連結:

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

2
0

文字

分享

3
2
0
為什麼台灣文蛤是新的物種,古時候就住在台灣嗎?
寒波_96
・2023/06/15 ・3837字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

或許是台灣大眾對文蛤非常熟悉,所以 2023 年 4 月新聞報導「台灣文蛤」被認定為新的物種時,引發一波「蛤?」的熱潮。究竟文蛤有哪幾種,真的不一樣嗎?現在的台灣人會吃文蛤,古代人也會嗎?

三種文蛤大致的分佈範圍。圖/參考資料4

定義新的台灣本土物種

文蛤住在海岸附近,南亞、東南亞、東亞、東北亞到日本的沿岸,都能見到文蛤生存,物種不少,研究不多,分類有許多討論空間。

這項研究主要關注 3 個物種,包括住在日本、韓國的「麗文蛤(Meretrix lusoria)」,東亞偏北的「中華文蛤(Meretrix petechialis)」,以及全新定義,東亞南部與台灣的「台灣文蛤(Meretrix taiwanica)」。

台灣文蛤不只住在台灣,東亞沿岸也有,所以不算台灣特有種,不過可謂台灣的本土物種。

-----廣告,請繼續往下閱讀-----

遺傳上看,中國南北的文蛤各自成群,有所差異,為什麼以前沒有中國學者區分新物種?不清楚,或許是覺得同屬一個中國沒必要獨立,將其視為同一物種內的明顯差異。依照新研究,中國南部的文蛤將改名為台灣文蛤。

根據 CO1 基因建構的文蛤演化樹,中華文蛤、台灣文蛤彼此較為接近,和其他文蛤相比,兩者又與麗文蛤有較近的共同祖先。演化樹上其餘兩種為皺肋文蛤(Meretrix lyrata)、韓國文蛤(Meretrix lamarckii)。圖/參考資料5

這項研究使用外殼型態與 DNA 分辨不同文蛤。遺傳學標記是「CO1 Barcode」。CO1 全名 cytochrome c oxidase 1,是粒線體上的基因。

此基因在不同物種間的差異夠多,又沒那麼多(差異不多會分不清楚,可是倘若差異過多,同一物種內的變異也很大,就失去分群的意義,不適合用來鑑定)。儘管提供的訊息遠不如基因體全面,卻容易定序與分析,所以常常被用於鑑定與分類。

比對文蛤們的 CO1 基因序列,台灣文蛤、中華文蛤彼此最接近,不過兩群內皆明顯自成一群,也就是說台灣文蛤們獨立一群,中華文蛤們也自己一群,不論外貌如何,都可以明確區分出兩個物種。

-----廣告,請繼續往下閱讀-----

而麗文蛤們也自成一群,和兩者平行。被新定義為台灣文蛤的物種,和麗文蛤相比,遺傳上離中華文蛤更接近。因此可以確認台灣現今的文蛤,絕對不是以前長期認為的麗文蛤。

依照歷史記載,麗文蛤曾經在日治時代人為引進台灣,但是最近野外採集,都沒見到麗文蛤。

雖然顏色有深有淺,不過它們都是台灣文蛤。圖/參考資料1

蛤?台灣有或沒有哪些文蛤?

外觀方面,台灣文蛤的顏色與花紋變化多端,可是皆為同一物種。一般人不見得要像研究人員去野外廣泛採集才能體驗這件事,去點一盤或買一袋,應該也相當直觀。

20241022編按:感謝顏聖紘教授與下方留言者於FB指出疑義,作者已根據意見修訂內容,以下是留言原文:「2020 年所命名為 Meretrix formosa 那篇,主要問題是其非正式的生物分類報告,僅用精子結構進行判別,未做物種形態比較與描述,並且未指定模式標本,因此只能引用該報告結論作為新種的佐證,但無法成立新種命名。」

神奇的是,其實 2020 年就有另一組學者注意到這個問題,在另一篇論文中也將台灣文蛤定為新物種,建議命名為 Meretrix formosa(福爾摩沙文蛤)。不過這項研究沒有完成目前遵循的新物種命名程序,沒有進入大眾視野。

-----廣告,請繼續往下閱讀-----

另外還有一個物種「Cytheraea formosa」,在公元 1851 年由英國學者 G.B. Sowerby II 命名。但是此一學名已經遭到取消,過往歸類為該物種的樣本學名應該皆為 Meretrix lusoria,也就是麗文蛤。

四款文蛤標本:A, Meretrix taiwanica 台灣文蛤。B, Meretrix petechialis 中華文蛤。C, Meretrix lusoria 麗文蛤。D, Cytheraea formosa 麗文蛤(已取消的舊名)。圖/參考資料1

台灣西部有一款很稀有的「虎斑文蛤(Meretris tigris)」。2019 年有一篇碩士論文《台灣養殖文蛤的遺傳多樣性及種原鑑定》(指導教授徐德華,研究生莊朝喜),主張虎斑文蛤不算一個物種,只是台灣的文蛤旗下一款。

這篇碩士論文沒有定義新物種,如果依照新分類,可以算是台灣文蛤的虎斑亞種(Meretrix taiwanica tigris)。

除此之外,現今台灣野外不只存在台灣文蛤,也採集到「韓國文蛤(Meretrix lamarckii)」。和麗文蛤相比,韓國文蛤與台灣文蛤的親戚關係更遠,明確為不同物種。兩者棲地也不同:韓國文蛤住在浪較大,純海水的環境;台灣文蛤則偏好坡度平緩的半淡鹹水河口。

-----廣告,請繼續往下閱讀-----

還有一種外觀與台灣文蛤類似的「普通文蛤(Meretrix meretrix)」,分布於東南亞,目前沒有在台灣見到。

台灣貝殼考古學

現今台灣本土的文蛤是台灣文蛤,但是古時候就存在台灣嗎?

台灣各地常常能見到遺棄大量貝殼形成的貝塚,考古遺址也出土不少貝殼,可見貝類是古代常見的資源,不過確認的文蛤並不多。另外更要注意,以前沒有台灣文蛤一說,時常將台灣的文蛤視為麗文蛤。

展示十三行遺址出土物品的十三行博物館的貝殼們。左上角的 1 號是文蛤,說明為麗文蛤,但是依照新研究似乎該改為台灣文蛤。
上圖的物種說明。

目前最清晰的紀錄來自新北市海邊的十三行遺址,根據水產試驗所的學者蕭聖代、莊世昌鑑定,這兒出土的文蛤應該是台灣文蛤。另外台北市的國立臺灣博物館,台中市的國立自然科學博物館蒐藏的標本,僅管以前有不同分類,其實也都是台灣文蛤。

-----廣告,請繼續往下閱讀-----

台灣北部,淡水河流域的十三行遺址是住海邊的人群遺跡,文蛤年代至少數百年。不過以常理推論,台灣文蛤應該更早以前就住在台灣,只是存在感不如很多種貝類。

除了文蛤以外,十三行遺址也出土過許多種貝殼,見證古代豐富的貝類生態,例如大蜆、紅樹蜆、牡蠣、黑鐘螺等等。

圓山遺址出土的大蜆。圖/參考資料6

至於台北市比較內陸的圓山遺址,儘管以貝塚出名,卻沒有出土過文蛤,主要貝類是十三行遺址也有的大蜆(Cyrenobatissa subsulcata)。圓山的大蜆貝殼最長可達 8 公分,約為成人手掌大。

隨著時代變遷,現今大蜆已經從基隆河流域消失,不再能大蜆身手。

-----廣告,請繼續往下閱讀-----

由考古研究看來,台灣這塊土地的過去與現在是延續的。古早人吃台灣文蛤與其他貝類,現代人也吃台灣文蛤與其他貝類。

劃重點:

  • 台灣現今的文蛤主要為本土物種「台灣文蛤」,也分佈於中國南部;台灣還存在另一物種「韓國文蛤」。
  • 同為台灣文蛤的不同個體,顏色與花紋變化大,有一款特殊的虎斑亞種。
  • 台灣文蛤與中國北部的「中華文蛤」親戚關係最接近。
  • 古時候台灣就存在台灣文蛤,但是圓山沒有,主要是已經滅團的「大蜆」。

延伸閱讀

參考資料

  1. Hsiao, S. T., & Chuang, S. C. (2023). Meretrix taiwanica (Bivalvia: Veneridae), a previously misidentified new species in Taiwan. Molluscan Research, 43(1), 12-21.
  2. Gwo, J. C., & Hsu, T. H. (2020). Ultrastructure of sperm and complete mitochondrial genome in Meretrix sp.(Bivalvia: Veneridae) from Taiwan. Tissue and Cell, 67, 101454.
  3. 台灣養殖文蛤的遺傳多樣性及種原鑑定
  4. 水試所鑑定養殖文蛤DNA 發現新原生種「台灣文蛤」
  5. 研究員為確認台灣文蛤物種翻遍河口養殖場 十三行博物館找貝塚標本
  6. 【國定圓山考古遺址】〈圓山貝塚,蛤?蜆!〉
  7. 臺灣貝類資料庫「大蜆」
  8. 國家文化記憶庫「大蜆」

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 3
寒波_96
193 篇文章 ・ 1093 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

2
0

文字

分享

0
2
0
外型奇特的女王鳳凰螺,差點就被當作暗殺工具——《海之聲》
臉譜出版_96
・2022/11/19 ・1740字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

女王鳳凰螺的棲息地橫跨巴哈馬群島,上至佛羅里達與百慕達,以及整個加勒比海周遭。這意味著,牠們的生命與不下於二十六個國家的人類和他們令人不安的生活方式緊密交織。在古馬雅的廢墟中,考古學家發現一些圖像顯示,女王鳳凰螺被當成肉搏戰的格鬥武器──有尖刺的五磅重拳擊手套;其光滑無比的內腔可以做為保護手指的握把。

成年女王鳳凰螺的腹面。圖/Wikipedia

用貝殼暗殺卡斯楚

到了現代時期,女王鳳凰螺是美國中情局一項行動的核心角色──他們打算引爆一枚放在珊瑚礁上的貝殼,暗殺古巴總統卡斯楚。根據二○一七年解密的甘迺迪刺殺檔案,一九六三年,中情局考慮將一只「壯觀的貝殼埋在卡斯楚經常赤身潛水的區域」,當成詭雷暗殺他。

「貝殼將裝滿炸藥,當貝殼被抬起時就會爆炸。」

卡斯楚熱愛在原始的薩帕塔半島(美國在豬玀灣﹝Bay of Pig﹞)慘敗中遭到羞辱的地方)外海潛水和用魚叉捕魚。中情局最後判定,沒有任何加勒比海本地的貝殼大到足以盛裝足夠數量的炸藥,又奇特到能讓卡斯楚把它從珊瑚礁中拿起。假如他們當初問過鳳凰螺漁夫或科學家,或許能改變歷史。

女王鳳凰螺。圖/臉譜出版提供

女王鳳凰螺的生命歷程

人類對貝殼的再想像,沒有一個能接近女王鳳凰螺自身變化多端的生命週期。這動物在幼體時期順著洋流而行,稚螺時期躲藏在海草中,中年階段掛在砂礫與碎石上,老了則跳入深沙渠道。女王鳳凰螺並非全是女王。牠們有雌雄之分,必須結合交配;不像雙殼類是將卵子精子送入海中,在洋流裡相遇。

-----廣告,請繼續往下閱讀-----

春天,成熟的鳳凰螺成群結隊,食用海藻,將營養轉化成卵子與精子。群體生活對牠們的生存至關緊要;科學家表示,一公頃的面積中至少需要九十隻女王鳳凰螺,才能成功繁殖。每隻雌螺會生產出數百萬顆卵子,等待雄螺挪過來,將牠鏟形頂端的長長陰莖伸到雌螺殼下。

在她卵子受精後的一天之內,母螺會在沙裡挖出一道小溝,將五十萬顆左右的受精卵堆疊成一條膠質索,如果拉展開來,長度將超過一個籃球場。她以那隻萬能足撥弄沙子掩飾那條膠質索,塗覆堆疊,直到它看起來有如一塊白色珊瑚。每一季,她會產下約莫九個這樣的卵塊,一年為世界誕下將近五百萬隻幼體鳳凰螺。其中只有不到百分之一(五萬左右)能長成成年女王。

幼體的變形就像從蟲蛹變女王那樣高貴。幼體鳳凰螺在母親打造的世外桃源內部,從起初只是一顆輕軟泡泡的殼上開始生長。幾天之內,軟殼胚胎開始在它們的卵裡旋轉,彷彿在練習即將來臨的翻筋斗。旋轉代表牠們已準備好孵化,並以面盤幼體的形式飄入水中,這階段的幼螺身形很小。

未來幾個星期,是牠身為女王鳳凰螺的一生中,唯一可自由游動的時間,順著洋流漂浮好幾公里。原子狀的面盤幼體抽長出花瓣狀的裂片;一開始兩瓣,接著四瓣,六瓣。到這時,面盤幼體已經三週大,牠的透明外殼是完美螺旋,六瓣裂片伸長成肢體,支撐牠在海底著陸、在海草上爬行。

-----廣告,請繼續往下閱讀-----

牠爬行,再次游動,接著爬行,游動,尋找恰到好處的定居點。當鳳凰螺晃動的肢—鰭消失後,牠自由自在的嬰兒期便接近尾聲。牠長出爪形足和其他軟體動物特徵;以鼻狀吻吃東西,以鰓呼吸。此時長全的完美小外殼,可以擺在你的指尖上。

少年期的女王鳳凰螺將自己埋在沙裡,度過生命中的頭一年,除了潛望鏡般的眼睛外其餘都無法被看見。那一年與接下來四年,年輕鳳凰螺將所有精力用來逃避掠食者;最初是海洋蠕蟲與小螃蟹,接著是比較大的魟魚、龍蝦、章魚、鯊魚。

到了五歲左右,牠們已將自家宮殿鞏固成極為安全的堡壘,以至於牠們大多數的天敵都不再試圖闖入。這時,需要擔心的威脅只剩下一個。

——本文摘自《海之聲:貝殼與海洋的億萬年命運》,2022 年 11 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

1
0

文字

分享

0
1
0
仿生材料學的新星─披鐵甲的深海螺
科景_96
・2011/02/10 ・751字 ・閱讀時間約 1 分鐘 ・SR值 583 ・九年級

[Original publish date:Feb 09, 2011]

編輯 / JYWu 報導

披鐵甲的深海螺─Crysomallon squamiferum外殼為硫化鐵的“三明治”層狀結構,具備耐高壓、耐溫及耐腐蝕的特性,對改善承重和防護工程材料的發展,擁有極大的潛力。

一般的螺貝類外殼結構,外層為角質層由殼蛋白構成,往內為棱柱層及珍珠層由碳酸鈣結晶組成,2001年印度洋2420公尺深的熱泉噴口(Kairei Indian hydrothermal vent field)中所發現的C. squamiferum ,卻擁有不同於眾所皆知的構造,殼最外層為硫化鐵成份,內層為碳酸鈣組成。因此,美國麻省理工學院材料科學與工程學系Christine Ortiz的研究團隊利用奈米尺度的壓痕實驗(nanoindentation experiments),還有電腦模擬捕食者如螃蟹攻擊時對C. squamiferum各殼層的破壞程度、力的消散等,對殼進行了一系列的材料力學的分析研究。

-----廣告,請繼續往下閱讀-----

研究團隊發現C. squamiferum外殼具有獨特性的三層(剛─軟─剛)結構:最外層由奈米至微米粒狀的硫化鐵組成提供第一線防禦,含有硫複鐵礦(greigite, Fe3S4),約有30μm 的厚度,在受到攻擊時,就會使這層防禦的粒狀結構分裂,此犧牲性的裂痕導致攻擊力量被分散,可防止整個外殼產生破壞性的裂痕;中間是具彈性的有機層,由殼蛋白組成,厚度約為150μm,能在外殼受到攻擊時吸收能量,以緩解來自外部的衝擊和壓力,並可減緩環境溫度變化所造成的影響;內層由碳酸鈣片狀的霰石晶體組成(aragonite),厚度約為250μm,其堅硬度可提供外殼結構上的支撐,並且抵抗彎曲變形,以達保護脆弱的軟組織之功能。藉由這種生物防護材料原理的發現,可望開發出高負載的保護材料、防爆裝備等實用於生物材料、航空及航太等科學。

參考來源:

  • H. Yao et al., PNAS 107, 987-992, 2010

相關連結:

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。