0

0
0

文字

分享

0
0
0

震源在高雄為什麼台南最嚴重?草嶺為什麼震度最大?關於206大地震你會想問的6個問題

活躍星系核_96
・2016/02/07 ・4149字 ・閱讀時間約 8 分鐘 ・SR值 525 ・七年級

文/ RUBY CHEN

再次強調本文只是藉由此次地震做一些相關知識的科普介紹,請勿斷章取義!在沒有完整的證據時請勿下定論!

= = = = = = = = = = = = = = = = = = = = = = =

各位好,今天(2016/2/6)凌晨的地震真的非常嚇人。

當然,目前最重要的是人員平安,不過在看完報導後,我的腦中仍有許多疑問,相信應該也有不少人和我一樣;此外,網路上有人痛批傾倒的大樓為豆腐渣工程,然而我認為在做出評斷前,必須先有全面的理解,因此在詢問過地震專家後,寫了相關的小知識,以及這次災情嚴重地區分布的可能原因。

在此特別感謝我的父親,一位正直認真的土木/地震工程專家,提供相關專業知識與研究資料,若我的詮釋/書寫有所錯誤,請各位不吝指教,謝謝!

p.s. 閱讀本文需有國高中以上之地科程度(我也是邊寫邊撿回高中記憶XD 希望不會太艱深)

讓我們先看看這次地震的基本資料。

圖1:地震基本資料 (來源:中央氣象局網站)

可以知道,此次地震皆屬於極淺~淺層地震(震源 < 30 km稱為極淺地震,30~70 km則稱為淺層地震;原則上,陸地上的地震大多為淺層地震),震源越淺,傳到地面的能量就越大(因為輻射阻尼(radiation damping)越小),故本次規模6.4雖為中等,但實際上震度卻很大。

對於本次地震有了基本認知後,來談談為什麼災害會如此嚴重吧!首先,地震波造成的災害主要由以下三種因素決定:

  1. 地震波的頻率
  2. 震幅大小
  3. 地震的延時(duration)

為什麼地震波的頻率會影響災害的形成?每個地震波的頻率都不同,而建築物也有自己的「自然振動頻率」(註1),若地震波的頻率恰好與建築物的自然振動頻率相同,則會產生「共振效應」(resonance effect),使建築物搖晃程度加劇,因此會有「某棟建築倒塌,旁邊卻沒事」這樣的現象產生。(有句話:「你可以用一根吉他絃震垮一棟房子」就是在講共振效應。)

請看圖2右半部,以盪鞦韆為例,若鞦韆搖擺的頻率正好等同推人的頻率,則鞦韆會越晃越大力(大家共同的兒時回憶> <),同理,若房子搖晃的頻率正好等於地震波的頻率(圖2左半部),則房子搖晃的程度會加劇。(鞦韆=房子;地震=推的人)

註1:請將建築物想成單擺。回想高中物理所教,單擺會受到擺長(i.e.建築物的高度)影響而有不同的震動頻率,建築物亦然;不過建築物的振動頻率也會受到建材、結構形狀、使用狀況影響,故相同高度的建築物,其自然振動頻率不一定相同。自然振動頻率是可以在建築物設計階段就估算出來(八九不離十的那種估算)。

圖2:共振現象示意圖(來源:gva-tomo

因此,房子越矮,擺長越短 (圖3左半部),越容易與短周期的地震波共振;反之,房子越高,擺長越長 (圖3右半部),越容易與長周期的地震波共振。

圖3:房子高度與震波週期示意圖(來源:gva-tomo

大家可別小看共振的效果喔!以1990年菲律賓地震為例,圖4中的建築就是因為與該地震波共振,所以整棟倒塌(collapse),而旁邊建築卻平安無事。

圖4:菲律賓地震建築倒塌圖(來源:陳教授)

至於震幅大小與延時則相當直觀。震幅越大,能量越高,傷害越大;相同強度下,延時越長,傷害越大(用膝蓋想想就知道啦!!!)因此在地震來襲時,哪棟建築物會傾倒、傾倒的方式如何,都與以上三種因素息息相關,當然也和周遭地質、建築物本身脫不了關係。(i.e. 建築物的自然振動頻率、有沒有偷工減料A___A)

對災害形成的原因稍有了解後,利用PBL(Problem based learning, 問題導向學習)的方式來討論吧!注意,以下的答案都是「可能原因」,造成災害的變因實在太多,因此我只是提出可能原因順便長知識,請勿直接下定論。

1. 為什麼整個雲嘉南的震度都是 5,但永康、新化、歸仁、東區災情特別嚴重呢?

在山跟平原交界處,會產生「盆地邊緣效應」(basin effect)(圖5)。圖5為一實驗模型,圖表橫軸為地形變化,可見左右兩側高,中間為一平原,縱軸則是理論計算出的最大加速度與輸入震波的最大加速度之比值。由於地形關係,地震波到平原山地交界處會反射,再加上入射的波累積能量,使得此處震度較大

請見圖6,這是台南地形與行政區的疊圖(解析度有點不足,但我找不到更好的了> <),可以看到這次災情較嚴重的地區位於平原與山區交界之處(橘框:永康、新化、歸仁、仁德)。

圖5:Basin effect(來源:陳教授)
圖6:台南地形與行政區疊圖(來源:認識南瀛

2. 震源在美濃,為什麼最嚴重的地方在台南?

根據研究,斷層裂開的速度與橫波(S波)的傳遞速度是相當接近的,而當斷層裂開時會釋放能量,因此斷層結束端除了震波的能量之外,還接收了斷層裂開的能量總和,稱作Fling effect,如圖7中,0為震央,1,2,3,4是斷層裂開處,5則是斷層結束的地方。

因此,圖片左下方代表遠離斷層裂開方向之處所測得的波型,為震幅不變、延時長;而右下方則是斷層終點處,由於每個斷層裂開的能量與震波幾乎同時抵達,因此震幅大增、延時短,就是Fling effect。

圖7:Fling effect(來源:陳教授)

不過,斷層究竟開裂到哪裡,需要獲得強震紀錄才能得知,目前只能用猜測的方式(大家就當作長知識吧~),另一種可能的原因是「場址效應」(site effect)。

3. 什麼是「場址效應」?

有電視台已經在報導中提及這個名詞了。所謂場址效應,指的是地震波傳至沖積層地表時,因淺層地下介質之速度降低,所引起的地震波放大現象,最有名的例子是1985年的墨西哥大地震,其災情因為場址效應而加重不少。而理論上,在設計建築物前,建商應該要做土壤分析(理論上啦,理論上)。

圖8:台灣地震力場址效應圖 (來源:web.fg.tp.edu.tw

4. 地震不是發生在高雄台南嗎?為什麼雲林草嶺的震度反而最大呢?

當地震波傳到山頂的時候,會被放大,稱作 Topography effect。以圖9為例,這是在日本Matsuzaki地區,透過5個地震紀錄實際量測的結果,橫軸是高程(elevation),縱軸則是各高度之加速度與最高點加速度的比值,可發現平地的加速度約為200m處的0.4倍而已。

圖9:Topography effect(來源:陳教授)

草嶺可能因為地勢關係而比其他地區多了一級,但並不一定完全是這個原因。

p.s. 中央氣象局的測站,會將地震完的最大加速度傳回去計算,以確認各地的震度;地震的級數是由最大加速度判斷,故由草嶺級數最高,我們可以回推草嶺的最大加速度也是最大的。

5. 新聞都報說柱子裡面有沙拉油桶了,難道不是豆腐渣工程嗎!?(怒)

這要視哪根柱子而定,有些柱子屬於裝飾柱,在結構本身並沒有功能,因此有沙拉油桶不會影響,但如果是真正的柱子,那就太糟糕啦!該罰!該譴責!

6. 所以永大路的大樓倒塌究竟是為什麼?

以上所說的都可能是造成建築倒塌的原因。不過,學者看了該大樓的照片(圖10)後表示,永大路的大樓的傾倒方式看起來是受到了共振現象的影響,當然建築結構本身的問題也可能存在(一切有待更進一步的查證!!!請勿斷章取義!!!),不過,別忘了這棟房子在921大地震的時候並沒有垮,因此大家還是要好好思考共振效應的可能性(921大地震的頻率與206大地震應該是不同的(此點待查證))。

圖10:永大路大樓倒塌情況(來源:陸軍航特部)

以上就是一些關於206台南大地震的Q&A,謝謝各位耐心看完:)

= = = = = = = = = = = = = = = =

後記:

凌晨驚醒後看了許多網友提供的資訊,腦中的問題就一個個冒了出來,幸好老爸願意讓我纏著問,還拿出以前他做的PPT幫我上了一課(好像在做共筆啊XD),使我這個外行人可以在短時間內稍微搞懂一些理論。

打完這份網誌,我想起前陣子老爸在喝茶聊天時提到的「大學教育的重要性」。以土木工程師為例,若在大學時期認真學習,在設計建築物時便能運用所學的知識,在安全範圍內減少不必要的人力、物力、財力的浪費,也能確保建築物本身沒有問題;我想,不管哪個科系的學生都是一樣的,下學期還沒開始,請各位新年許下願望,一起努力學習,不要浪費大學最珍貴的資源吧!然後,進入社會後,依然要秉持著良心,做個正直的人,無論在哪個領域。

天佑台灣 祝各位歲歲平安。

p.s. 原文網誌封面照片來自 Justin Kao Photography / 高靖捷攝影 ,我希望大家記得,地震確實令人恐懼,但也因為地震,台灣才有如此美麗的山林:)

本文轉載自RUBY CHEN 網誌。


數感宇宙探索課程,現正募資中!

相關標籤: 206台南大地震
文章難易度
活躍星系核_96
755 篇文章 ・ 89 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

2
1

文字

分享

0
2
1

就是想知道十萬個植物的為什麼!解開植物生長之謎的駭客兼翻譯——蔡宜芳專訪

鳥苷三磷酸 (PanSci Promo)_96
・2022/04/06 ・3848字 ・閱讀時間約 8 分鐘

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

2018 年「台灣傑出女科學家獎」傑出獎第十一屆傑出獎得主

  • 中研院分子生物研究所特聘研究員蔡宜芳,畢業自台灣大學植物系,在美國卡內基美隆大學(Carnegie Mellon University, CMU)取得博士,後於加州大學聖地牙哥分校(University of California, San Diego, UCSD)進行博士後研究,研究專長為植物分子生物學。主要從事細胞膜蛋白的功能研究,在硝酸鹽轉運蛋白研究領域有卓越貢獻。2021 年蔡宜芳特聘研究員榮獲美國國家科學院(National Academy of Sciences, NAS)外籍院士(international members)。

如果妳撿到蔡宜芳掉的手機,可能很難立即知道失主是誰,甚至有點摸不著頭緒:因為她手機裡超過 80% 的照片,都是植物。為何會選擇植物作為研究領域?身為中研院分子生物研究所特聘研究員,在植物分子生物學領域貢獻卓著的她卻說,這個決定其實「不太科學」,因為起心動念是自己「真的很喜歡植物」。

因為喜歡所以好奇,因為好奇而想要知道更多:許多 love story 都是這樣開始的,而研究領域的開展又何嘗不是一場超浪漫故事呢?也因為一般人都不夠認識植物,聽不懂植物的細語呢喃,更需要蔡宜芳這般熱愛植物的科學家,擔任植物駭客兼翻譯,讓不辨菽麥者也能偷聽花開的聲音。

故事,從一株異變的阿拉伯芥開始說起。

植物對於氮肥的攝取機制與調控方法正是蔡宜芳的研究主題。圖/劉志恒攝影

分子生物學突破:發現植物吸收硝酸鹽的關鍵蛋白 CHL1

上世紀 50 年代起的「綠色革命」,大幅提升了糧食生產量,餵飽了激增的地球人口,「氮肥」在其中功不可沒。它對植物開花結果至關重要,然而植物透過什麼機制攝取氮肥?如何調控才能更有效地吸收?蔡宜芳研究的正是其中的分子機制。

氮,是生物存活的重要元素;從推動光合作用的葉綠素、各種代謝反應的酵素,到與遺傳相關的核酸中,都有氮的存在。但對植物來說,要取得氮元素卻出乎意料地困難;大氣的組成中近五分之四為氮氣,但是除了藉由少數有固氮能力的微生物以外,植物只能使用在土壤中非常少量的氮源,吸收的型態有「氨鹽」與「硝酸鹽」,其中又以硝酸鹽為主。

但是,硝酸鹽是帶電離子,無法自行通過脂質構成的細胞膜,那到底植物如何利用硝酸鹽呢?為了解開這個長年來的謎題,蔡宜芳將目光投向一棵無法正常吸收硝酸鹽的阿拉伯芥突變株,並利用當時最新發展出來的分子生物技術,試圖找到出關鍵基因。蔡宜芳表示,這個無法正常吸收硝酸鹽的突變株,在她約 10 歲時就被荷蘭研究者發現,這麼多年來在傳統技術底下被研究得相當透徹;卻直到她開始進行博士後研究,伴隨植物分子生物相關技術發展,才有方法找到關鍵的轉運蛋白。

這樣的研究自然充滿了挑戰,因為新技術還不穩固,就連實驗室老闆都曾勸她放棄。不願投降的她,決定一邊持續研究氮代謝,一邊到其他研究室學細胞膜研究的新技術,1994 年,蔡宜芳從美國回到台灣,持續研究進一步發現, 位在植物細胞膜上的 CHL1 硝酸鹽轉運蛋白,除了作為硝酸鹽的「搬運工」,還有其他異想不到的功能。在你我的印象當中,植物是被動的吸收養分:但其實當土壤中的的硝酸鹽變化時,植物會主動改變硝酸鹽的運作模式,這就是蔡宜芳團隊在 2003 年的重大發現。運作模式的改變正來自於 CHL1 蛋白的磷酸化轉換,因此 CHL1 蛋白也具備作為「傳令兵」的功能。透過 CHL1,植物便能感應周圍的硝酸鹽濃度,幫助植物調控基因表現,以便能更有效率地利用硝酸鹽。

掌握硝酸鹽吸收的調控,在農業領域十分有發展潛力,蔡宜芳的研究進一步轉向,對接實際應用,期盼為農業的永續未來提供新解方。除了 CHL1硝酸鹽轉運蛋白的機制外,她也針對阿拉伯芥如何吸收與輸送硝酸鹽到不同組織的分子機制展開探索。近期更研究探討是否能以育種或基因調控的方式,增進植物吸收硝酸鹽的效率。由於硝酸鹽非常容易在環境中流失,因此多數的氮肥施放到田間後,植物也往往吸收不了;如果可以改善植物的吸收效率,就能減少施肥的浪費,連帶減少製造氮肥耗用的能源,也讓農作物長得更好。

好消息是,透過基因調控,蔡宜芳團隊已經在阿拉伯芥、菸草及水稻上實驗成功,並取得相關專利,期待未來將授權給生物科技公司進行下一步。

培養科學研究必備品:好奇心、科學思辯與毅力

蔡宜芳從事研究的初衷是因為對植物的喜愛與好奇心,對她來說和植物有關的十萬個為什麼,猶如始終永遠拼不完的大型拼圖,從小時候就在蔡宜芳的心中佔據了重要位子,於是她「追根究柢」(如字面上意義),想靠自己解開植物現象背後的秘密。

人們對自己不了解又無法回嘴的植物充滿了誤解,往往覺得植物跟動物一點也不同,然而在蔡宜芳看來絕非如此,她表示,已經有研究發現,當我們這些動物咬下蔬菜的瞬間,植物裡頭負責傳導的的鈣離子就會產生變化。「大家都覺得植物不會動不會叫,但其實植物是有感知的。」蔡宜芳表示,植物其實都知道,只是用我們不懂的方式在表達,要靠研究才能一句一句地破解植物的密語。

圖/劉志恒攝影

當然研究也不能自己埋頭苦幹,交流非常重要。蔡宜芳擔任植物學期刊 《Plant Physiology》 編輯多年,但回憶起剛建立獨立實驗室的階段,面對那麼多來自審稿人的刁鑽問題,當時的自己也難免生氣。一旦轉換身份成為審稿人,被審的經驗也讓她更明白審查論文時該注意的重點,一來一往的思辨與答辯,反而讓她覺得很好玩。

「我自己有個突破,是因為被質疑的時候很生氣,可是不能光氣,也要想辦法解決。就在生氣的時候,想出來的方法,最後變成我們實驗室很新的工具。」而她也認為自己在替《Nature》等重要期刊審稿時,認真地給出言之有物的評論,幫她累積了領域內的信譽,才讓期刊編輯的位置找到了她。

蔡宜芳曾擔任植物學期刊《Plant Physiology》編輯。圖/《Plant Physiology》網頁截圖

像投稿審稿這般來回思辨的訓練,對科學家的養成非常重要,然而蔡宜芳觀察,科學思辨在台灣教育裡比較缺乏。她舉例,在美國課堂上,老師會要學生先讀一篇論文,接下來整堂課則要學生批評論文有什麼問題。「我們在台灣被訓練的人,都會把 paper 當作傳世經書在讀,讀懂它就覺得很開心了——要去批評它,我們真的沒有習慣。」蔡宜芳坦言那過程對她來說曾經非常痛苦,但會痛就代表該變。

她就此改變了思路:面對知識,蔡宜芳要求自己不僅要讀懂,還要有餘力批評它,說出對、錯在哪裡。蔡宜芳認為,科學就是得永遠抱持著質疑的態度,在不疑處有疑,才能找到真正的答案。「在我自己的實驗室裡面,我也一直在逼學生要去思考」。

蔡宜芳在實驗室中,會不斷要求學生思考、批判。圖/劉志恒攝影

而除了好奇心及思辨能力之外,蔡宜芳認為「毅力」也是科學家在科學界持續前進的重要特質。經驗告訴她,在科學研究中遇見失敗比遇見成功的次數多太多了,革命十次稀鬆平常,如何二十次甚至三十次之後還能繼續往前走?那絕對需要強大的毅力來抗壓才行。

說到壓力,身為科學界的女性,蔡宜芳認為,自己的成長環境中,性別造成的影響並不大,以她所在的中研院分生所為例,研究人員性別比例很平均。但若深入細究,「無意識偏見」(unconscious bias)仍難以避免。她以自己帶過的學生為例,生科領域在大學時期男女比例大約是各半,但隨著碩士、博士一路往上,男性的比例逐漸多於女性。因為許多女學生在面臨職涯選擇的時候,往往會被迫以家庭或是男性伴侶的事業為優先,這種狀況回過頭來又讓部分老師覺得「教育女生有時會是浪費」,成為惡性循環。

榮獲過許多科學成就獎項的她,時常是唯一獲獎的女性,而就在接受採訪不久前,她又獲頒一個獎項,直到頒獎當天的照片寄回到所上,「一片黑西裝裡面,就我穿黃色!」她笑道。所上第五屆台灣女科學家傑出獎得主鍾邦柱老師看到照片時,也對她苦笑說:「哎,革命尚未成功,同志仍需努力。」

「先不要去想會有這個東西,做該做的事情。真正不平的時候,不要安靜不講。」儘管環境仍待改變,蔡宜芳建議女科學人自己先跨出一步,就如同她自己一路走來的態度。

一株莫名異變的阿拉伯芥,遇上一位不放棄的科學家兼植物迷,造就了改變農業、甚至是整體生態未來的契機。如果妳的手機也跟蔡宜芳一樣,裝的幾乎全是自己感興趣、想研究的東西的照片,請別質疑自己是不是怪怪的,或許妳也將靠著研究,改變世界,這是我能想到最浪漫的事了。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。


數感宇宙探索課程,現正募資中!

鳥苷三磷酸 (PanSci Promo)_96
29 篇文章 ・ 26 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia