Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

你看過「狗狗其實不喜歡被抱」的新聞,但你發現問題了嗎?

鄭國威 Portnoy_96
・2016/04/30 ・2483字 ・閱讀時間約 5 分鐘 ・SR值 468 ・五年級

-----廣告,請繼續往下閱讀-----

文/ 鄭國威,彭琬馨

圖片取自: http://iraffiruse.net/post/113020401707
圖片取自:
http://iraffiruse.net/post/113020401707

4/13日,在今日心理學 (Psychology Today) 這個專注於心理學的雜誌的科普新聞網站上,加拿大英屬哥倫比亞大學心理系退休教授史丹利科倫 (Stanley Coren) 發表了一篇專欄文章:「The Data Says “Don’t Hug the Dog!”」(數據說:「別抱狗!」), 表示有充分證據顯示狗狗討厭被擁抱。但這是真的嗎?

首先,無庸置疑地,科倫教授是資深的心理學家,特別在跟狗有關的動物心理學上耕耘許久,著作等身。他在文章開頭先講個故事,提到他帶著他的六個月大的狗(品種是新斯科舍誘鴨尋回犬,Nova Scotia Duck Tolling Retriever)到附近的大學某學院參加「狗狗舒壓日」,這活動蠻有趣,是為了讓期中考或期末考地獄中煎熬、壓力爆表的大學生可以透過跟狗抱抱來舒壓(你唸書壓力大時也會找學校裡頭的校犬玩嗎?),而有一位嬌小的女性把科倫教授的狗抱起來,他立刻發現狗把頭轉開避開眼神接觸,耳朵垂下,嘴巴張開發出些微的嗷嗷聲。於是科倫教授靠過去跟這位女孩說:「你真的不該抱狗,他們並不喜歡這樣,會讓他們有壓力。」

結果這女孩有眼不識泰山,說自己正在唸發展心理學,她學到對人類來說,擁抱非常重要,而且讓人愉悅。當媽媽抱小孩的時候,會讓代表愛與連結的催產素(oxytocin)分泌在母子身上都升高,如果父母不常擁抱或觸摸小孩,小孩之後可能會缺乏同理心,無法與他人產生情感連結。當然,科倫教授也就直說了:啊狗就不是人啊!文中提到,由於狗類是善於奔跑的動物,透過迅速移動來躲避威脅,行為學家認為,當我們擁抱狗狗時,其實是剝奪了他們的移動能力,增加牠們的壓力,如果真的受不了,牠們甚至可能咬人。科倫教授認為這應該是常識,但他卻只找到兩篇研究談類似的事,而且兩篇的焦點都放在若人把臉跟狗靠得太近會被咬,而不是在於是否抱著狗。於是他決定自己做個「調查」,他在網路上找了 250 張人與狗狗的擁抱照片,剔除那些顯然會額外造成狗壓力的行為(例如把大型狗抱起來)。科倫教授「自己分析」後發現,81.6% 的狗狗,在照片上看起來很不舒服,表現出如下的情形:

-----廣告,請繼續往下閱讀-----
  • 耳朵下垂
  • 眼白露出(翻白眼)
  • 轉頭避免與擁抱者眼神接觸
  • 舔舌頭
  • 因屈從而閉起眼睛

而只有 7.6% 的照片顯示狗狗當下是舒服的,剩下 10.8% 的照片則看不太出來或屬於中性。科倫教授認為他找到的照片應該大多數都是飼主要展示他們多愛狗狗,以及他們之間的感情多好,才會放上網。但是他的分析結果則完全顯示是另一回事:大部分的狗狗並不愛被抱。

然後這篇文章就結束了。

等等,但,狗狗真的討厭被抱嗎?

首先,這並不是完整的研究。頂多算是一篇由專業人士寫的專欄文章,文章中提到的 250 張照片的分析資料並沒有經過同儕審查,除了科倫教授沒有人知道他到底挑了哪些照片,自己選照片、自己評斷、自己下結論的「研究方法」也稱不上合理,總之是遠遠談不上是嚴謹研究。任何一個念過研究方法或是知道什麼叫做同儕審查的人都知道,但我就不知道為什麼全台灣的媒體都在報導而且完全沒提到這盲點?

螢幕快照 2016-04-30 上午1.29.27

好在,還是有媒體發現這問題,華盛頓郵報的科學部落客瑞秋菲爾曼 (Rachel Feltman) 就訪問了科倫教授,而他誠實表示這「只是一個隨興的觀察結果」,並沒有經過嚴謹的同儕審查。

-----廣告,請繼續往下閱讀-----

由於同儕審查(讓其他同領域的科學家檢視、討論該研究)是科學上建立研究可信度的重要基礎,缺少這個步驟的研究,可信度其實沒有經過檢驗,更何況就算文章通過同儕審查,在同領域其他研究出現之前,也很難看出這個研究真正的侷限,因此要從一個單一研究得出具體結論,其實是很困難的。

要說科倫教授的結論到底對不對,其實是辦不到的,但科倫教授得到這結論的方式的確是不夠科學的。因為我們不確定資料從何而來,到底採樣有多隨機?我們不知道每一張照片的拍攝脈絡,也不知道狗狗在拍照之前的心理狀態,也無法經由控制來判斷狗狗在被抱之前跟被抱之後的差異。評斷狗狗心理狀態的研究者只有科倫一位嗎?別忘了他本來就期待看見某種結果。或是我們該請多位不知道實驗目的的研究者來對狗狗照片進行編碼,通常這樣會比較沒有偏見的問題。

菲爾曼認為有沒有可能是,狗主人更喜歡將狗狗露出怪表情的照片發上網,儘管那代表著狗有壓力?照片中比較糟糕的抱狗方式跟一般自然抱狗的方式接近嗎?照片中抱狗的小孩跟成人比例如何?這也可能有影響。當然,還有很多很多問題可以問,也該問,如果我們要求的是科學的話。

杜克大學狗類認知研究中心的共同主任伊凡麥克連 (Evan MacLean) 回覆菲爾曼時則認為,這是一個很好的開始。麥克連提到,這個研究中用來評斷狗狗壓力的指標,大多是可以接受的,不過有些可能會引起爭議。例如,研究用耳朵下垂程度判斷狗狗受壓力的程度,在某些狗類天生耳朵就下垂的情況中,可能造成誤判;另一個例子是關於狗狗們眼白大小,這也會因為牠們看的方向不同而有所差異。舔舌頭也是一樣,其意義因時而異。

-----廣告,請繼續往下閱讀-----

科倫教授說,他很開心能得到這麼多人關注,因為他就是希望人們對於擁抱狗狗這件事更為謹慎,對於他的文章被媒體當成一個完整的研究來報導,他不太意外,他認為這可能是因為標題中用了「數據」(data)這個字,科倫強調,人們會因為看到科學名詞,對這則訊息更為重視,但這位 2007 年就退休的教授避重就輕地說這只是用來回答一個問題的觀察或測量方式。他期待其他科學家接手研究,但他自己沒打算重披戰袍。

說了這麼多,下回看到可愛狗狗時該不該抱牠?

對於這個問題,麥克連對華盛頓郵報說,他還是建議避免用人類的方式擁抱狗狗,因為這其實是一個「屬於靈長類才有的行為」,畢竟要對狗狗表達愛意其實有很多種方法。總之,別把狗抱得太緊。

如果不是那種緊緊擁抱,只是摟抱或是撫抱呢?科學有答案嗎?還沒。或許你可以把這當作研究主題,但這次別只是隨意找網路上照片評斷就下結論了。


感謝 D.I.N.G.O. 認證犬訓練師黃媛欣提供資料。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1300 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
10

文字

分享

0
2
10
擁有「控制感」有助於維持心理健康?無助導致的憂鬱又是怎麼來的?——《選擇的弔詭》
一起來
・2023/12/31 ・3327字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

習得無助、控制感,以及憂鬱

提過塞利格曼等人發現的「習得無助」現象,他們進行了一系列動物基本學習歷程的實驗,訓練動物跳過柵欄以避開腳下的電擊。動物通常很快就能學會怎麼做,但有一組動物,因為先前經歷過一連串無法躲避的電擊,所以始終都學不會,牠們甚至放棄嘗試,只是待在原地乖乖接受電擊,而從不試著跳過柵欄。研究者的解釋是,當動物遭受自己無法控制的電擊,就會學到不管怎麼做都無濟於事,這樣的習得無助感會轉移到新情境,即使牠們能夠控制這個新情境,還是會放棄嘗試。

塞利格曼深入研究習得無助現象之後,驚訝地發現,這些無助的動物跟憂鬱症患者有許多共同點,尤其是兩者的消極心態,憂鬱症患者有時連「今天要穿什麼衣服」這樣的小事都力不從心。塞利格曼推論,至少有部分憂鬱症患者是因為經歷過一次強烈的失控感,於是開始相信自己對任何事都無能為力,並認為這種無助感會一直持續出現在各種情境。根據塞利格曼的假設,擁有控制感對於心理健康至關重要。

五十多年前,一項研究以三個月大的嬰兒為受試者,凸顯了控制感的重要性。研究者將嬰兒分成兩組,A 組是有控制權的嬰兒,他們躺在嬰兒床上,頭靠著枕頭,床的上方倒掛著一把半透明的傘,裡面用彈簧黏著幾隻動物玩偶,如果嬰兒轉一下頭,傘裡的燈就會亮起,嬰兒就可以看到那些玩偶在「跳舞」,但一會兒燈就熄滅了。當 A 組嬰兒碰巧轉頭,讓傘裡的燈亮起並看到玩偶,他們就會表現出好奇、開心和興奮的樣子,而且很快就學會利用轉頭來控制玩偶的出現,然後一次又一次重複這個動作,看起來一直都很開心。B 組嬰兒則沒有控制權,只有在 A 組轉頭時,他們床上的燈也跟著亮起,才可以「順便」看到玩偶, 所以 B 組看到玩偶的次數和時間都跟 A 組一樣多,但他們只有在一開始表現得跟 A 組一樣開心,然後很快就因為適應而失去興趣。

研究使用玩偶測試後發現嬰兒的快樂似乎源自於「控制感」。圖/envato

研究者從兩組嬰兒的反應差異,得到下列結論:讓嬰兒一直很開心的原因,並不是會跳舞的動物玩偶,而是控制感。A 組嬰兒之所以對著玩偶咯咯笑個不停,是因為他們似乎知道是自己讓這一切發生,「是我幹的好事,很棒吧,而且只要我想要,隨時都可以再來一次」。B 組嬰兒雖然什麼都不用做就可以看到玩偶,但是卻沒有體驗到這種令人興奮的控制感。

-----廣告,請繼續往下閱讀-----

小嬰兒幾乎無法控制任何事物,既不能任意靠近自己想要的東西,也無法離討厭的東西遠遠地。他們無法靈活控制自己的手,所以抓取或操作物品都很吃力。他們還會無預警地被被東戳戳、西捏捏,或是被抱起又放下。小嬰兒的世界就是只能被動讓事情發生在自己身上,任由別人擺佈。或許正是基於這個原因,當他們偶然發現自己可以控制那麼一點小事, 就異常在意和興奮。

另一項研究以生命的另一端——老年人為受試者,也戲劇化地證明了「控制感」對於幸福快樂的重要性。研究者告訴 A 組養老院的住民必須為自己負責、照顧好自己;B 組住民則被告知他們的一切生活起居都由工作人員打理。此外,A 組每天都要決定一些簡單的事,並照顧一盆植物;B 組則沒有任何決定權,他們的植物也由工作人員照顧。結果,A 組老人(對自己的生活有一定的控制權)比 B 組(沒有控制權)更有活力、更靈敏,主觀幸福感也更高。最引人注目的是,A 組的平均壽命比 B 組多好幾年。可見,從出生到死亡,人都需要擁有對生活的掌控權。 

從出生到死亡,人都需要擁有對生活的掌控權。 圖/envato

無助感、憂鬱和歸因風格

塞利格曼的「無助-憂鬱理論」仍然受到質疑,最大的問題是,並非每個失去掌控感的人都會陷入憂鬱。因此,塞利格曼和同事在 1978 年修正了這一理論,並指出在無助感和憂鬱之間,還存在另一個重要的心理歷程。根據修正後的新理論,人在失敗和失去掌控感之後,會問自己為什麼,像是「為什麼他要跟我分手?」「為什麼我被刷下來?」「為什麼我沒有談成那筆生意?」「為什麼我的成績這麼爛?」。換句話說,人會尋找失敗的原因。

塞利格曼等人認為,人對事情的解釋——即歸因風格(attributional style)大致有兩種,每種風格都傾向接受特定類型的原因,而這些原因不一定跟實際情形有關。根據歸因風格的特性,造成失敗的原因可以分成三個向度:全面或特定、長期或短暫、內在或外在。

-----廣告,請繼續往下閱讀-----

假設你去應徵一份行銷業務的職缺,卻沒被錄取,你在分析自己為什麼會失敗時,下面是一些可能的原因: 

全面:我的自傳和履歷都寫得不好,面試時又很緊張,看來不管找什麼工作都不會被錄取了。

特定:我對那家公司的產品類型不太了解,我得多做一些功課,面試時才能脫穎而出。

長期:我的個性不是很主動積極,也無法擔負責任,這份工作根本不適合我。

短暫:我最近感冒,好幾天沒睡好,面試時狀態不佳。

內在:原本應該可以順利得到這份工作,是我自己搞砸了。

-----廣告,請繼續往下閱讀-----

外在:他們應該早就內定好了,找人去面試只是做做樣子,大家都是去陪榜的。

如果你用特定、短暫、外在因素去解釋自己為何沒被錄取,那麼你對下次找工作的預期會是什麼?你也許會想:如果去應徵自己熟悉的領域,並且保持睡眠充足,自己也更主動機靈一點,而且面試沒有黑箱作業,一切就會很順利。換句話說,這次的失敗經驗不太會影響下次找工作的表現。

反之,假設你用全面、長期、內在角度看待自己的失敗,認為自己的履歷毫不起眼, 面試時老是緊張得說不出話,而且個性太被動,別人都比自己更適合這份工作,那麼你預期的未來就會黯淡無光,你不但沒得到這份工作,接下來要找任何工作都會很困難。

修正後的「無助-憂鬱理論」認為,如果用全面、長期、內在因素去解釋失敗,那麼由失敗或失去掌控所引發的無助感才會導致憂鬱,因為在這種情況下,人有充分理由預期自己將不斷遭遇失敗。既然註定會失敗,那麼每天起床、換好衣服,繼續應徵下一份工作又有什麼意義? 

如果用全面、長期、內在因素去解釋失敗,人有充分理由預期自己將不斷遭遇失敗,那麼由失敗或失去掌控所引發的無助感會導致憂鬱。圖/envato

對上述理論的檢驗已得到令人矚目的結果。人確實會表現出不同的歸因風格,「樂觀者」會將自己的成功解釋為全面、長期、內在因素所致,而認為失敗是由特定、短暫、外在因素造成。「悲觀者」則恰好相反。如果兩個人得到同樣的分數,樂觀者會說「我得了 A」 或「她給我成績打 C」,悲觀者卻說「她給我打 A」或「我得了 C」,因此悲觀者更可能陷入憂鬱。此外,從一個人的歸因風格也可以預測他未來遭受失敗時是否會憂鬱。如果認為失敗的原因是全面性的,就會預期自己在其他生活領域也會遭遇失敗,而如果歸因於特定因素則不會這麼想;如果認為失敗的原因是長期性的,就會預期失敗將一直發生,而如果歸因於短暫因素就不會這麼想;如果認為失敗是跟個人內在因素有關,自尊就會遭受嚴重打擊,而如果歸因於外在因素則不會如此。

-----廣告,請繼續往下閱讀-----

這並不表示,把功勞都歸於自己,把失敗都歸咎於外在環境,就是擁有成功、幸福人生的祕訣。最好的方法是面對現實、做出正確歸因,雖然這樣做可能會造成情緒負荷,但準確分析成敗原因,並找出問題所在,才可能在下一次獲得更好的結果。不過平心而論,在大多數情況下,過度自責確實會造成不良心理後果。正如接下來所要探討的,在擁有無限選擇的世界,人們更容易因為結果不如意而自責。

——本書摘自《選擇的弔詭》,2023 年 11 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

2
0

文字

分享

0
2
0
鑑識故事系列:狗咬狗,滿嘴…mtDNA
胡中行_96
・2023/08/14 ・1957字 ・閱讀時間約 4 分鐘

愛犬慘死,兇手逍遙法外。縱然不是每個人都如電影《捍衛任務》的 Johon Wick,身懷絕技,謀求私刑正義;[1]透過科學管道,至少可以討個答案,獲得心靈平靜。義大利某隻母的傑克羅素㹴(Jack Russell Terrier),橫屍寵物旅館的院子,得年 8 歲。犬舍的網子破裂,有向內拉扯的痕跡。寵物旅館老闆養的3隻荷花瓦特犬(Hovawart),嫌疑重大;然而事後到場的獸醫,卻認為野生狐狸或海狸才是罪魁禍首。傑克羅素㹴的主人心有不甘,遂找上波隆那的一所動物疾病預防研究機構(L’Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna)。[2]

非當事傑克羅素㹴。圖/Oskar Kadaksoo on Unsplash

解剖狗屍

這隻傑克羅素㹴死後,在日均溫 7 °C 的環境,被擱置 18 到 20 個鐘頭。接著於 − 18 °C 的冰庫裡,凍了 1 個月,才被研究機構拖出來驗屍。從外觀看來,牠生前的健康狀況良好。不過,毛皮沾血,且有 14 道 7 至 10 公厘,略呈橢圓,邊緣清楚的咬傷,分佈於頸、肩、胸、肋弓、大腿(照片)和鼠蹊。另外,腰部還有個 10 公分長,2.5 公分寬的大傷口。剝掉狗皮後,可見創傷頗深:左邊頸、胸的肌肉浸潤於血中;胸腔與腹腔內,也有輕微出血;肋間肌、肋膜及腹壁穿孔;並有一根肋骨骨折。綜合以上,牠顯然死於咬傷穿透胸部,[2]使空氣在肋膜腔中累積而壓迫肺臟,[3]所導致的氣胸(pneumothorax)。[2]那麼究竟是什麼動物如此殘暴?

nDNA vs. mtDNA

兇手遺留在死者身上的 DNA,是指認身份的好線索。[2]細胞中的細胞核(nucleus)和粒線體(mitochondria)都含有 DNA,[4]分別簡稱為 nDNAmtDNA,兩者並不相同。以人類為例,前者包含從雙親得來的 2 至 3 萬個基因;後者則有 37 個,主要遺傳自母親。[5]分析 nDNA 的短縱列重複序列(short tandem repeat;STR),也就是一些鑑別度高的小片段;[4]或是單核苷酸多型性(single nucleotide polymorphism;SNP),即DNA序列中單一鹼基的變異,[6]便能辨識個體。[2]

以此案來說,最理想的作法,當然是從㹴犬身上的咬傷取樣,分析 nDNA,再比對兇嫌的樣本。可惜屍體於運送的過程中,大概已經受到汙染,驗了也未必準確。再加上寵物旅館的老闆,絕不可能讓3隻荷花瓦特犬配合調查,這個辦案方向根本毫無希望。[2]

-----廣告,請繼續往下閱讀-----

好在天無絕人之路,數根 5 到 10 公分不等,顏色有深有淺的毛髮,不僅卡在死者的牙縫裡(照片),還纏於腳掌上。它們出現的位置奇怪,長得又跟梗犬的不同,或許正是來自兇手。儘管鑑識採集的毛髮時常不帶毛囊,[2]而髮幹的 nDNA 含量又極低,不過會有相當充足的 mtDNA,[7]可以辨識物種。於是,鑑識人員挑了最長又最完整的 4 根送驗。[2]

死者的腳掌,纏著兇嫌的毛髮。圖/參考資料 2,Figure 3(CC BY 4.0)

狼 vs. 犬

毛髮 mtDNA 分析的結果,顯示其來源非狼即犬,才不是獸醫瞎說的狐狸或海狸。如果進一步由傷口位置,回推攻擊方式,嫌疑範圍又會縮得更小:[2]

(Canis lupus)作為掠食者,攻擊講求效率。最好不太耗費能量,便獵得豐美肉食。特別是遇到傑克羅素㹴,這種小型犬的時候,會朝頸部直接咬死,然後狼吞虎嚥。此外,該寵物旅館附近,沒有狼出沒。[2]

相對地,(Canis lupus familiaris)打起架來,才會全身從頭到尾胡亂咬。好不容易把對方搞癱了,卻放著全屍一口沒吃。因此,本案的兇手應該是中、大型犬,而且當時有機會與死者接觸的,唯有那 3 隻毛髮長度和顏色,與證物完全吻合的荷花瓦特犬。[2]

-----廣告,請繼續往下閱讀-----
非當事荷花瓦特犬。圖/Oxborrow on Wikimedia Commons(Public Domain)

身後貢獻

鑑識團隊完成狗主人託付的任務後,撰文介紹將 mtDNA 的細胞色素 b 基因(cytochrome b gene),放大並定序,最後確認物種的細節。[2]雖然不曉得他們的努力,是否有助司法公道,但是好歹已為學術研究貢獻心力。天下蒼生多少默默無聞,死後被立碑著傳的又有幾個?一隻備受寵愛的傑克羅素㹴,能榮登學術期刊,也算不枉此生。

  

  1. John Wick’. IMDb. (Accessed on 02 AUG 2023)
  2. Roccaro M, Bini C, Fais P, et al. (2021) ‘Who killed my dog? Use of forensic genetics to investigate an enigmatic case’. International Journal of Legal Medicine, 135, 387–392.
  3. McKnight CL, Burns B. (15 FEB 2023) ‘Pneumothorax’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  4. Department of Emergency Services and Public Protection. ‘Nuclear DNA’. U.S. Connecticut’s Official State Website. (Accessed on 01 AUG 2023)
  5. Storen R, Smith E. (11 JUN 2021) ‘Mitochondrial donation in Australia.’ FlagPost by Parliament of Australia.
  6. Gunter C. (01 AUG 2023) ‘Single Nucleotide Polymorphisms (SNPs)’. U.S. National Human Genome Research Institute.
  7. Tridico SR, Koch S, Michaud A, et al. (2014) ‘Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?’. Proceedings of the Royal Society B, 2812014175520141755.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。