0

0
0

文字

分享

0
0
0

霍金對蟻人:量子西洋棋之戰

余海峯 David
・2016/04/03 ・2778字 ・閱讀時間約 5 分鐘 ・SR值 587 ・九年級

  • 文/余海峯|天體物理學家、科學普及工作者。興趣是讀和寫科普、足球、攀石、結他,一個人散步。在等一個人回來,那個無可取代的她。

理查.費曼 (Richard Feynman) 說過:

我想我能保證沒人理解量子力學。

I think I can safely say that nobody understands quantum mechanics.

The Character of Physical Law (1965)

自上世紀初以來,量子力學一直是科幻小說和電影的熱門題材。近期一部 Marvel 英雄電影《蟻人》(Ant-Man)之中就提到過量子力學。電影中提到次原子尺度的世界是由量子力學操縱,既沒有時間箭頭的概念、亦不存在我們熟悉的因果關係。我們將永遠失去所愛的人。

《蟻人》電影中,主角在危急時決定變得比原子更小,進入了量子世界。由於主角威能,最後他平安無事地從量子世界回到日常尺度的世界。所以,他是唯一一個經歷過量子力學規則的人類。

某一天,來自 2716 年名為奇洛李維斯(Keanu Reeves)的人向飾演蟻人的保羅.路德 (Paul Rudd)發送了一封電郵,邀請他與理論物理學家史提芬.霍金(Stephen Hawking)進行一場融合量子力學與西洋棋規則的量子西洋棋比賽。

在我們人類的巨觀尺度看,日常生活很多過程都是不可逆的。熱力學定律告訴我們,任何循環的過程都不可能達到 100% 效率。換句話說,任何巨觀過程都必定伴隨能量流失。即使在一個封閉系統之中,雖然總能量守恆,但能量會隨時間從系統中比較熱的地方流向比較冷的地方,最後必然達到熱平衡狀態。

這其實並非高深莫測的原理,可以用簡單統計學解釋。簡單來說,在一個巨觀系統之中,由於粒子數非常多,系統處於熱平衡狀態的機率比其他所有狀態的機率高非常非常非常非常多。此情況下,可以想像量子力學效應被這種巨觀統計平均掉。相反地,微觀尺度之下,巨觀統計並不適用,我們必須考慮量子力學效應。

棋子同時存在也不存在

quantum
量子態重疊的特性使得畫面中的皇后棋可能移到 B3 的位置,但也可能沒有。圖/擷取自影片

量子力學的一個奇異特性,是量子態會重疊於一起(quantum superposition),直到外界的觀察者進行觀測才能確定究竟會看到哪一個態。換句話說,量子態在外界觀測之前是不確定的。再簡單一點說,在觀察一個量子系統之前,它處於多於一個量子態的機率都不是零。這並非理論不完美或者實驗誤差的結果,而是精確的數學結論。所以,如果量子系統有意識的話,就連它本身(在其觀察本身之前!)也不能確定自己究竟屬於哪一態。

讓我們試用較為不技術的話去理解吧。在影片之中,量子西洋棋的棋子仍依照西洋棋規則走。有別於一般西洋棋,棋子走了就是走了,下不回手;量子西洋棋的棋子走了以後,它們的位置仍是不確定的。在其他棋子觀察、即作出對該棋子某些影響後,它的位置才會被確定下來。因此,量子西洋棋的棋子能夠同時存在於不同位置;它們處於不同位置的量子態是重疊的。

力學與電動力學的矛盾對決

影片中,路德眼見自己就要落敗的時候,他利用了量子力學的另一個奇怪的特性,最後使他反敗為勝。這就是量子糾纏(quantum entanglement)。量子糾纏被認為是比量子態重疊更不可思義的現象:愛因斯坦與許多科學家都認為它與相對論抵觸,因此是不可能的。

為什麼量子糾纏會與相對論扯上關係呢?這就要由上世紀初的一場物理革命說起了。在1905 年愛因斯坦發表相對論(relativity)之前,力學(mechanics)與電動力學(electrodynamics)是物理學的兩大支柱,分別解釋自古以來人類觀察到的所有包括地上的與天上物件的運動規律、以及當時剛剛被統一起來的電學(electricity)、磁學(magnetism)與光學(optics)的現象。可是,在當時這令人振奮的物理學快速發展的時代,烏雲一直籠罩在物理學的大殿之上:力學與電動力學的結論是互相矛盾的!

問題出在哪裡呢?

原來,電動力學公式告訴我們宇宙中存在著一種由電場和磁場構成的波動,叫做光。根據電動力學公式推導可知光速為常數。換句話說,光速恆古不變、萬世不易,是數學定量的結論,無可挑剔。

可是,有著三百多年歷史、解釋過無數天文觀測和作為工業革命一切科技基礎的力學卻告訴我們,任何東西的速度取決於觀測者的運動狀態。一列行駛中的列車很快,因為我們站在地面月台上觀察。如果我們安坐列車之中,我們就會覺得列車是靜止的。同理,如果我們在列車之中向前走,地面上的人就會看見我們的速度等於列車速度加上我們的走路速度;如果我們在列車之中向後走,地面上的人就會看見我們的速度等於列車速度減去我們的走路速度。

不過,電動力學公式說光速是常數。無論我們在列車之中用電筒向前或向後照,地面上的人都會看見光速等於光速,與列車、我們的走路速度無關。

pexels-photo-65776
圖/Kaique Rocha@PEXELS

這個力學與電動力學的矛盾,最後由愛因斯坦的相對論完美地解決了。在相對論之中,光速是恆常不變的物理量,是超越一切規則而存在的物理定律。愛因斯坦發現,因為光速不變,我們才能有日常熟悉的因果定律:萬事皆有因。因果律成立,因為宇宙中有一個傳送資訊的極限速度,任何資訊都不可能以比這個極限速度更快速地傳播。這個極限,就是光速。

不可思議的量子糾纏 如何讓路德反敗為勝?

愛因斯坦的相對論解決了力學與電動力學的矛盾,彷彿為物理殿堂撥開雲霧。然而青天卻仍未可見,因為量子糾纏允許粒子以超越光速即時傳遞資訊!

故名思義,量子糾纏即是兩個遵循量子力學規則的系統,它們的量子態互相糾纏在一起。例如兩個電子,如果它們的自旋量子態糾纏在一起的話,當我們未觀察時,它們各自的自旋方向都是未知的,這是因為量子態重疊。而當兩個電子的其中一個被觀察為自旋向上時,另一個電子的自旋就必然為向下。這是因為量子糾纏。

乍看之下,我們可能會覺得沒有問題,只是一般的角動量守恆律吧?雖然這也是角動量守恆律的結果,但在量子力學版本裡,由於量子態重疊,當我們觀察其中一個電子的自旋之前,兩個電子的自旋都是未知的。但當其中一個電子被觀察後,它們兩個的自旋量子態就立刻被決定了,不管它們相隔有多遠!

15843589552_d04874d313_z
圖/British Council Russia@flickr

愛因斯坦及其他很多物理學家都認為量子糾纏違反相對論光速極速假設,因此認為量子糾纏不可能發生,也所以量子力學是錯誤的。直到 1955 年愛因斯坦去世,他都認為量子力學是個不完整的理論。今天,量子糾纏已經在實驗被觀察到。而光速是資訊傳播極限的問題,有人認為在這情況下傳送出去的只有兩個量子態的資料,如果不可能經這方法傳送其他資訊(例如這一期樂透的號碼),就與光速極速假設沒有抵觸。不過這就是題外話了。

至於影片中的路德,意識到量子西洋棋採取了上述量子力學奇異特性的概念,成功利用量子糾纏避開了霍金的將軍,反而將死霍金。無論各位在讀完此文章後有否對量子力學或西洋棋感興趣,相信也非常享受這段由霍金和蟻人的小戰事,以及奇洛李維斯的配音吧。

 

作者臉書粉絲專頁:余海峯 David . 物理喵 phycat

文章難易度
余海峯 David
18 篇文章 ・ 21 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。

1

3
2

文字

分享

1
3
2
時空旅行有可能嗎?我們如何感受時間?談談那些神秘的時空理論!
PanSci_96
・2023/06/25 ・3872字 ・閱讀時間約 8 分鐘

時空旅人存在嗎?霍金的未來派對

回到過去不只是科幻迷的夢想,每個人或多或少,都有一兩件想要改變或挽回的事。可惜的是,我們在空間中可以自由移動,甚至走到馬路對面再走回來,回到起點。(當然,也有人走個斑馬線就到了異世界)然而在時間軸上,我們卻不斷地向前進,不能倒頭。這是為什麼呢?

物理大師史蒂芬.霍金,對時間的研究可說是不遺餘力,他也透過著名的《時間簡史》、《大設計》等著作,向我們闡述宇宙與時空的奧妙。霍金是位時空旅行的夢想家,為了驗證世界上是否真的有時空旅人,他甚至曾經做了一個有趣的實驗。

2009 年 6 月 28 日中午 12 點,霍金認真地在劍橋大學舉辦一場盛大派對,桌上擺了美食與香檳,一旁的柱子上還綁了三色氣球。霍金仔細地準備好公開邀請函,上面寫著「誠摯地邀請您參加時空旅行者派對」,附上時間、地點甚至是準確的經緯度,希望時空旅人沒有迷路的藉口。

邀請函對外公開時間是派對結束「之後」,他確保這個訊息可以流傳數百年,並希望有時空旅人能看到邀請函,回到過去參加這個派對。可惜的是,無人響應、無人到場。霍金認為這證明了他的推論——時間旅人不存在。當然,如果當時有時空旅人跳出來打臉他,他也會感到非常開心。還是你認為,這只是因為時空管理局下明令,禁止未來人透露各種訊息給過去的人類,對於結果其實不需要感到意外呢?

為何我們不能讓時間倒轉?霍金的三支箭矢

在研究時空旅行之前,我們先來了解,為什麼我們總無法倒轉時間。

對於時間的流向,霍金提出了「三支箭矢」的構想,這不是安倍晉三的經濟學箭矢,而是時間箭矢。這三支時間箭矢,分別為心理學箭矢、熱力學箭矢、和宇宙箭矢

心理學箭矢,就是我們生物感受到時間的流向。熱力學箭矢,則是熱力學中「熵」越來越大的方向,也是世上一切現象運行的方向。

所謂「熵」,是我們用來評估一個狀態的混亂程度的物理量。熵越大越混亂;例如,髒亂房間的熵比整齊的房間還大、摔成碎片的杯子熵比完整的時候還要大。根據熱力學第二定律,世間一切現象都會朝著熵變大的方向發展:杯子一定會摔碎、裡面的水一定會灑滿一地。但是,我不是可以把髒亂的房間整理整齊嗎?沒錯,但熱力學告訴你,在你整理房間的時候,你可能為世界增加了 20 點的秩序量,但你身體因為運動放出的熱能,可能會為整個宇宙增加 100 點的混亂量,整體的熵還是增加的。

熱力學告訴你,在你整理房間的時候,你可能為世界增加了 20 點的秩序量,但你身體因為運動放出的熱能,可能會為整個宇宙增加 100 點的混亂量,整體的熵還是增加的。圖/envatoelements

至於最後一根箭,宇宙箭矢,則是宇宙膨脹的方向。宇宙在膨脹過程中,粒子會越加分散,熵也會持續增加,因此宇宙箭矢會與熱力學箭矢同方向

回到體感時間,既然熱力學箭矢代表世界運行的方向,如果熱力學箭矢與心理學箭矢的方向相同,那我們就會看到杯子掉到地上摔破、水灑出來。但如果反過來,熱力學箭矢跟心理學箭矢反向飛行,那我們就能看到天能中的逆熵,我們會看到杯子從碎片修復、回到桌上,水也跟著回到杯子之中。

既然如此,那我們要怎麼讓這兩支箭矢反向飛行呢?遺憾的是,因為我們的這具肉身限制,要感受環境、需要外界訊號刺激,並且轉為神經訊號到大腦;要思考,神經細胞必須透過呼吸作用,取得能量來持續運作。我們的一舉一動,建立在生物與化學反應上,也因此必須遵守熱力學第二定律。如果不遵守,我們甚至無法獲得能量,生命根本無法維持。這種現象也被稱為「弱人擇原理」。

為何心理學箭矢和熱力學箭矢必須同向?因為不同向,我們就無法存在,也就無法思考這個問題。

超光速可以連接過去?

在 DC 宇宙的影視作品中,能穿越時間的閃電俠肯定是經典代表。在 DC 宇宙,透過神速力的加持,閃電俠可以突破光速,回到過去。這會發生什麼事情呢?

根據相對論,在速度接近光速時,時間會變為相對,對於不同速度的觀察者來說,也會產生歧異。舉例來說,如果閃電俠在路上與粉絲打招呼,卻被蝙蝠俠催著去開會。無奈的他,只好與粉絲說掰掰,接著以超光速前往蝙蝠俠基地,準時趕上會議。如果粉絲這時候用望遠鏡看著這一切,他們會看到,閃電俠先跟自己說了掰掰,接著才趕上遠處的會議,而且以距離計算,閃電俠肯定超越了光速。

粉絲的時空視角:閃電俠先跟自己說了掰掰,接著才趕上遠處的會議。圖/Pansci

然而神奇的事來了,如果此時蝙蝠俠等得不耐煩,突然想回高譚市與小丑敘敘舊,他拿出了從沒有任何人知道的特製蝙蝠車,一台可以以接近光速移動的蝙蝠車,從基地離開。就在這個時候,從他的角度觀察閃電俠,他會發現,閃電俠先到達了會議室,接著才發生遠處閃電俠與粉絲說掰掰的場面。蝙蝠俠和粉絲們看到的情景大不相同,不同觀察者的時間產生歧異了。

蝙蝠俠的時空視角:閃電俠先到達了會議室,接著才發生遠處閃電俠與粉絲說掰掰的場面。圖/Pansci

甚至對於獲得高速移動能力的蝙蝠俠來說,如果他的蝙蝠車也能以超光速移動而且速度夠快,他甚至能在閃電俠到達會議室前,就先跑去正在與粉絲說掰掰的閃電俠旁邊,告訴他開會的會議結論,你不用再跑一趟了。

看來透過超光速回到過去,還真的是有可能的。但別忘了相對論施加的限制,要將物體越加速到接近光速,所需要的能量就越大。如果要將有質量的物體加速到等於光速,就需要無限大的能量。或許閃電俠的神速力確實能辦到,當然這也就代表,閃電俠或許是DC宇宙中無敵的存在了。

顯然,沒有神速力,也不是超級英雄的我們,把自身加速到超光速來時間旅行,顯然不是一個好選項。但如果我們能扭曲時空、建立捷徑,達成超光速呢?

就算兩地相隔數公里,如果我們能將時空對折,並在中間打一個洞,創造出一個任意門,只要跨過一步就能跨越原本要走上半天的路程,不就超光速了嗎?事實上,不能超光速移動的我們,跨越時空的「蟲洞」,很有可能就是我們最後的選項。

蟲洞有辦法被製造嗎?

蟲洞的概念不只是存在於科幻小說的情節,1935 年,愛因斯坦與羅森發表一篇論文,指出根據廣義相對論的計算,在某些條件下,宇宙中可能出現連接不同時空區域的「蛀孔」,稱為愛因斯坦——羅森橋,也就是我們說的「蟲洞」。

蟲洞在地面可能的樣子。圖/wikipedia

正常來說,宇宙中的能量或有質量的物質,會在宇宙中產生如同球面的正時空曲率,產生引力。如果想要產生負時空曲率,將時空向內凹陷,創造出蟲洞,我們就需要創造出負能量或具有負質量的物質。

那麼要怎麼做出負能量或負質量的物質呢?

接下來我們進入到腦洞大開的環節:還記得我們在量子系列第五集,介紹薛丁格的貓時提到的不確定性原理嗎?根據這個理論我們可以預測,就算在空無一物的「真空」中,其實非常熱鬧。在真空中,會不斷出現正粒子反粒子組成的虛粒子對,他們一起出現,又重新碰撞、互相湮滅,這個過程被稱為量子漲落。雖然兩種粒子會互相湮滅,但不論正、反粒子都是擁有正能量與正質量,在量子漲落的過程中,為了維持整體的能量穩定,某些地方出現正能量密度,某些地方就會出現負能量密度。以此架構延伸,我們便能在真空中設計兩塊金屬板,能透過卡西米爾效應,在兩塊金屬板中,創造出負能量的區域。而這個卡西米爾效應,也在 1996 年在實驗中被實際觀測到。

卡西米爾效應示意圖。圖/wikipedia

透過蟲洞時間旅行有可能嗎?

那麼通過蟲洞時間旅行是可能的嗎?根據後來的計算,愛因斯坦——羅森橋,也就是蟲洞的存在時間非常短,會在太空船通過之前,就塌縮成奇異點。而蟲洞的通道大小,也不足以讓任何粒子大小的物體穿過。

但霍金沒有將可能性說死,或許將來,會有技術可以撐開並維持蟲洞的存在,足以讓人類穿梭而行。或許時空旅行,將成為現實。除此之外,超弦理論也有一些說法證實蟲洞可能存在,但目前弦理論都還僅止在數學計算,還未能應用在實際現象中。

但你說,霍金不是已經透過時間旅人派對證實,沒有時空旅人了嗎?霍金解釋,根據時間悖論問題,我們看不到時空旅人,是非常正常的。至於為何無法修改過去,產生時間悖論,有可能是當過去已被「測量」,那宇宙就不能再被更改,又或是真的有某種有形或無形的時空管理局,在維持這個世界的安全呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1188 篇文章 ・ 1738 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

8
2

文字

分享

1
8
2
從 J 粒子到宇宙射線——實驗物理學家丁肇中的研究之旅
研之有物│中央研究院_96
・2023/05/20 ・9459字 ・閱讀時間約 19 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 整理撰文/郭雅欣
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

丁肇中是享譽全球的物理學家,他的研究為現代物理學奠定了基礎,也讓他獲得 1976 年的諾貝爾物理獎。丁肇中是中央研究院院士,也是現任麻省理工學院的物理學教授。

歷經數十年實驗物理的研究之路,他用一次次的實驗結果打破原本的理論認知,為物理學開創了新的道路。

丁肇中如何從 J 粒子的發現,走到最前沿研究宇宙射線,探索宇宙的起源與未知?中研院「研之有物」梳理記錄丁肇中 2022 年在院內物理研究所的演講內容,介紹他在物理學領域的傑出成就以及科學家的體悟。

丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。圖/中研院物理所

實驗是自然科學的基礎,理論如果沒有實驗的證明,是沒有意義的。當實驗推翻了理論後,才可能創建新的理論;理論是不可能推翻實驗的。過去 400 年來,我們對物質基本結構的了解,大都來自於實驗物理。」

中研院物理所於 2022 年 12 月 27 日舉辦了李水清講座,邀請到著名的實驗物理學家丁肇中,他以這段話做為整場講座的開端。

從丁肇中踏上實驗物理之路開始,至今已有 60 多年,這一路走來,丁肇中累積了許多突破性的成果,這些經歷也讓他獲得了豐富的人生體會。在這場講座中,丁肇中以「我所經歷的現代物理和我的體會」為題,一一細數這些成果及體會,在言談中展露出他對物理的熱情、堅持,以及永不磨滅的興趣與好奇心。

做實驗不盲從專家:證明電子沒有體積

1965 年丁肇中前往德國的大型粒子物理學研究機構「德國電子加速器」(DESY)進行第一個實驗工作,目的是證明「電子沒有體積」。為什麼要做這個實驗呢?因為當時科學家對電子有無體積的問題出現了爭議。

根據理查.費曼(Richard Feynman) 、朱利安.施溫格(Julian Schwinger)和朝永振一郎在 1948 年提出的量子電動力學理論(Quantum Electrodynamics,簡稱 QED),電子是沒有體積的,當時所有的實驗都證明了 QED 理論的完備性,他們三人也因此獲得 1965 年的諾貝爾物理獎。

可是在 1964 年時,哈佛大學和康乃爾大學的科學家和專家耗費多年心思,進行兩個不同的實驗,卻得出與 QED 相反的結論——量子電動力學是錯誤的,電子是有體積的,半徑是 10-13~10-14 公分。這個結論是兩個不同實驗團隊的成果,也因此受到物理界人士的認可和重視。

當時剛獲得博士學位的丁肇中,決定用不同方法來測量電子半徑。丁肇中回憶:「那個時候沒有人相信我能做出這個實驗,更沒有人支援我。」所以在 1965 年,丁肇中決定離開美國,到德國新建的 DESY,利用這個周長 320 公尺的加速器,產生能量 75 億電子伏特的光,打到儀器上,以測量電子的半徑。

在德國八個月後,丁肇中的實驗結果證明量子電動力學是正確的:電子真的沒有體積,它的半徑小於 10-14 公分。我們可以說:在當年實驗可及的範圍內,電子半徑為零(consistent with zero)。這推翻了當初康乃爾大學與哈佛大學備受重視的實驗結果。

丁肇中:「我的第一個體會就是:做實驗不要盲從專家的結論。」

縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。圖/研之有物(資料來源/丁肇中)

證明宇宙新物質—— J 粒子

1965 到 1970 年間,丁肇中在 DESY 做了他的第二個實驗,這是一系列和光子、重光子相關的實驗。光子的質量為 0,當時已經知道有三種重光子,它們的質量約為 8 億~10 億電子伏特(eV/c2),其他的特徵則與光子一樣。

丁肇中表示,在高能情況下,重光子與光子應該可以互相轉化,只是機率很低。要找到互相轉化的事例,實驗裝置必須能辨識出一億分之一的發生事例,後來他也成功完成了這項困難的實驗。

之後,丁肇中還想解決另一個問題:「為什麼所有的重光子質量都和質子的質量相近,都是 10 億電子伏特左右?」為了尋找更重的重光子,丁肇中決定到美國布魯克黑文國家實驗室(Brookhaven National Laboratory)的質子加速器上,做一個更加精密的探測器。

要找到高質量的重光子,必須每秒鐘輸入一萬億個高能量質子到探測器上,這會徹底破壞探測器,也會對工作人員造成危險。所以,丁肇中發展的新探測器不但必須非常精確,還必須是在非常強的放射線下,能正常工作的儀器。

因此輻射遮蔽相當重要,如下圖。藍色部分是磁鐵,黃色部分是大型探測器,為了保護探測器,在中心放射線周圍包裹了厚厚的水泥,黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂(含水可吸收中子),放在水泥周圍遮蔽輻射,位置會依實際需求做改動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。

這個實驗的遮蔽材料總共用了 5 噸鈾 -238、100 噸的鉛、 5 噸的肥皂,以及 1 萬噸的水泥。整個實驗設施的最外圍,還會堆上大量的水泥塊,保障工作人員安全。

新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。圖/研之有物(資料來源/丁肇中)

高質量的質子碰撞,可以增加新粒子產生的機率,但其他無關事例產生的機率也同樣會提高。丁肇中形容,尋找高質量的重光子就像是:

「在臺北下雨的時候,每秒鐘會降下 100 億顆雨滴,其中有一顆的顏色不同,你必須在 100 億顆裡面把它找出來。」

可想而知,物理界都不看好這個實驗,因為理論物理學家認為,現有理論已「足夠」解釋現象,找高質量的重光子物理意義不大;實驗物理學家則認為,沒有人能做出如此困難的實驗。

在排除萬難的堅持之下,1974 年丁肇中就在實驗中發現了新的粒子「J 粒子」,它的壽命比已知的粒子長一萬倍。丁肇中說:「這個發現的重要性,就等同於我們到深山裡發現了一個偏僻的村子,村民不是一百歲,而是一百萬歲,也就是這些人和普通人類是不一樣的。」

換句話說,這證明了宇宙中有新的物質存在,理論必須修正。

當時科學界流行三夸克模型,也就是用三種夸克基本粒子來解釋質子和中子的狀態,而 J 粒子的發現,證實了還有第四種夸克「魅夸克」(Charm quark)的存在。

這段歷程讓丁肇中有了第二個體會:

「做基礎研究要對自己有信心,做你認為正確的事,因為自然科學的發展基本上是多數服從少數,不要因為大多數人反對而改變你的興趣。」

意外的發現——膠子

1970 年代,丁肇中的第三個實驗,是在德國正負電子對撞機(PETRA)上做的,PETRA 是當時能量最高的正負電子對撞機,可讓 300 億電子伏特的正負電子對撞。丁肇中在實驗過程意外發現膠子的存在。

膠子是人眼不可見的基本粒子,是自然界基本作用力「強作用力」的傳遞媒介(Force carrier)。根據現在的標準模型(Standard Model),我們知道原子核裡面有質子和中子,質子和中子是由數個夸克組成,而膠子可以在夸克之間傳遞強作用力,讓夸克束縛在一起。

從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型)圖/研之有物(資料來源/丁肇中)

那麼,丁肇中是如何發現膠子的呢?

物理中用來描述強作用力的理論是量子色動力學(Quantum Chromodynamics),根據理論預測,一個正電子和負電子碰撞時會產生能量,大部分是轉變成一對夸克和反夸克(兩個噴柱)。偶爾會產生夸克、反夸克和一個膠子(三個噴柱)。

在丁肇中的實驗中,透過大量的測量,發現正負電子對撞後,果真出現了許多三噴柱的事例,這三個噴柱現象的數量與分布和量子色動力學是符合的,這個實驗結果證明了膠子的存在。

「我們最初做實驗的時候,並沒有想到會發現膠子。最初做實驗目的是繼續尋找電子的半徑。」丁肇中說。因此這個實驗帶給丁肇中的第三個體會,就是:

「對於意外的現象,要有充分的準備。」

大型國際科學合作:L3 實驗

丁肇中的第四個實驗,是 1982~2003 年在歐洲核子研究中心(CERN)進行的 L3 實驗。他們以周長 27 公里的加速器,將對撞的正負電子能量增加到 1000 億電子伏特,碰撞時的溫度是太陽表面的 4000 億倍,也是宇宙誕生最初的 1000 億分之一秒時的溫度,「我們是在實驗室內製造宇宙剛開始的情況。」丁肇中說。

這個實驗的目的是尋找宇宙中最基本的粒子,解答關於宇宙中各種粒子的問題,包括宇宙中有多少種電子?電子有多大?為什麼找不到電子的體積?電子能不能分成更小的粒子?現在有人說最基本的粒子是夸克,夸克到底有幾種?夸克有多大?能不能分成更小的粒子?

這次的國際合作實驗,有美國、蘇聯 、中國、臺灣、歐洲等 19 個國家,共約 600 名科學家共同參加。實驗的規模很大,每個國家也各司其職。

實驗的最外層重達 1 萬公噸的磁鐵,以及探測器中 300 公噸的鈾,都來自蘇聯;用於探測高能粒子和高能射線的鍺酸鉍晶體(簡稱 BGO),原本全世界年產量只有 4 公斤,經由中國上海矽酸鹽研究所研發成功,生產了 12 公噸,用於這項實驗中;臺灣與義大利、瑞士的團隊共同研發矽微條軌跡探測器,測量粒子位置的解析度可達 5 微米,中央大學團隊也參與了數據分析。

L3 的實驗前後進行了 20 年,發表了 300 篇相關論文。丁肇中總結出以下結論:

  1. 宇宙中只有三種不同的電子和六種不同的夸克。
  2. 電子是沒有體積的,它的半徑小於 10 -17 公分。
  3. 夸克也是沒有體積的,它的半徑小於 10 -17 公分。
  4. 所有的實驗結果都和電弱理論符合,電弱理論是描述電磁力和弱作用力的理論。

「很不幸的,所有的結果都和電弱理論符合。」丁肇中說:「當一個實驗和理論有衝突的時候,才能學到新的東西,把理論推翻掉。假如實驗結果和理論符合,那麼學到的東西就很少。所以對我來說,L3 並不是成功的實驗。」

這個首次的大型國際合作經驗,也為丁肇中帶來了第四個體會:要領導一個國際合作,要選科學上最重要的題目,引起參加國際科學家的最大興趣。對貢獻大的國家要有優先的認可,使之得到國際上的公認,才能得到參加國政府長期的優先支援。

「要領導一個國際合作,要選科學上最重要的題目。」

國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。圖/European Space Agency

史上創舉:阿爾法磁譜儀上太空

丁肇中的第五個實驗目前仍在進行中,那就是位在國際太空站上的阿爾法磁譜儀(Alpha Magnetic Spectrometer,AMS)。

AMS 目標是研究宇宙射線的特性和起源。帶電的宇宙射線有質量,會被地球表面上 100 公里厚的大氣層吸收,所以我們無法在地面上研究帶電宇宙射線的電荷、動量等性質。這就是為什麼必須把一個磁譜儀放在外太空。

磁譜儀內含有磁鐵,當宇宙射線進入磁譜儀,會因為磁鐵的影響而偏轉軌跡,不同的粒子會留下不同的軌跡,因此根據偏轉的軌跡,就可以分辨出是哪一種宇宙射線粒子。在此之前,從來沒有人會把一個超大磁鐵放到太空站上。

國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。圖/NASA

丁肇中說,原因非常簡單,「大家都知道指南針的原理。當指南針放在太空站上,一端向北、一端向南,很快就會讓太空站失去控制。」為此,AMS 團隊設計了一個特殊的環形磁鐵,從外觀看就像一個木桶,它的磁場不會洩露,「AMS 做過兩次飛行,第一次是用太空梭載運到軌道上運行十天,就回到地面,驗證了這個實驗的可行性。第二次才送到太空站上。」丁肇中說。

AMS 也是一個國際合作的科學計畫,參與的團隊來自世界各地,臺灣也包括在內。對於如何挑選合作夥伴,丁肇中特別提到:「這個實驗很困難,是一個沒有人做過的實驗,你一定要專心。所以參加的人通常只做這個實驗。」

NASA YouTube 頻道對 AMS 磁譜儀的簡介。圖/NASA

AMS 獲得了很多的支援,2008 年,美國參議院和眾議院甚至通過了一條法律,在當時希望盡量減少太空飛行的時空背景下,要求美國政府為 AMS 增加一次太空梭飛行任務,把磁譜儀送到國際太空站上去。

自從 2011 年 5 月升空至今,AMS 在太空中順利地運行,值得一提的是,由臺灣製造的電子系統非常成功,丁肇中說:「整個電子系統包括 650 個微處理器 、30 萬個訊號通道。最值得驕傲的是,至今已經 11 年了,沒有一個是壞的 。

AMS 的訊號經由 NASA 通訊衛星傳遞,每日 16 小時由位在 CERN 的控制中心負責監控。在歐洲的夜間時段,則轉到中山科學院的亞洲控制中心監控,實現全年無休,每日 24 小時的監控。

「一開始做實驗的時候,我並沒有想到,太空站在太空中一定要不斷運行,這樣向心力與引力才會平衡。」丁肇中說:「這就表示我們沒有週六、週日,沒有中秋節也沒有過年,每天都要嚴格地監控著。」

丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。圖/NASA

科學研究的競爭只有第一,沒有第二

這 11 年來,AMS 獲得了許多和現有理論不符合的結果,帶來了對宇宙全新的認知。AMS 第一個成果是探索宇宙中電子與正電子的來源。

目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。圖/研之有物(資料來源/丁肇中、Wiki)

根據 AMS 目前的成果,關於電子的來源,宇宙線碰撞產生的電子佔比極低,顯然不是主要來源。從數據來看,電子主要是由兩個未知來源的冪律譜數據疊加而得,目前仍缺乏理論解釋冪律譜的來源。所謂的冪律譜,就是能譜隨著能量的某次方變化。

至於正電子的來源,如下圖所示,低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,丁肇中表示,「到 2030 年,AMS 的數據誤差會更縮小,」屆時就能真正證明高能正電子是否來自暗物質碰撞,「這是一個非常重要的目標。」

另一方面,AMS 也從數據推論出高能量正電子的來源很可能不是脈衝星,所以更意味著暗物質才是高能量正電子的主要來源,後續期待更多數據的佐證。

除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。圖/研之有物(資料來源/丁肇中)

AMS 的第二個重要成果,是探索宇宙射線的特性和起源。

宇宙射線分為一級、二級宇宙射線。一級指的是在恆星裡經過核融合產生,然後在恆星爆炸的過程中被加速到高能量的射線,包括氫、氦、碳、鐵等。二級宇宙射線是一級宇宙線和星際物質相撞產生的,包括鋰、鈹、硼、氟等。

AMS 發現,一級宇宙射線可以依據剛度(動量除以電荷)的變化分成兩種,第一種包括氦、碳、氧、鐵,第二種則包括氖、鎂、矽、硫。而二級宇宙射線也分為兩種剛度變化:鋰、鈹、硼隨著剛度的變化是一樣的,氟則是另外一種變化。

宇宙中有各式各樣的宇宙射線,可是它們隨著剛度的變化卻是有限的,「這是不可想像的現象,」丁肇中說:

「所有宇宙射線的實驗結果都與理論不符合——所有目前的理論都是錯誤的。」

AMS 將繼續工作到 2030 年,在那之前,AMS 的探測器會升級,讓接收度提升三倍。AMS 將在宇宙這個最廣袤的實驗室中,持續收集數據,尋找自然界中存在,而我們未曾想到、也不曾發現的現象,改變我們對宇宙的認知。

「我的大多數實驗都受到很多人的反對。理由是實驗沒有物理意義、實驗非常困難,不可能成功。」丁肇中說:「可是過去 45 年來,很多優秀的科學家,包括臺灣的李世昌院士和張元翰教授[註],對實驗做出很重要的貢獻。實驗結果改變了我們對宇宙的認知。每一個實驗都發展新的儀器,讓實驗成功。」

丁肇中以自身的最後一個體會,為整場講座下了一個總結:

「自然科學的研究,是具有競爭性的,只有第一名,沒有第二名。」畢竟,「沒有人知道誰是第二個發現相對論的。」

最後,「研之有物」也收錄了在該場演講的尾聲,中央研究院物理所的李世昌院士與丁肇中院士的精彩對談,他們是合作多年的朋友,在問答之間,我們也能更瞭解丁院士如何看待實驗物理,節錄摘要如下。

李世昌院士(左)與丁肇中院士(右)對談。圖/中研院物理所

Q:您到母校密西根大學的時候 ,起初是想要鑽研理論物理,但為什麼後來改朝實驗物理的方向進行?

我起初其實是學機械工程,但當時還沒有電腦,必須自己畫圖,而我一條線都畫不直,所以我的老師建議我改念數學或物理。而就像李院士說的,我一開始選擇了理論物理,但後來,發現電子自旋的喬治.烏倫貝克(George Uhlenbeck)教授給了我啟發。

烏倫貝克說:「如果重來一次,我會選擇當個實驗物理學家,而不是理論物理學家。」我問他為什麼,他說:「對物理真正有影響力的理論物理學家,一隻手的指頭就數得出來。但做實驗得到的每一個結果,都是對物理、對人類知識有貢獻的。」我和他談完之後,就在他的辦公室外走來走去,然後告訴他:「You are right, I’m leaving you.」(在場聽眾笑)

Q:剛才演講中,您強調科學需要打破現有理論才會進步。但是我跟您工作這麼多年,看到您經常徵詢有名的物理學家意見,也有邀請理論物理學家參加 AMS 實驗組的大會。因為您對理論不會完全相信,所以想請問您在什麼情況下 ,會覺得要跟這些理論物理學家談一談?

我通常在進行大型實驗之前 ,會找幾個人談一談。 一個是實驗物理學家沃爾夫岡.帕諾夫斯基(Wolfgang K. H. Panofsky),他在史丹佛大學做了一個兩公里長的直線加速器,對技術及理論都非常了解。還有一個人是理查.費曼(Richard Feynman),我和費曼相熟是因為我證明了他的理論是對的。

此外包括史蒂文.溫伯格(Steven Weinberg) 、謝爾登.格拉肖(Sheldon Glashow)等物理學家,我也會跟他們談我的實驗。通常我都是已經想好實驗以後,再聽聽他們的意見作為參考,不過我從來不照他們所說的去做。

Q:您曾經說過,如果人是依據自己有什麼能力,再來選擇研究的課題,這是最笨、最愚蠢的,應該先看一個題目有沒有重大影響力來決定。如果自己的能力不足,可以找別人合作。請問您在做完 L3 實驗之後,是如何選擇現在正在進行的 AMS 實驗?

當時我已經做了很多加速器的實驗,我想下一步,應該挑一個大家都認為不可能的實驗,所以就挑了一個到太空去做的實驗,也就是 AMS。我從來沒有做過太空實驗,我們組裡也沒有一個人有太空相關的經驗,所以過去的經驗是沒有意義的。

當我和美國政府提出 AMS 實驗時,美國能源部反對。他們認為我從來沒做過太空實驗,而且太空實驗非常非常貴。為了證明實驗的價值,我要求他們成立評審委員會,成員必須是世界第一流的科學家 、美國科學院院士以及拿過諾貝爾獎的人。

這是因為第一流科學家眼光比較遠,能夠看到將來。後來委員會成立,成員包括許多天文物理學家。經評審後,他們認為這是很重要的實驗。最後我們就在 NASA 展開了 AMS 實驗。

Q:發表的實驗結果一定要正確,這是您最重視的一件事。在發現 J 粒子的時候,從您看到訊號到最後決定發表,隔了很長的時間。有人說如果您早一點發表,Burton Richter 可能就沒有機會和您共同得到諾貝爾獎。您對於實驗的結果,是如何決定發表的時機?

我們是在 1974 年 8 月看出有 J 粒子的訊號,本來打算在 10 月時發表,但我想稍微等一等,看能不能看到更高能量的粒子,所以才等到 11 月。當時我並不知道別人可以用正負電子對撞機來做這個實驗。直到 11 月 11 日,我到史丹佛大學去,才知道伯頓·里克特(Burton Richter)帶領的 SLAC 國家加速器實驗室團隊也發現了一樣的事情。

至於 AMS 的成果,我一直提醒大家記住一件事,我們花了 20 年的時間準備這個實驗,在接下來的半個世紀,我想很可能沒有人會再像我們這麼笨,再放一個磁譜儀到太空中,所以如果發表了什麼結果,一定會影響整個物理研究的方向,所以要特別小心謹慎。

註解

  • 註:李世昌院士現為中研院物理所兼任研究員,張元翰現為中研院物理所特聘研究員。

延伸閱讀

  1. Mars, K. (2022). About AMS-02. NASA. 
  2. Spry, J. (2021). A $2 billion particle detector stars in new Disney Plus docuseries “Among the Stars”: Q&A with principal investigator. Space.com. 
  3. AMS Collaboration, Aguilar, M. A., . . . Zuccon, P. (2021). The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven yearsPhysics Reports894, 1–116. 
  4. AMS Collaboration, Aguilar, M. A., . . . Zuccon, P. (2019). Towards Understanding the Origin of Cosmic-Ray PositronsPhysical Review Letters122(4). 
  5. Lindley, D. (2016). Landmarks—The Charming Debut of a New Quark. Physics. 
  6. SciShow. (2012). Strong Interaction: The Four Fundamental Forces of Physics #1a [Video]. YouTube. 
  7. Samuel C.C. Ting. MIT Physics. 
  8. Samuel C. C. Ting | The Alpha Magnetic Spectrometer Experiment. (n.d.). AMS-02.space.
  9. Samuel C.C. Ting Facts. (n.d.). NobelPrize.org. 
  10. Samuel C.C. Ting Nobel Lecture. (n.d.). NobelPrize.org. 
  11. 張忻郁(2021)。〈【丁肇中獲頒諾貝爾物理獎40週年專題】丁肇中院士介紹〉(張元翰編),《科學 Online》。
  12. 國立成功大學-數位演講網(2018)。〈20150813 丁肇中探索宇宙中的基本結構和宇宙的起源 [影片]〉,《YouTube》。
  13. 臺大科學教育發展中心 CASE(2016)。〈【大師演講】丁肇中院士獲頒諾貝爾物理學獎40週年:我所經歷的實驗物理 [影片]〉,《YouTube》。 
  14. 簡宗奇(2016)。〈談物理課中的典範敘述-丁肇中的實驗物理——《科學月刊》〉,《PanSci 泛科學》。
  15. 張瑞棋(2015)。〈發現「J 粒子」──丁肇中生日|科學史上的今天:1/27〉《PanSci 泛科學》。
  16. Musser, G.(2011)。〈反物質之眼〉(甘錫安譯),《科學人知識庫》。
  17. 郭雅欣(2011)。〈上太空找反物質〉,《科學人知識庫》。
所有討論 1
研之有物│中央研究院_96
283 篇文章 ・ 2899 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

2
0

文字

分享

1
2
0
一句話形容「量子糾纏」:難以理解也無法預測的雙人舞——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/18 ・1094字 ・閱讀時間約 2 分鐘

有時候,兩個以上的量子粒子,可能因為某些原因而產生關連,使得彼此的行為互相影響——這種特殊的關係,稱為「量子糾纏」,或稱「量子纏結」

不妨想像一下:一對跳雙人舞的舞者,正隨著音樂舞動。雖然兩人都有各自的動作,但彼此的動作都與對方有對應關係,也就是當其中一人做某動作,另一人就會做某配合動作;若要針對這場演出打分數,我們必須把兩人的動作與搭配都考慮進來,因為單看一人的表現,並無法詮釋整場表演——這個情形,就非常類似量子糾纏的概念。

可以將量子糾纏想像成一對跳雙人舞的舞者。圖/GIPHY

一旦一對粒子形成量子糾纏的狀態,它們就必須被視為一個整體,一起看待;單看一個粒子的行為,並無法完全描述整個系統。

無法事先得知的量子態

不過,量子糾纏跟跳雙人舞還是有一點不同:舞者跳的舞,都是事先設計好的——換句話說,雙方要怎麼跳,都是早就知道的;但量子糾纏狀態中的粒子的行為,直到我們進行觀測之前都還無法確定。

就好像之前在量子疊加章節中所介紹過的,量子態在被觀測之前,是處於「同時存在各種可能狀態」的疊加態,只有當我們進行觀測之後,其狀態才會確定;而每一種可能狀態,都有各自的出現機率,我們無法事先得知最後會看到哪一種狀態。

就像丟骰子一樣,每個數字都有各自的出現機率,無法事先得知結果會是哪個。圖/Envato Elements

這就像我們在手遊中抽卡,無法知道究竟會抽到最稀有的 SSR 卡、超稀有的 SR 卡,還是最常見的 N 卡,只能由機率來決定。

驚人的是,當我們藉由觀測,使得其中一個粒子轉變成確定狀態時,另一個粒子就算隔得再遠,

只要糾纏狀態還在,它們的行為就仍會有所連動,也就是說,第二個粒子會因為我們對第一個粒子的觀測,而瞬間呈現與第一個粒子對應的確定狀態。

到底,處於量子糾纏狀態的粒子,彼此之間是怎麼知道對方的情況呢?直到現在,科學家都還沒辦法揭開量子糾纏的神秘面紗。

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

所有討論 1
未來親子學習平台
3 篇文章 ・ 3 位粉絲