Loading [MathJax]/extensions/tex2jax.js

0

9
3

文字

分享

0
9
3

看看我的尖牙利爪——《動物的武器》

PanSci_96
・2016/01/07 ・5086字 ・閱讀時間約 10 分鐘 ・SR值 501 ・六年級

M150920
擬狐獸 Source: morphobank

約莫是在六千三百萬年前,恐龍消失後不久,地球上便出現最早的肉食性哺乳動物。這些肉食動物其實是雜食的半掠食者,牙齒構造也因應食性而特化,因此葷素皆宜。以擬狐獸(Vulpavus為例,體型小,跟鼬差不多大,身體瘦長還有一條細細的尾巴,可能以昆蟲、蜘蛛、蜥蜴、鳥類和鼩鼱這類小型哺乳動物為食。這隻古代掠食者的牙齒,主要的獵食工具是犬齒、門齒和一排沿著上下顎的前臼齒和臼齒。就最早期的肉食性動物化石外觀來看,那時牙齒已經特化出不同功能。犬齒比其他牙齒長,用於捕捉和咬死獵物。突起的前臼齒可以固定獵物,而臼齒則能在進食時切斷和撕裂食物。

ko
從左自右依序為門齒、犬齒、前臼齒、臼齒。肉食動物的牙齒逐漸特化出幾個群組,專門用於特定的任務,諸如刺穿、切斷或粉碎。

長時間下來,這幾類牙齒針對特定功能演化得更具效率。與此同時,隨著肉食性動物數量遽增,牙齒的功能也開始改變。許多物種開始鎖定特定獵物,物種間也開始因應獵物差異而產生不同的使用需求。肉食性動物的牙齒往不同方向演化,端視其獵物和狩獵習慣而定。儘管有些物種保留了雜食性動物的基本齒形,多數物種包括狼、土狼、貓和劍齒虎這類已滅絕的貓科動物,都發展成高效率的「超級肉食性動物」,完全特化成肉食性。

狼在這群超級肉食性動物中是屬於「十八般武藝樣樣俱全」的通才型掠食者。牠那細長的上下顎能以驚人的速度緊緊咬合,在與大型獵物搏鬥時,強韌的犬齒能一口咬住牠們的側腹或腿,將獵物狠狠摔在地上。狼是成群狩獵,將獵物往幾個不同的方向拉,便可以扳倒體型遠比牠大的動物。獵殺後,狼則使用具兩種功能的臼齒來撕開屍體。鋒利的外緣就像剪板機一樣刺穿肌腱和肉食動物的牙齒逐漸特化出幾個群組,專門用於特定的任務,諸如刺穿、切斷或粉碎。鋒利的外緣就像剪板機一樣刺穿肌腱和肉,而且這些牙齒仍然有一定厚度,足以將小骨頭壓個粉碎。

stA_QkU4uJsUDLVHyHmzEfR1AffinWVMgqrUJ2F7nfA
狼、鬣狗、貓和劍齒虎的牙齒各不相同,尺寸和形狀都不一樣。

鬣狗也成群狩獵,但牠們的上下顎和狼非常不同。鬣狗犬齒比較短,臼齒也失去貓科祖先的「雙重功能」。鬣狗的臼齒不能切割食物。鬣狗能夠粉碎骨骼,吃骨髓,牠們的牙齒較寬,也比較堅硬,牙帽是圓的,就像教堂圓頂。牠們的臉和顎都很短粗,使牙齒帶來巨大的結構優勢。這是基本物理學:施力點越接近槓桿的關節,就越強大。短顎上的牙齒不會離上下顎的開合點太遠,雖然會導致速度變慢,卻帶來強大的咬合力(這一點與狼正好相反,牠們的犬齒位於長顎的遠端,儘管咬合速度快,但力道稍嫌不足)。鬣狗似乎是用下頜骨閉合速度來換取關緊上下顎的力量。牠們的咬合力非常強大,再搭配上牙齒的形狀,適合用於咬碎骨頭,而不是穿刺或撕裂肌肉。

-----廣告,請繼續往下閱讀-----

貓科動物的吻部和顎也是相對短的,在力學上有利於閉合,而不是速度。而且,就跟鬣狗一樣,牠們的臼齒已特化成單一功能。這項功能是撕裂,而不是粉碎。貓的臼齒咬合面很窄,也很銳利,處理四肢骨骼時毫無用武之地,但非常適合用來撕裂肌肉。再者,跟鬣狗不一樣,貓科主要武器不是臼齒而是犬齒。牠們的犬齒會刺穿獵物厚厚的皮,切斷脊椎。

貓科動物還有另一種特化功能。牠們可以反轉自己的前肢,也就是扭轉腳踝將腳踏向身體內側。擁有靈活的前肢,讓貓科動物能攀附到獵物身上,找好位置,再精確地咬下去,發揮強大的咬合功能。牠們犬齒細長,非常善撕裂,但要是被甩下來,就很容易弄斷。最好能夠在發動一波波攻擊時,先爬到在獵物身上,量好位置,將細長牙齒直接刺穿皮下。要是咬的時候沒能固定獵物,讓其扭動,犬齒可能就折斷了。

koi
劍齒類的貓科動物可能是從樹上跳下,攻擊毫無戒心的小乳齒象。

由於前肢靈活,貓科動物異常敏捷,能夠猛撲,還能爬樹,就像之前我在家後面遇到的山獅。(古老格言說貓總是用腳著地,真是再貼切不過,遠超過大多數人的理解。)儘管貓科動物為其他動物帶來致命的危險,牠們當中還是有些黯然走上滅絕之途,好比說劍齒虎。劍齒虎的犬齒不是普通的大,等於是把二十五公分長的匕首,足以切斷長毛象的脊椎。劍齒虎的牙齒要和精心調整過形狀的顎骨和頭骨以及身體姿勢一起搭配,才能發揮功能。長時間下來,上顎變短,甚至比其他貓科動物都還要短小,由於縮短了犬齒到上下顎接合處的距離,產生了巨大的咬力。劍齒虎上下顎都很厚,還可以將嘴張開到不可思議的程度。劍齒虎在使出大犬齒,刺入獵物前,必須一直拉住自己的下顎,就好像鬆開底板的訂書機

那樣。最後,縮短的面部和壓縮的顱骨讓整個頭往後縮,讓犬齒在攻擊時能夠向前推。一切的調整都是為了要讓肉食性動物成為狩獵高手,但姿勢和頭形的改變要付出高昂的成本這讓牠們跑起來——基本上是讓他們的一舉一動——都變得既麻煩又怪異。

-----廣告,請繼續往下閱讀-----

隨著牙齒的尺寸發展到極致,劍齒虎能夠撲殺的獵物也越來越大。在那個充滿雷獸、巨型樹懶和乳齒象的時代,確實是一大優勢。在整個哺乳動物譜系中,至少有四群動物演化出劍齒,前兩個分屬現已滅絕的掠食性動物,肉齒目動物(creodonts)如擬貓獸(Apataelurus sp.)和獵貓科(nimrarids),如弗氏巴博劍齒虎(Barbourofelis fricki),還有貓科動物,例如彎齒貓和短劍齒貓,最後則是有袋類動物的袋劍齒虎(Thylacosmilus atrox)。我們多半都將現存的有袋動物與澳洲聯想在一起,但有袋哺乳動物其實曾分布在世界上絕大多數的地方,而有袋劍齒虎則是分布在南美洲。

Smilodon_fatalis
劍齒虎 Source: wikipedia

在拉布雷亞(the La Brea)瀝青坑所發現的完好短劍齒貓(Smilodon fatalis)標本,顯示這種動物比現代獅子小,但體重是獅子兩倍(約為兩百七十公斤),具有束狀的尾巴。這些短小粗壯的動物大概不曾追捕獵物,幾乎可以肯定牠們只進行近距離伏擊。從遺留的化石看來,貓科劍齒類專門攻擊行動緩慢的笨重獵物,諸如駱駝和年輕的猛獁象與乳齒象,而從牠們的前肢形狀看來,強烈暗示牠們是從樹上跳到龐然大物的背上。

肉食性動物的牙齒,不是因為不能演化或沒有演化而維持得如此小巧。牠們牙齒小,是因為具有一口大牙的個體在獵捕特定獵物時表現不好。牙齒和身體主要結構總是不斷在得失之間權衡,眼下所見是對抗選汰力量的平衡結果。大武器也許更能殺死獵物,但也可能妨礙打獵。具有異常大武器的個體肯定不時會在掠食性動物的行列中演化出來,但若是在捕捉獵物上表現不佳,長時間下來,這些終極武器都可能消失無蹤。

貓科劍齒類動物便是其中一個典型。在每一個例子中都可以看到,犬齒演化到終極大時,需要大幅調整顎骨和顱骨形狀。要將嘴打開到這麼大,上下顎骨的關節也不可能不經修改,要將長牙插入獵物頸部或喉嚨,頭還需要大幅往後傾。貓科劍齒類動物都跑不快,純粹因為牠們長得太奇怪了。靠速度來追捕獵物的肉食性動物,絕不可能長出巨大的武器。巨大的牙齒不僅阻礙到跑步,就連吃東西和其他活動都變得很困難。光是把食物吃下去這樣簡單的動作都因為巨大犬齒而顯得笨拙。劍齒類動物不得不把臉轉向一邊,側對獵物屍體,從嘴巴側邊來啃食,好繞過那對宛如匕首的巨大犬齒。

-----廣告,請繼續往下閱讀-----

就是因為終極武器的弊病,大多數掠食者身上的武器仍然小巧。不論是牙齒、爪子還是螯,都很銳利,足以致命,但並不會特別大,或是特別壯觀。好比說山貓,犬齒長得比旁邊牙齒更長,適合分離野兔脊椎骨,但也不會大到妨礙靈活度,或是轉頭的角度,更不會大到損及速度和協調能力,這兩項特點可是山貓生存的重要條件。

18413681149_23c9b50dcc_o
山貓 Source: Kaede Wu

牙齒的權衡取捨,主要在於形狀和大小。一顆牙齒無法勝任所有工作。犬齒這類細長的牙齒在刺穿皮膚、肌肉或內臟方面特別好用,但要是撞到骨骼,可能就會斷掉。堅固又如刀刃般的牙齒,若是與其他同樣尖銳的牙齒在上下顎整齊排列,就能切割肌肉和肌腱。但要是拿來壓碎或磨碎骨骼,可能就此斷裂,甚至連不小心碰到入口的食物骨頭,都可能損傷,讓牙齒失去功能。另一方面,齒面較寬、堅固的圓頂形臼齒則非常適合用來咬斷骨骼,吸取營養的骨髓,但這些在切割或刺穿上則毫無用武之地。

提高一方面的性能可能會減損在另一方面的表現,因此生物演化必須妥協。在這種情況下,僅具備切割、穿刺或磨碎等單一功能的牙齒就成了日益特化的掠食者武器演化的阻礙。哺乳類的成功演化,一定程度上可歸功於牠們無意間發展出一種機制,多少能避免妥協。哺乳類中的掠食動物,從不同類型的牙齒演化中解套,讓口腔內的每組牙齒演化出不同功能。如此一來哺乳類的上下顎上便附有三或四種工具(例如犬齒、臼齒和前臼齒),各司其職。

gWIfFFOzwxkf-n9SpimNTlkTGrHRMbNTPj53EXCRgv0
暴龍和其他肉食性恐龍缺少臼齒和前臼齒這類特化的牙齒組合。

這在演化史上是相當不容易的壯舉,其他類的掠食動物從來沒有達成過。就拿掠食者當中惡名昭彰的獸腳類恐龍來說,這包括異特龍(Allosaurus)、食肉牛龍(Carnotaurus)和赫赫有名的暴龍或稱霸王龍(Tyrannosaurus rex),他們全都沒有類似臼齒或前臼齒的構造,沒有剃刀似的邊緣可以切割,也沒有圓頂形的牙帽能磨碎食物;牠們幾乎所有的牙齒都類似犬齒。結果便是,儘管獸腳類恐龍在體形上分化出大小,讓牠們多少得以鎖定不同獵物,但這樣的多樣化從未達到肉食性哺乳類間的生態廣度。簡單來講,就是獸腳類恐龍中從來沒出現能咬斷骨骼,或是長出劍齒的。

-----廣告,請繼續往下閱讀-----

跳脫僅維持一種特定牙齒的形狀和功能,這讓掠食性哺乳類一舉成為專業的獵人,並獲得令人難以置信的成功。但就算是這樣的解決方案也稱不上完善,還是受限於一些基本限制。犬齒、前臼齒和臼齒仍舊是排在同一根顎骨上,這有點像是同時打開瑞士刀上所有的工具。這意味必須要仔細咀嚼,將食物就定位,把骨頭送往圓頂形的臼齒處,肌腱和肉類留在具有刀刃的前臼齒,咀嚼時還要避開犬齒。

我們在法國餐廳細嚼慢嚥的享用一道牛排,對這些野外的頂級掠食者來說是難能可貴的奢侈體驗,牠們得面對競爭對手長久激烈的競爭,隨時提防對手竊取剛獵殺的戰利品。因此,在現實生活中,動物必須迅速地切割和粉碎獵物,在急速的現實世界中,難免有失誤。鋒利的切割面因而磨損,或是牙齒斷裂。針對現生和滅絕的掠食動物做的調查顯示,牙齒自然破損率驚人的高,每四顆牙齒中就有一顆是碎掉、破裂或損壞。

Bluefin-big
鮪魚 Source: wikipedia

大小和功能之間的平衡,同樣可以在掠食性魚類的牙齒和顎骨上發現,尤其是在海洋這類開闊的水域中,像鮪魚和扁鰺這類洄游性掠食者。牠們就跟肉食性哺乳類動物一樣,通常在動物群體中都是頂端掠食者,體型可以長到十分巨大。大魚頜骨和牙齒都很大,能夠一口吞掉大型獵物。嘴巴小的小魚,無法吞下大型獵物,純粹因為身體結構上無法這麼做,嘴巴就是塞不下。掠食性魚類必須快速游泳來追逐和捕捉獵物,而且就跟山貓一樣,這些掠食者也經常失敗。事實上,牠們的獵捕行動一半以上都失敗,因此,能夠提高游泳速度的體型成了關鍵。

原則上,在不改變體型的情況下,魚應該能增加下巴和牙齒的大小,如此可以吞下更大的獵物,甚至可能大過追捕者自身,而且免去維持特大身體的代謝需求。在這裡,又遇到同樣的老問題,要在兩股相對勢力之間求取平衡。下巴尺寸會在兩方面影響到個體表現:一是吞嚥,另一個是捕捉獵物。誠然,一張大嘴自然能夠吃下更大、更多樣化的獵物。但這樣的性狀經常遭到淘汰,因為穿過水中時,大嘴會引發一股拖力。對多數開放水域的掠食性魚類來說,天擇同時青睞游泳速度和吞食大型獵物的血盆大口,這是兩股反向的力量。一隻魚必須要同時達成這兩項,最後便是長出具有功能但稱不上壯觀的頜骨和牙齒,以及大小合宜的武器。

-----廣告,請繼續往下閱讀-----

1225-臉譜-動物武器-立體書封-new300 本文摘自泛科學2016年1月選書《動物的武器》,由臉譜出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
1

文字

分享

1
1
1
被垃圾科學耽誤的人生:哈沃德的冤獄與平反——《法庭上的偽科學》
商周出版_96
・2024/01/04 ・4615字 ・閱讀時間約 9 分鐘

紐約市沃斯街四十號,無辜計畫

哈沃德的故事:因被冤枉身陷囹圄三十四年

基思.艾倫.哈沃德可以說是一名倖存者。他被維吉尼亞州錯誤定罪,但是逃過死刑執行。而且還是兩次。梅克倫堡矯正中心在一九八四年爆發了所謂的「大逃亡」(The Great Escape)1,那是有六名死囚越獄的空前維安漏洞,哈沃德面對其後的嚴密禁閉也倖存了下來。哈沃德面臨過殘酷的獄警、僅存的希望全被澆熄、父母的死訊,他的身分也被侵蝕到只能淪為 1125797 號罪犯,但是他倖存了下來。

他在維吉尼亞州刑罰體系中所有最嚴酷的監獄裡倖存下來了,先是梅克倫堡,接著是奧古斯塔(Augusta),然後又在蘇塞克斯二監(Sussex II)待了十年,還有現在的諾托韋,他在諾托韋那樣環境惡劣的監獄醫務室裡進行了重大的腸道手術,並且活了下來。雖然很勉強。

圖/unsplash

在被錯誤監禁的三十四年裡,哈沃德排的這條等待救援的隊伍從未向前移動。大量監禁讓他身邊的囚犯如雨後春筍般湧現,因此這條隊伍只會越排越長。他最初因為傑西.佩隆的入室謀殺案和對他妻子特蕾莎.佩隆的性虐待案而被關到梅克倫堡時,維吉尼亞州每十萬名居民中有大約一百五十人遭到監禁。

當我們發現特蕾莎用過的性侵採證套組、把它送去做 DNA 檢驗時,維吉尼亞州的監禁率已經超過每十萬名居民有四百五十多名囚犯,每十萬名黑人居民則是超過兩千四百人。2在那個看不見的國度裡,到底住著多少無辜的 1125797 號囚犯,我們不會知道。但是統計顯示,在維吉尼亞州和全國有數千名無辜的人被關在牢裡;他們大部分人都永遠不會再拿回他們的名字了。

-----廣告,請繼續往下閱讀-----
圖/unsplash

維吉尼亞州剝奪了哈沃德生命中的每一個里程碑。他沒能結婚,沒有小孩,沒有做過除海軍之外的其他職業。他在二十幾歲之後,除了監獄檔案的照片,就只有一張自己的照片。他具有指標意義的生日,三十歲……四十歲……五十歲……六十歲,都是在鐵牢裡度過的,他只是沒死而已。

事情一開始不是這樣的。他也曾經奮鬥過。他從獄中出庭為自己辯護一事,曾經讓他的有罪判決遭到撤銷。為他贏來一次重新審判的機會、再一次讓真相大白的機會。但是當陪審團第二次做出有罪判決、上訴法院也維持這個裁決時,哈沃德體內的鬥志突然被掏空了。他決定放棄,讓餘生都在監獄裡度過。就像他有一次對我說的:「我就待在牢裡等死算了。」

重新審判:不可靠的咬痕證據

就訴訟而言,二○一六年發現了性侵採證套組,州也同意進行檢驗,這使得前進的道路變得清晰。哈沃德和史蒂夫.錢尼不同,他不需要維吉尼亞州法院或是其他法院承認咬痕證據完全不可靠。他不需要新法律或是定罪完善小組就可以重返法庭。也不需要當初把哈沃德的牙齒和特蕾莎.佩隆大腿上的咬痕「配對」的六名牙醫取消他們的證詞。

圖/unsplash

哈沃德很幸運:他有 DNA 。檢測開始之後,就會像是一顆小圓石被丟出來,滾下山坡引起 被壓住的真相一波又一波的雪崩。其規模之大,會讓哈沃德甚至不需要重回法庭。

-----廣告,請繼續往下閱讀-----

他幾乎立刻就被排除在可能的嫌疑人之外,也就是說所有檢驗項目,包括性侵採證套組、凶手蓋在特蕾莎頭上的尿布,以及她被性侵時的沙發墊,上面的生物證據都不可能是他的。

我的辦公室裡傳來更多歡呼聲。這種感覺不同於最初發現物證箱時的那種驚喜。是好消息,但也是預期中的結果。無辜計畫法律團隊的每個人都相信基思.哈沃德是清白的,也都知道他是清白的。

圖/unsplash

之前在訴訟中移交的文件就已經證明了:刑事專家不實宣稱在犯罪現場收集到的血清證據,根據在 DNA 之前的血型技術無法確定。其實在審判之前就可以將哈沃德排除在取樣之外了。後來他又被排除在 DNA 證據之外,就是理所當然的了。

接著,我們得知 DNA 分析人員可以從保存的生物樣本中發展出完整的基因輪廓。這表示除了可以排除哈沃德是 DNA 的來源,甚至還有可能得知到底是誰的 DNA ;不同於史蒂夫.錢尼案中的 DNA 已經受到毀損,只能夠做到排除錢尼。

-----廣告,請繼續往下閱讀-----
圖/unsplash

從每一件證據中提取的 DNA 輪廓都沒有更新的資訊。它們都來自同一名男性,既不是基思.哈沃德,也不是特蕾莎的丈夫傑西。反而是一名陌生人把他的 DNA 留在整個犯罪現場。發現證據的位置和特蕾莎的證詞完全一致,因此顯得更有說服力,這份證據也與哈沃德自己的陳述一致;哈沃德說他從來沒有進過佩隆家。

證人誤認是錯誤定罪一大主因?

這在大多數州就足以推翻有罪判決了。但也還是有可能出現荒謬的「沒被起訴的共同射精者」理論。不過,這個案件中有一名受害者還活著。特蕾莎強忍著痛苦和性侵她的人共度了三小時。她知道那天晚上只有一個入侵者。一名殺了她丈夫的凶手。一個「咬了她的人」。

圖/unsplash

早在 DNA 排除哈沃德之前,特蕾莎本人就為哈沃德的清白提供了最有說服力的證據:她拒絕指認哈沃德。哈沃德是因為咬了他的女朋友而被逮捕,而且還戴著手銬,在這樣容易誤認的情境中,特蕾莎都沒有指認哈沃德就是毀了她家庭的那名水手。

她的這個立場在兩次審判中都沒有絲毫動搖。許多犯罪受害者很可能會接受暗示,或是不論有意或無意,急著指認被警方確信是凶手的那個人。的確,證人指認時的誤認,通常是因為警方的建議而導致的無心之過,是錯誤定罪的一大主因。

-----廣告,請繼續往下閱讀-----

除了咬痕,另外的唯一證據就是駐衛指認了哈沃德。然而,即使在當時,他的證詞也是勉強得來而且不可靠的,我們得知在取得他的證詞時,用了可以「強化」記憶的祕密催眠,因此顯然缺乏可信度。

圖/unsplash

即使用催眠誘導的指認可以相信,不過駐衛也只是說在襲擊案發生當晚,他有看到哈沃德回到基地。是的,他是說那個人穿了血跡斑斑的制服,不過那人其實不是基思.哈沃德,而且在當時的紐波特紐斯,喝醉酒的水手在酒吧跟人打架,然後滿身是血回到船上,也不是什麼罕見的事。歸根究柢,不論證人指認的這番話具有多少分量,它都不代表哈沃德那天晚上有進入佩隆家。只有洛威爾.萊文和阿爾文.凱吉的專家證人證詞明確說出了這一點。而 DNA 也證明了兩位牙醫是錯的。

真正的兇手到底是誰!?

哈沃德的案件已經走向崩解。真正的證據(affirmative evidence)不是指向他有罪,而是指向另一個第三人。無論在哪一州,這個「新發現」的證據應該都對推翻任何一個有罪判決綽綽有餘了,但是維吉尼亞州和大多數州都不一樣。維吉尼亞州是全美國對無罪主張最有敵意的州之一。被判無期徒刑的囚犯很少有活著走出來的。要讓無辜者重獲自由,通常前提是必須破案。

然後「聯合 DNA 索引系統」(CODIS)就找到他了:在訴訟中喊出了「將軍!」

-----廣告,請繼續往下閱讀-----
圖/unsplash

根據美國的 DNA 數據庫「聯合 DNA 索引系統」,確定性侵取證套組、沙發墊和尿布上的 DNA 是來自一名叫做傑里.克羅蒂的人。在這起性侵謀殺案發生時,克羅蒂是卡爾文森號航空母艦的一名水手,這艘航空母艦當時停泊在紐波特紐斯的船塢。

基思.哈沃德也在這艘船上服役。克羅蒂和哈沃德長得有點像,他曾經因為綁架罪而在俄亥俄州的監獄服刑,並在十年前死於獄中。在哈沃德入獄期間,他還犯下其他暴力犯罪,但是都沒有像一九八二年對佩隆一家的暴行那樣殘忍;當然,除非克羅蒂還犯了其他沒有被偵破的案件,或是被以為已經破案的犯罪。

全美國對無罪主張最有敵意的州?

媒體壓力再次升高。但不是像一九八二年那樣,當時行凶的水手逍遙法外,因此有兩名美國參議員敦促要盡速逮捕他;這次的壓力是要推翻多年前因為媒體推波助瀾而造成的有罪判決。

圖/unsplash

弗蘭克.格林(Frank Green)是《里奇蒙時報》(Richmond Times-Dispatch)的記者,他長期以來都對維吉尼亞州對無辜者的敵意有批判性觀察,他詳細報導了哈沃德的故事,從聲請推翻他的有罪判決的那一刻起。連諾托韋裡面的囚犯都注意到了。

-----廣告,請繼續往下閱讀-----

哈沃德在監獄裡的朋友們都為他打氣。他們開始從監獄圖書館的報紙上剪下與哈沃德案件有關的新聞剪報,並保留給他。隨著哈沃德的案件從一團混亂的垃圾科學訴訟,轉變成教科書等級的 DNA 平反案件,格林的報導刊登位置也越來越靠近頭版。當哈沃德的聲請在等待維吉尼亞州最高法院的決定時,他成了頭版新聞,而當 DNA 檢驗證明哈沃德是無辜的時候,他直接登上頭條。

圖/unsplash

既然已經在「聯合 DNA 索引系統」找到符合者了,但凡有一點基本的正當程序概念,都會覺得繼續監禁哈沃德是不可接受的。他顯然是無辜的。任何殘存的反對意見都消失無蹤了。

總檢察長在一場匆忙召開的新聞發布會上,公開承認哈沃德是無罪的,並要求該州高等法院盡速對其聲請做出裁決。維吉尼亞州最高法院在第二天就宣布基思.哈沃德是一個無辜的人。

——本文摘自《法庭上的偽科學》,2023 年 12 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

原文注釋

  1. Bill McKelway, “From the Archives: How the 1984 Escape from Virginia’s Death Row Happened,” Richmond Times-Dispatch, May 30, 2009,瀏覽日期二○二一年七月五日,richmond.com/from-the-archives/from-the-archives-how-the-1984-escapefrom-virginias-death-row-happened/article_19ea1684-9af2-5d24-86ab-5875eaf2068c.html。 ↩︎
  2. Prison Policy Initiative, Virginia profile,瀏覽日期二○二一年七月五日,www.prisonpolicy.org/profiles/VA.html。 ↩︎
-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
【成語科學】馬齒徒增:你的馬今年貴庚?扳開嘴讓我看看!
張之傑_96
・2023/09/06 ・1033字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

馬的牙齒,隨著年齡增加,會有顯著的變化。買馬的人,都會扳開馬嘴,觀察牙齒,這樣就能判斷馬的年齡。這個從生活中得出的經驗,引伸出成語「馬齒徒增」,比喻年齡白白增加,卻沒什麼成就,是句自謙的話。

談到這裡,讓我們先造兩個句吧。

這些年來馬齒徒增,一事所成,真是愧對父母、師長啊!

他事業有成,卻常說自己馬齒徒增,顯示他的虛懷若谷。

這個成語最早見於《穀梁傳‧僖公二年》:「璧則猶是也,而馬齒加長矣。」因此這個成語也可寫成「馬齒徒長」。章老師說過,孔子著的《春秋》,用字遣詞極其簡約,不解釋很難看懂。解釋《春秋》的「傳」有三種,那就是《公羊傳》、《穀梁傳》和《左傳》,《穀梁傳》就是其中之一。

「璧則猶是也,而馬齒加長矣。」意思是說:「璧玉還是老樣子,馬的牙齒卻加長了。」難道馬和老鼠一樣,牙齒可以不停的生長?當然不是。這裡的「加長」,指的是牙齒的變化。

-----廣告,請繼續往下閱讀-----
馬齒加長的加長是指牙齒的變化,而非一直增長。圖/Giphy

馬和人類一樣,也有乳齒和恆齒的分別。馬到了兩歲半左右,乳齒開始脫落,逐漸換成恆齒。

在動物學上,恆齒的排列稱為「齒式」,馬的齒式是 3、1、3、3,表示雄馬每一側(左側或右側)及每一面(上顎或下顎)各有 3 顆門齒、1 顆犬齒、3 顆前臼齒,3 顆臼齒。亦即雄馬有 12 顆門齒,4 顆犬齒,12 顆前臼齒,12 顆臼齒,總共 40 顆。母馬沒有犬齒,總共 36 顆。

馬一生下來就有 4 顆門齒(上下顎各 2 顆),4-6 週再長出 4 顆,另 4 顆要到 6-9 個月才長出來。至於前臼齒,出生後不久長齊,臼齒要到換成恆齒後才陸續長出來。

從乳齒換成恆齒的的過程大致如下:10-12 個月,長出第 1 顆臼齒。兩歲左右,長出第 2 顆臼齒。兩歲半,脫換中央門齒,同時脫換第 1-2 顆前臼齒。三歲半,脫換另兩顆門齒,同時脫換第 3 顆前臼齒。四歲半,脫換最旁邊的門齒。4-5 歲,雄馬長出犬齒。六歲,長出第 3 顆臼齒(共 4 顆)。

-----廣告,請繼續往下閱讀-----
馬頭骨。圖/wikimedia

小朋友,如果你要買一匹兩歲的小馬,要根據哪些指標?如果你買的雄馬已長出犬齒,那麼牠至少有幾歲了?

當恆齒長齊了,根據門齒的磨損情況,可以進一步判斷年齡。總之,有經驗的人,一看馬的牙齒,就可得出許多訊息。

-----廣告,請繼續往下閱讀-----