Loading [MathJax]/extensions/MathMenu.js

0

0
0

文字

分享

0
0
0

霍金對蟻人:量子西洋棋之戰

余海峯 David
・2016/04/03 ・2778字 ・閱讀時間約 5 分鐘 ・SR值 587 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/余海峯|天體物理學家、科學普及工作者。興趣是讀和寫科普、足球、攀石、結他,一個人散步。在等一個人回來,那個無可取代的她。

理查.費曼 (Richard Feynman) 說過:

我想我能保證沒人理解量子力學。

I think I can safely say that nobody understands quantum mechanics.

The Character of Physical Law (1965)

自上世紀初以來,量子力學一直是科幻小說和電影的熱門題材。近期一部 Marvel 英雄電影《蟻人》(Ant-Man)之中就提到過量子力學。電影中提到次原子尺度的世界是由量子力學操縱,既沒有時間箭頭的概念、亦不存在我們熟悉的因果關係。我們將永遠失去所愛的人。

《蟻人》電影中,主角在危急時決定變得比原子更小,進入了量子世界。由於主角威能,最後他平安無事地從量子世界回到日常尺度的世界。所以,他是唯一一個經歷過量子力學規則的人類。

某一天,來自 2716 年名為奇洛李維斯(Keanu Reeves)的人向飾演蟻人的保羅.路德 (Paul Rudd)發送了一封電郵,邀請他與理論物理學家史提芬.霍金(Stephen Hawking)進行一場融合量子力學與西洋棋規則的量子西洋棋比賽。

-----廣告,請繼續往下閱讀-----

在我們人類的巨觀尺度看,日常生活很多過程都是不可逆的。熱力學定律告訴我們,任何循環的過程都不可能達到 100% 效率。換句話說,任何巨觀過程都必定伴隨能量流失。即使在一個封閉系統之中,雖然總能量守恆,但能量會隨時間從系統中比較熱的地方流向比較冷的地方,最後必然達到熱平衡狀態。

這其實並非高深莫測的原理,可以用簡單統計學解釋。簡單來說,在一個巨觀系統之中,由於粒子數非常多,系統處於熱平衡狀態的機率比其他所有狀態的機率高非常非常非常非常多。此情況下,可以想像量子力學效應被這種巨觀統計平均掉。相反地,微觀尺度之下,巨觀統計並不適用,我們必須考慮量子力學效應。

棋子同時存在也不存在

quantum
量子態重疊的特性使得畫面中的皇后棋可能移到 B3 的位置,但也可能沒有。圖/擷取自影片

量子力學的一個奇異特性,是量子態會重疊於一起(quantum superposition),直到外界的觀察者進行觀測才能確定究竟會看到哪一個態。換句話說,量子態在外界觀測之前是不確定的。再簡單一點說,在觀察一個量子系統之前,它處於多於一個量子態的機率都不是零。這並非理論不完美或者實驗誤差的結果,而是精確的數學結論。所以,如果量子系統有意識的話,就連它本身(在其觀察本身之前!)也不能確定自己究竟屬於哪一態。

讓我們試用較為不技術的話去理解吧。在影片之中,量子西洋棋的棋子仍依照西洋棋規則走。有別於一般西洋棋,棋子走了就是走了,下不回手;量子西洋棋的棋子走了以後,它們的位置仍是不確定的。在其他棋子觀察、即作出對該棋子某些影響後,它的位置才會被確定下來。因此,量子西洋棋的棋子能夠同時存在於不同位置;它們處於不同位置的量子態是重疊的。

-----廣告,請繼續往下閱讀-----

力學與電動力學的矛盾對決

影片中,路德眼見自己就要落敗的時候,他利用了量子力學的另一個奇怪的特性,最後使他反敗為勝。這就是量子糾纏(quantum entanglement)。量子糾纏被認為是比量子態重疊更不可思義的現象:愛因斯坦與許多科學家都認為它與相對論抵觸,因此是不可能的。

為什麼量子糾纏會與相對論扯上關係呢?這就要由上世紀初的一場物理革命說起了。在1905 年愛因斯坦發表相對論(relativity)之前,力學(mechanics)與電動力學(electrodynamics)是物理學的兩大支柱,分別解釋自古以來人類觀察到的所有包括地上的與天上物件的運動規律、以及當時剛剛被統一起來的電學(electricity)、磁學(magnetism)與光學(optics)的現象。可是,在當時這令人振奮的物理學快速發展的時代,烏雲一直籠罩在物理學的大殿之上:力學與電動力學的結論是互相矛盾的!

問題出在哪裡呢?

原來,電動力學公式告訴我們宇宙中存在著一種由電場和磁場構成的波動,叫做光。根據電動力學公式推導可知光速為常數。換句話說,光速恆古不變、萬世不易,是數學定量的結論,無可挑剔。

-----廣告,請繼續往下閱讀-----

可是,有著三百多年歷史、解釋過無數天文觀測和作為工業革命一切科技基礎的力學卻告訴我們,任何東西的速度取決於觀測者的運動狀態。一列行駛中的列車很快,因為我們站在地面月台上觀察。如果我們安坐列車之中,我們就會覺得列車是靜止的。同理,如果我們在列車之中向前走,地面上的人就會看見我們的速度等於列車速度加上我們的走路速度;如果我們在列車之中向後走,地面上的人就會看見我們的速度等於列車速度減去我們的走路速度。

不過,電動力學公式說光速是常數。無論我們在列車之中用電筒向前或向後照,地面上的人都會看見光速等於光速,與列車、我們的走路速度無關。

pexels-photo-65776
圖/Kaique Rocha@PEXELS

這個力學與電動力學的矛盾,最後由愛因斯坦的相對論完美地解決了。在相對論之中,光速是恆常不變的物理量,是超越一切規則而存在的物理定律。愛因斯坦發現,因為光速不變,我們才能有日常熟悉的因果定律:萬事皆有因。因果律成立,因為宇宙中有一個傳送資訊的極限速度,任何資訊都不可能以比這個極限速度更快速地傳播。這個極限,就是光速。

不可思議的量子糾纏 如何讓路德反敗為勝?

愛因斯坦的相對論解決了力學與電動力學的矛盾,彷彿為物理殿堂撥開雲霧。然而青天卻仍未可見,因為量子糾纏允許粒子以超越光速即時傳遞資訊!

-----廣告,請繼續往下閱讀-----

故名思義,量子糾纏即是兩個遵循量子力學規則的系統,它們的量子態互相糾纏在一起。例如兩個電子,如果它們的自旋量子態糾纏在一起的話,當我們未觀察時,它們各自的自旋方向都是未知的,這是因為量子態重疊。而當兩個電子的其中一個被觀察為自旋向上時,另一個電子的自旋就必然為向下。這是因為量子糾纏。

乍看之下,我們可能會覺得沒有問題,只是一般的角動量守恆律吧?雖然這也是角動量守恆律的結果,但在量子力學版本裡,由於量子態重疊,當我們觀察其中一個電子的自旋之前,兩個電子的自旋都是未知的。但當其中一個電子被觀察後,它們兩個的自旋量子態就立刻被決定了,不管它們相隔有多遠!

15843589552_d04874d313_z
圖/British Council Russia@flickr

愛因斯坦及其他很多物理學家都認為量子糾纏違反相對論光速極速假設,因此認為量子糾纏不可能發生,也所以量子力學是錯誤的。直到 1955 年愛因斯坦去世,他都認為量子力學是個不完整的理論。今天,量子糾纏已經在實驗被觀察到。而光速是資訊傳播極限的問題,有人認為在這情況下傳送出去的只有兩個量子態的資料,如果不可能經這方法傳送其他資訊(例如這一期樂透的號碼),就與光速極速假設沒有抵觸。不過這就是題外話了。

至於影片中的路德,意識到量子西洋棋採取了上述量子力學奇異特性的概念,成功利用量子糾纏避開了霍金的將軍,反而將死霍金。無論各位在讀完此文章後有否對量子力學或西洋棋感興趣,相信也非常享受這段由霍金和蟻人的小戰事,以及奇洛李維斯的配音吧。

-----廣告,請繼續往下閱讀-----

 

作者臉書粉絲專頁:余海峯 David . 物理喵 phycat

-----廣告,請繼續往下閱讀-----
文章難易度
余海峯 David
18 篇文章 ・ 22 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。

0

2
0

文字

分享

0
2
0
愛因斯坦也困惑!量子糾纏如何顛覆距離的限制?
PanSci_96
・2024/11/05 ・1765字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

量子糾纏的生活比喻:情感的同步

想像一下,你有一位從小就非常要好的朋友,無論他做什麼,你都感同身受。他吃下午茶,你也立刻想來一份;他開心,你也情不自禁地微笑;他難過,你也跟著心情低落。你們之間的情緒達到了百分之百的同步。雖然你們身處不同的地方,但似乎有一條無形的線將你們連接在一起。

這種神奇的連結,正是量子力學中的量子糾纏(Quantum Entanglement)。在微觀的量子世界裡,兩個曾經互相影響的粒子,即使相隔萬里,依然可以保持同步的狀態。一旦其中一個粒子的狀態被測量,另一個粒子的狀態也會立即確定,這種現象挑戰了我們對於時空和因果關係的理解。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

角動量守恆與粒子自旋

要理解量子糾纏,我們首先需要了解角動量守恆和粒子的自旋。想像一顆靜止的砲彈,突然爆炸成兩個旋轉的碎片。根據角動量守恆定律,兩個碎片的旋轉方向必須相反,才能使總角動量保持為零。

在量子力學中,粒子的自旋類似於這種旋轉,但並非真正的物體旋轉,而是粒子固有的一種量子性質。一個自旋為零的粒子衰變成兩個帶有自旋的粒子時,兩者的自旋方向必須相反,以維持角動量的守恆。

-----廣告,請繼續往下閱讀-----

然而,與宏觀世界不同的是,量子粒子的自旋狀態在被測量之前,處於一種「疊加態」,也就是說,它們同時具有多種可能的狀態,直到測量發生,狀態才被「塌縮」為確定的值。

EPR悖論:量子力學的挑戰

1935 年,愛因斯坦、波多爾斯基和羅森提出了著名的 EPR 悖論。他們認為,量子力學對於自然的描述並不完備,因為它無法預測單個粒子的確切狀態。他們設想,如果兩個粒子處於糾纏狀態,測量其中一個粒子的自旋方向,另一個粒子的自旋方向就立即確定,無論兩者距離多遠。

這似乎暗示著訊息以超光速傳遞,違反了相對論。然而,他們認為,應該存在一些「隱變量」來決定粒子的狀態,而不是量子力學的機率性描述。

貝爾不等式與實驗驗證

為了檢驗 EPR 悖論,物理學家貝爾在 1964 年提出了貝爾不等式。該不等式提供了一種方法,可以通過實驗來區分量子力學的預測和隱變量理論。

-----廣告,請繼續往下閱讀-----

1972 年,約翰·克勞澤和他的同事首次進行了實驗驗證,結果支持量子力學的預測,違背了貝爾不等式。這意味著,量子糾纏的現象是真實存在的,粒子之間的連結不需要透過任何已知的訊息傳遞。

之後,阿蘭·阿斯佩等科學家進一步完善了實驗,消除了可能的漏洞,堅定了量子力學的立場。2022 年,克勞澤、阿斯佩和安東·塞林格因在量子糾纏領域的貢獻,共同獲得諾貝爾物理學獎。

阿蘭·阿斯佩(Alain Aspect )的實驗堅定了量子力學的發展。圖/wikimedia

「鬼魅般的超距作用」的理解

量子糾纏挑戰了傳統物理學對於因果和現實的理解。愛因斯坦稱之為「鬼魅般的超距作用」,因為它似乎違反了光速的限制。然而,現代物理學家認為,量子糾纏並不傳遞任何可用於通信的訊息,因此不違反相對論。

糾纏粒子之間的連結被視為量子系統的整體性質,而非個別粒子的屬性。當我們測量其中一個粒子時,整個系統的波函數發生了變化,導致另一個粒子的狀態也被確定。

-----廣告,請繼續往下閱讀-----

量子糾纏的應用與未來

量子糾纏不僅僅是理論上的奇觀,它在實際應用中也展現了巨大的潛力。安東·塞林格成功地利用量子糾纏實現了量子隱形傳態,將一個粒子的量子態傳輸到遠方的另一個粒子上。

此外,量子糾纏在量子計算和量子通信中扮演關鍵角色。量子計算機利用糾纏態進行超高速的計算,而量子通信則提供了無法被破解的加密方式,保障訊息的安全。

結語:量子世界的奇妙之旅

量子糾纏揭示了自然界深層次的連結,挑戰了我們對於現實的直覺認知。儘管我們無法在宏觀世界中直接感受到這種現象,但它真實地存在於微觀的量子世界中,影響著未來科技的發展。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1962字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。