1

0
0

文字

分享

1
0
0

魚目混珠 以假亂真

大海子
・2011/11/08 ・3066字 ・閱讀時間約 6 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

從眼說起

眼睛被稱為靈魂之窗,既是流露情感、表現生命的出口,也是吸收外界繽紛變化的入口。化妝品中之所以從未缺少和裝扮眼睛有關的眼影膏、假睫毛、修眉用品等,就是因為透過高明的修容技巧,往往可以讓丁點大的瞇瞇眼瞬間變成萬人迷的大眼睛,甚至是放「電」的電眼。簡單來說,就是希望引人注「目」。就因為人眼睛的一舉一動,一開一閤,往往成為別人閱讀心思的焦點,於是自古有「眉目傳情」、「使眼色」等詞,正說明眼睛在生活溝通上扮演著舉足輕重的角色。

然而眼睛也容易被矇騙,沙漠中出現的海市蜃樓,就是因為光的折射所產生的幻影;電影則是把靜態圖像快速連續播放而呈現出動態影像。這些都是生活中常見的例子,因此「眼見為憑」有時還真說不出一個標準。視覺的重要性和個體生存息息有關,雖然失明尚不至於在一時之間有生命危險,卻會造成個體生活各方面的不便。但個體透過視覺所獲得的環境資訊,往往受到個體生理功能、心理認知、經驗多重影響而有不同的解讀,產生不同的意義,進而影響個體的反應。所謂「看走了眼」、「看錯了」,其實應該解讀成客觀的事實被主觀地解讀之後所產生的心理反應。

喪失視覺也易使個體誤入危險之中而全然不自知,間接影響個體的生存。且眼睛所在部位靠近個體中樞神經系統的腦部—維繫著全身生理功能運行和掌控個體反應行動的樞紐,一旦受到傷害,連帶所引發的一連串骨牌效應,往往可能造成無可避免的惡果—喪失生命。從戰略的觀點來看,打擊敵人如能擊中要害或癱瘓敵人的視覺,就可以輕易擊潰敵人。因而保護雙眼,避免受到傷害,成為不可或缺的措施。

生存是所有生物的基本訴求,為了填飽肚子,必須四處行動獵食,因而個體常面臨隨時遭受天敵攻擊的挑戰。為了能在捕食和被捕食之間取得平衡,以便獲取最大的利益,能在自然界減少被天敵攻擊的機會,或受攻擊時增加逃亡的機會,個體勢必發展出動態性的生存策略。

-----廣告,請繼續往下閱讀-----

在大自然界,獵物為了逃避天敵的襲擊,除了提高警戒,保持動作敏捷性,遇危險時能隨時逃入避難所(如洞穴中)外,尚可利用自身外形上的特殊紋路,達到偽裝欺敵或恐嚇的效果。其中類似真實眼睛的假眼點(false eye spot),就是許多生物的禦敵策略之一。

偽裝的真眼

在眼睛為蒐集環境資訊而必須外露卻又必須保護的考量之下,把雙眼加以偽裝,便能使其在維持視覺功能的基本運作下,又能降低眼睛被發現的風險。套句俗話說,就是讓天敵若不仔細「瞧」還真的看不出來。

既然每種生物的外形各有獨特性,如魚的外形就是流線形加上一個分叉狀的魚尾巴,因此當形狀特徵破裂不完全,輪廓也不復存在時,生物形體在別的個體眼中自然而然就「消失」在環境中。若能再利用視覺的呈像原理,使用相同色系讓對比效果差,使物體的輪廓不易顯現出來,就有欺敵的功用了。

舉例來說,鞍斑蝶魚身體後側上方有一明顯的大黑斑,破壞了魚輪廓的連續性,造成魚體外廓不成魚形,因而不易被天敵看出是完整的魚體;黃鑷口魚黑色的雙眼半隱入黑色頭部之中,只露出一半眼睛,半黑半白的頭部和身體明亮的黃色對比鮮明,魚形輪廓顯得支離破碎,讓敵人一眼望去,不知有魚的存在。這種利用互補顏色間接讓魚形完整性消失,且又達到隱密眼睛的功效策略,可說妙不可言。

-----廣告,請繼續往下閱讀-----

故弄玄虛的假眼點

「以假亂真、虛晃一招」是一種偽裝技巧,是使用不掩人耳目,反而引人注目的逆向思考所發展出來的戰術。既然躲也躲不掉,那就大大方方地顯露出來,讓敵人一眼就分辨出物體的所在,但其實是一個不折不扣的欺敵目標。

像某些種類的蛾類或蝴蝶棲息時,在翅膀下緣或周邊會露出兩個極大假眼點,這些假眼點又大又圓,輪廓明顯,顏色鮮艷,對比強烈,大老遠就可以看得出來是一雙烏溜溜的「大眼睛」。乍看之下,敵人會誤以為是龐然大物的眼睛,讓掠食者望之生畏,不敢靠近,而被獵殺的生物正藉這策略達到不戰而「驅敵」的心理戰效果,進而保護自身的安全。

海洋魚類中借用斑點或假眼點來避敵的種類比比皆是,其中又以棲息在陽光豔麗,水質清澈透明的珊瑚礁中的蝴蝶魚是箇中翹楚。海洋生物學家曾對蝴蝶魚身上的假眼點進行一系列的研究,發現假眼點之所以能在蝴蝶魚身上產生極大的保護作用,在於它可能具有欺敵、誤導或威嚇等多項功能。而為了能充分發揮這些功能,假眼點出現在魚體身上的部位,就是關鍵因素之一。

一般而言,蝴蝶魚的假眼點大都分布在魚體生理機能比較不重要的位置上,如背部上緣處,而非內臟所在的腹部。鏡斑蝴蝶魚就是最佳的例證,牠在鮮黃亮麗的體表上,背鰭下緣有一個明顯的假眼點,真正的眼睛則隱藏在深黑色眼罩(eye mask)內,不輕易被敵人看出。

-----廣告,請繼續往下閱讀-----

其中的原因在於眼睛位於頭部,是神經中樞所在,而大腦神經中樞掌管所有的生理機能,一旦受到攻擊破壞,所有的生理機能很可能隨即受到連帶的影響,個體行動能力也可能停止,甚至會癱瘓不能行動,遑論迅速逃離天敵的獵捕。由此可知,眼睛常是掠食者攻擊獵物的最佳參考點是有其道理的,因為若能有效攻擊獵物的眼睛,往往就可以達到一擊致命或癱瘓獵物的最佳效果。

有些魚類身上的假眼點在背鰭下緣、臀鰭邊緣或尾柄,這些位置雖略有不同,但都具有異曲同工之妙—遠離真正眼睛的位置。例如揚旛蝴蝶魚的假眼點出現在背鰭近末端上緣處,而背鰭後緣是質地柔軟的鰭條,即使受損了,既不會對個體產生生命的危險,又不會對游泳能力產生巨大的影響。在受到攻擊的瞬間,個體仍可以藉由尾鰭大力的擺動,迅速逃離天敵的攻擊範圍,躲入鄰近洞穴中或逃之夭夭。

有些蝴蝶魚身上的假眼點較真實眼睛大2至3倍,這些較大的假眼點從遠處看就是明顯可見的圓點,因而有讓天敵誤判發動攻擊距離的欺敵作用。因體型較大的物件往往會誤導掠食者,產生獵物和己身之間距離較近的錯覺,因而會在距離獵物較遠處就發動攻擊,結果使得獵物提早察覺掠食者的攻擊動向,而有充分的時間逃避或適時採取威嚇的動作,以防禦所遭受到的攻擊。

總括而言,假眼點受到天敵攻擊的蝴蝶魚,因為真實眼睛所在的頭部未受害,在受襲擊的一瞬間,雖受到驚嚇,但仍保有清晰的意識與奮力掙脫掠食者的逃避能力,頂多只是受到皮肉之傷或損失幾支背鰭的軟條而已,而非被擊中要害,喪失生命。

-----廣告,請繼續往下閱讀-----

老少皆宜 蔚為流行

以假亂真的偽裝技倆不僅適用在魚成體,許多種類的幼魚(juvenile)時期身體上都會出現假眼點,有些在背鰭,有些在尾鰭,有些則在臀鰭。雖然出現的位置因種類而異,但都有達到欺騙天敵而減少被攻擊的機會,增加生存機率的功能。雖然有些魚種類的幼魚長大之後,仍保有假眼點欺敵,但有些假眼點會消失,有些則是改變眼點出現的位置,和幼體並不相同。

這些假眼點也出現在體型較小的珊瑚礁魚類如藍刻齒雀鯛身上,在牠一身藍的體色中,只有在背鰭後半部基底邊緣出現一個黑點,顯得分外鮮明,藉此轉移掠食者的攻擊焦點。由此可見,處於危機重重的環境中,玩弄體色變化的欺敵戰術,在珊瑚礁魚類中還頗流行的。

俗話說:「一招半式走江湖。」棲息在危機四伏的大海中,魚兒若沒有演化出足以自保的招式,恐怕難逃險惡掠食者的毒手。珊瑚礁魚類發展出神奇的化妝術,運用顏色和形狀交互變化的效果,在花團錦簇的珊瑚礁生態系中,達到嚇唬天敵的目的,終能在險惡環境中存活下來。珊瑚礁魚類可說是把江湖「一點」訣發揮到極致的經典範例。

本文原發表於作者臉書網誌[2011-11-06]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

3

15
1

文字

分享

3
15
1
「菲利浦島蜈蚣」成幼鳥殺手!——在澳洲孤島上默默擔當頂級掠食者
藍羊_96
・2021/09/22 ・2038字 ・閱讀時間約 4 分鐘

冒險電影中,場景時常在偏遠不為人知的荒山野嶺,甚至住著猛獸的遙遠孤島,有著顛覆常識的生態環境和駭人怪物。然而根據新發表在《美國博物學家》的一篇論文,在現實中就有一個島嶼,由蜈蚣擔當島上食物鏈的最頂端掠食者。

此菲利浦島,非彼菲利浦島

地點位在澳洲的菲利浦島(Phillip Island)——說到這個島嶼,可能會聯想到島上每年吸引上百萬觀光客的小藍企鵝棲地,以及世界摩托車競速的主要賽場之一。

故事並非發生在這個澳洲南岸的菲利浦島,而是在距離澳洲本土東方 1500 公里遠,過去做為囚犯流放地的諾福克群島。那裡有另一個面積僅 2.07 平方公里,無人居住的菲利浦島。兩個島正巧都以 18 世紀後半的英國海軍上將亞瑟‧菲利浦(Arthur Phillip)為名,但地理位置相距甚遠。

屬於諾福克群島一部分的菲利普島(Phillip Island)。圖/維基百科

無人定居的菲利浦島兇猛島民

菲利浦島有 13 種海鳥會產卵繁殖,還有一些小型動物在此生活。其中最引人側目的居民是菲利浦島蜈蚣Cormocephalus coynei),這種蜈蚣最長可達 23.5 公分,雖然比起現生蜈蚣中最大的 30 公分等級還差一些,仍遠勝長約 10 公分的常見蜈蚣。

研究團隊調查紀錄菲利浦島蜈蚣在夜間的捕食行為,並以穩定同位素分析蜈蚣的食物來源比例,發現這種蜈蚣的食物來源,48% 來自脊椎動物,52% 來自無脊椎動物,各占約一半比例。

-----廣告,請繼續往下閱讀-----

菲利浦島蜈蚣最主要的食物是島上居住的蟋蟀、壁虎、石龍子,這些動物都小於體長超過 20 公分的大蜈蚣,算是合理的菜單。然而菲利浦島蜈蚣還有另外一個獨門佳餚,就是島上繁殖海鳥的幼雛。

菲利浦島蜈蚣(Cormocephalus coynei)。圖/ iNaturalist

菲利浦島蜈蚣的嘴下亡鸌

菲利浦島上最主要的築巢海鳥是黑翅圓尾鸌Pterodroma nigripennis),2017 年的紀錄約有 19000 對。黑翅圓尾鸌的成鳥體長約 30 公分,顯然蜈蚣面對牠們無法輕易取勝,因此脆弱的雛鳥就成為蜈蚣的下嘴目標。

菲利浦島蜈蚣會咬住黑翅圓尾鸌雛鳥的後頸並注入毒素,等雛鳥死亡後再啃食牠的頭頸部。而在兩年的調查期間,紀錄的雛鳥各有 19.6% 及 11.1% 被蜈蚣捕食。結合前面一年約有 19000 對黑翅圓尾鸌在此繁殖的紀錄來看,估計每年被蜈蚣吃掉的幼鳥在 2109~3724 隻之間。

其他在菲利浦島上繁殖的海鳥,活動期間可能跟蜈蚣活躍的夏季錯開,或是數量較少,黑翅圓尾鸌可能是菲利浦島蜈蚣最主要的獵捕鳥類。相較於脊椎動物吃節肢動物的紀錄,節肢動物大部分是清除死亡的脊椎動物屍體,像這樣反過來鳥類被節肢動物主動獵捕的紀錄非常罕見。

-----廣告,請繼續往下閱讀-----
黑翅圓尾鸌的雛鳥慘遭蜈蚣獵捕。圖/參考文獻 1

咦,蜈蚣怎麼吃到海裡的魚?

根據穩定同位素分析,菲利浦島蜈蚣的飲食中有 7.9% 是鳥類,然而魚類卻有 9.6%。住在陸地上的蜈蚣要怎麼吃到海裡的魚呢?這是另一個值得注目的問題。

據推測海鳥帶回巢中,供應給雛鳥食用的魚屍,應該是蜈蚣能吃到魚的主要來源。也就是海鳥不僅本身是蜈蚣的獵物,牠們為了育雛的投食被蜈蚣吃掉後,也帶動了海洋和陸地間的營養循環。

過去在諾福克群島流放囚犯時期,由人類引入的山羊、豬和兔子等大型動物對島上的環境造成破壞,也讓當地獨有的生態體系遭受嚴重威脅。這些外來物種在 20 世紀期間逐一從島上移除,受破壞的環境現正緩慢復原。

雖然菲利浦島蜈蚣離最大的蜈蚣還有點距離,在牠所住的環境卻已經足以佔地為王。現已滅絕的諾福克卡卡鸚鵡(Nestor productus)體型比菲利浦島蜈蚣大,但以果實為主食,顯然不會威脅到蜈蚣作為掠食者的地位。

-----廣告,請繼續往下閱讀-----
大英博物館內諾福克卡卡鸚鵡標本的畫。圖/維基百科

在島嶼生物地理學中,孤立海島上動物體型改變是一個重要的研究議題。在大陸上的大型動物,移居海島後因島嶼資源限制、天敵缺乏等因素,會縮小體型,稱之為島嶼侏儒化(Island Dwarfism);然而小型的動物卻會反過來巨大化,甚至取代原本大型動物所處的生態棲位,此現象即為島嶼巨型化(Island Gigantism)。

島嶼巨型化的案例如紐西蘭的奇異鳥、馬達加斯加島已滅絕的象鳥,以及在許多島嶼上各自獨立產生的巨大化齧齒動物;台灣在墾丁和部分離島分布的椰子蟹也是一個案例,不僅是保育類的甲殼動物,更是最大型的陸生寄居蟹。地處偏遠的菲利浦島,正是島嶼特殊生態系的一個案例,也是蜈蚣稱霸的極端案例。

參考文獻

所有討論 3

1

0
0

文字

分享

1
0
0
魚目混珠 以假亂真
大海子
・2011/11/08 ・3066字 ・閱讀時間約 6 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

從眼說起

眼睛被稱為靈魂之窗,既是流露情感、表現生命的出口,也是吸收外界繽紛變化的入口。化妝品中之所以從未缺少和裝扮眼睛有關的眼影膏、假睫毛、修眉用品等,就是因為透過高明的修容技巧,往往可以讓丁點大的瞇瞇眼瞬間變成萬人迷的大眼睛,甚至是放「電」的電眼。簡單來說,就是希望引人注「目」。就因為人眼睛的一舉一動,一開一閤,往往成為別人閱讀心思的焦點,於是自古有「眉目傳情」、「使眼色」等詞,正說明眼睛在生活溝通上扮演著舉足輕重的角色。

然而眼睛也容易被矇騙,沙漠中出現的海市蜃樓,就是因為光的折射所產生的幻影;電影則是把靜態圖像快速連續播放而呈現出動態影像。這些都是生活中常見的例子,因此「眼見為憑」有時還真說不出一個標準。視覺的重要性和個體生存息息有關,雖然失明尚不至於在一時之間有生命危險,卻會造成個體生活各方面的不便。但個體透過視覺所獲得的環境資訊,往往受到個體生理功能、心理認知、經驗多重影響而有不同的解讀,產生不同的意義,進而影響個體的反應。所謂「看走了眼」、「看錯了」,其實應該解讀成客觀的事實被主觀地解讀之後所產生的心理反應。

喪失視覺也易使個體誤入危險之中而全然不自知,間接影響個體的生存。且眼睛所在部位靠近個體中樞神經系統的腦部—維繫著全身生理功能運行和掌控個體反應行動的樞紐,一旦受到傷害,連帶所引發的一連串骨牌效應,往往可能造成無可避免的惡果—喪失生命。從戰略的觀點來看,打擊敵人如能擊中要害或癱瘓敵人的視覺,就可以輕易擊潰敵人。因而保護雙眼,避免受到傷害,成為不可或缺的措施。

生存是所有生物的基本訴求,為了填飽肚子,必須四處行動獵食,因而個體常面臨隨時遭受天敵攻擊的挑戰。為了能在捕食和被捕食之間取得平衡,以便獲取最大的利益,能在自然界減少被天敵攻擊的機會,或受攻擊時增加逃亡的機會,個體勢必發展出動態性的生存策略。

-----廣告,請繼續往下閱讀-----

在大自然界,獵物為了逃避天敵的襲擊,除了提高警戒,保持動作敏捷性,遇危險時能隨時逃入避難所(如洞穴中)外,尚可利用自身外形上的特殊紋路,達到偽裝欺敵或恐嚇的效果。其中類似真實眼睛的假眼點(false eye spot),就是許多生物的禦敵策略之一。

偽裝的真眼

在眼睛為蒐集環境資訊而必須外露卻又必須保護的考量之下,把雙眼加以偽裝,便能使其在維持視覺功能的基本運作下,又能降低眼睛被發現的風險。套句俗話說,就是讓天敵若不仔細「瞧」還真的看不出來。

既然每種生物的外形各有獨特性,如魚的外形就是流線形加上一個分叉狀的魚尾巴,因此當形狀特徵破裂不完全,輪廓也不復存在時,生物形體在別的個體眼中自然而然就「消失」在環境中。若能再利用視覺的呈像原理,使用相同色系讓對比效果差,使物體的輪廓不易顯現出來,就有欺敵的功用了。

舉例來說,鞍斑蝶魚身體後側上方有一明顯的大黑斑,破壞了魚輪廓的連續性,造成魚體外廓不成魚形,因而不易被天敵看出是完整的魚體;黃鑷口魚黑色的雙眼半隱入黑色頭部之中,只露出一半眼睛,半黑半白的頭部和身體明亮的黃色對比鮮明,魚形輪廓顯得支離破碎,讓敵人一眼望去,不知有魚的存在。這種利用互補顏色間接讓魚形完整性消失,且又達到隱密眼睛的功效策略,可說妙不可言。

-----廣告,請繼續往下閱讀-----

故弄玄虛的假眼點

「以假亂真、虛晃一招」是一種偽裝技巧,是使用不掩人耳目,反而引人注目的逆向思考所發展出來的戰術。既然躲也躲不掉,那就大大方方地顯露出來,讓敵人一眼就分辨出物體的所在,但其實是一個不折不扣的欺敵目標。

像某些種類的蛾類或蝴蝶棲息時,在翅膀下緣或周邊會露出兩個極大假眼點,這些假眼點又大又圓,輪廓明顯,顏色鮮艷,對比強烈,大老遠就可以看得出來是一雙烏溜溜的「大眼睛」。乍看之下,敵人會誤以為是龐然大物的眼睛,讓掠食者望之生畏,不敢靠近,而被獵殺的生物正藉這策略達到不戰而「驅敵」的心理戰效果,進而保護自身的安全。

海洋魚類中借用斑點或假眼點來避敵的種類比比皆是,其中又以棲息在陽光豔麗,水質清澈透明的珊瑚礁中的蝴蝶魚是箇中翹楚。海洋生物學家曾對蝴蝶魚身上的假眼點進行一系列的研究,發現假眼點之所以能在蝴蝶魚身上產生極大的保護作用,在於它可能具有欺敵、誤導或威嚇等多項功能。而為了能充分發揮這些功能,假眼點出現在魚體身上的部位,就是關鍵因素之一。

一般而言,蝴蝶魚的假眼點大都分布在魚體生理機能比較不重要的位置上,如背部上緣處,而非內臟所在的腹部。鏡斑蝴蝶魚就是最佳的例證,牠在鮮黃亮麗的體表上,背鰭下緣有一個明顯的假眼點,真正的眼睛則隱藏在深黑色眼罩(eye mask)內,不輕易被敵人看出。

-----廣告,請繼續往下閱讀-----

其中的原因在於眼睛位於頭部,是神經中樞所在,而大腦神經中樞掌管所有的生理機能,一旦受到攻擊破壞,所有的生理機能很可能隨即受到連帶的影響,個體行動能力也可能停止,甚至會癱瘓不能行動,遑論迅速逃離天敵的獵捕。由此可知,眼睛常是掠食者攻擊獵物的最佳參考點是有其道理的,因為若能有效攻擊獵物的眼睛,往往就可以達到一擊致命或癱瘓獵物的最佳效果。

有些魚類身上的假眼點在背鰭下緣、臀鰭邊緣或尾柄,這些位置雖略有不同,但都具有異曲同工之妙—遠離真正眼睛的位置。例如揚旛蝴蝶魚的假眼點出現在背鰭近末端上緣處,而背鰭後緣是質地柔軟的鰭條,即使受損了,既不會對個體產生生命的危險,又不會對游泳能力產生巨大的影響。在受到攻擊的瞬間,個體仍可以藉由尾鰭大力的擺動,迅速逃離天敵的攻擊範圍,躲入鄰近洞穴中或逃之夭夭。

有些蝴蝶魚身上的假眼點較真實眼睛大2至3倍,這些較大的假眼點從遠處看就是明顯可見的圓點,因而有讓天敵誤判發動攻擊距離的欺敵作用。因體型較大的物件往往會誤導掠食者,產生獵物和己身之間距離較近的錯覺,因而會在距離獵物較遠處就發動攻擊,結果使得獵物提早察覺掠食者的攻擊動向,而有充分的時間逃避或適時採取威嚇的動作,以防禦所遭受到的攻擊。

總括而言,假眼點受到天敵攻擊的蝴蝶魚,因為真實眼睛所在的頭部未受害,在受襲擊的一瞬間,雖受到驚嚇,但仍保有清晰的意識與奮力掙脫掠食者的逃避能力,頂多只是受到皮肉之傷或損失幾支背鰭的軟條而已,而非被擊中要害,喪失生命。

-----廣告,請繼續往下閱讀-----

老少皆宜 蔚為流行

以假亂真的偽裝技倆不僅適用在魚成體,許多種類的幼魚(juvenile)時期身體上都會出現假眼點,有些在背鰭,有些在尾鰭,有些則在臀鰭。雖然出現的位置因種類而異,但都有達到欺騙天敵而減少被攻擊的機會,增加生存機率的功能。雖然有些魚種類的幼魚長大之後,仍保有假眼點欺敵,但有些假眼點會消失,有些則是改變眼點出現的位置,和幼體並不相同。

這些假眼點也出現在體型較小的珊瑚礁魚類如藍刻齒雀鯛身上,在牠一身藍的體色中,只有在背鰭後半部基底邊緣出現一個黑點,顯得分外鮮明,藉此轉移掠食者的攻擊焦點。由此可見,處於危機重重的環境中,玩弄體色變化的欺敵戰術,在珊瑚礁魚類中還頗流行的。

俗話說:「一招半式走江湖。」棲息在危機四伏的大海中,魚兒若沒有演化出足以自保的招式,恐怕難逃險惡掠食者的毒手。珊瑚礁魚類發展出神奇的化妝術,運用顏色和形狀交互變化的效果,在花團錦簇的珊瑚礁生態系中,達到嚇唬天敵的目的,終能在險惡環境中存活下來。珊瑚礁魚類可說是把江湖「一點」訣發揮到極致的經典範例。

本文原發表於作者臉書網誌[2011-11-06]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

0
0

文字

分享

0
0
0
比傳說對決更精彩!線蟲與真菌的生死之戰
研之有物│中央研究院_96
・2018/12/11 ・3216字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

  • 執行編輯|林婷嫻  美術編輯|張語辰

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

自然界沒有一個物種是邊緣人,都是複雜生態系的一份子。其中,獵食者和獵物是生態系很常見的關係。以地球上數目最多的動物「線蟲」為例,若我們能了解它的天敵「線蟲捕捉菌」(真菌)是如何抓線蟲,就有機會找出生物防治方法,對抗危害人類或農作物的寄生性線蟲。

「蟲」──有些人看到這個字就嚇得腳軟,但對於薛雁冰而言,顯微鏡下的蟲,尤其是小小的線蟲,是會扭來扭去的小可愛。「它們雖然很小、肉眼看不清楚,但在顯微鏡下,它們有很多秘密要跟我們說。」

中研院分子生物研究所的薛雁冰助研究員,手上拿著線蟲娃娃,身旁一盒盒培養皿住著線蟲捕捉菌(真菌)。 攝影│張語辰

最小尺度攻防戰,隱含生物防治秘辛

小小的線蟲和線蟲捕捉菌,在顯微鏡下訴說的「秘密」,不是哪位明星談戀愛的八卦,而是獵物和獵食者彼此如何攻防。為了存活下去,沒有一方能在這場對決中耍賴不玩。因此,獵食者要抓準時機覺醒獵魂,而獵物要想辦法避開被捕食的處境。

-----廣告,請繼續往下閱讀-----

這種史詩般的狩獵對決,激起薛雁冰的好奇心,雖然沒辦法將野外的獵豹和羚羊抓回實驗室研究,但是生長快速的線蟲和線蟲捕捉菌,可以回答薛雁冰好奇的問題。

就像硬幣的兩側。我們一方面研究會吃線蟲的真菌如何捕捉線蟲,另一面也研究線蟲對於這些真菌的反應。

這除了是很有趣的生命現象,這類研究未來也有機會發展生物防治。因為大自然中有很多動植物的寄生性線蟲,有些會造成農作物生病、產量減少,有些會危害人或動物的健康。但若想對抗這些寄生性線蟲,第一步要先了解:它們的天敵是透過什麼樣的互動來抓住線蟲。

薛雁冰實驗室選擇的 C.elegans 線蟲,雖然不是寄生性線蟲,卻是一種從 1970 年代迄今被廣泛研究的模式生物,在顯微鏡下扭來扭去,為科學家解開生命之謎。許多諾貝爾獎的重大發現,都要歸功於 C.elegans 線蟲犧牲小我。

除了 C.elegans 線蟲,薛雁冰的實驗室也住著它的獵食者──大自然常見的真菌 A.oligospora 和杏鮑菇(沒錯,就是我們吃的杏鮑菇),這兩者在某些「飢餓」條件下都會捕食線蟲。

-----廣告,請繼續往下閱讀-----

獵魂覺醒!真菌這樣抓線蟲

會吃線蟲的真菌,例如 A.oligospora 和杏鮑菇,不是天生的戰鬥民族,而是它們在缺氮的環境中餓到了,需要捕食線蟲以攝取養分。兩者殺害線蟲的手段不一樣,可以簡單想像成:前者 A.oligospora 擅長設下「陷阱」,而杏鮑菇擅長「下毒」。

當環境中的氮養分不足,真菌 A.oligospora 一旦偵測到環境中存在線蟲,就會形成黏黏的菌絲陷阱,像蜘蛛網等待線蟲納命來。而杏鮑菇不管環境中有沒有線蟲,只要餓了就會分泌毒素,若有線蟲誤入毒素的範圍,就會被痲痹。

請各位讀者看看命案現場,請放心沒有血腥畫面。下方影片中,一旦 C.elegans 線蟲被真菌 A.oligospora 的菌絲陷阱黏住後,就會漸漸氣絕身亡,然後被慢慢消化掉。

這命案過程中間、以及案發前後發生了什麼事?薛雁冰團隊透過遺傳學基因體學神經科學分子生物實驗,像刑事鑑識中心般,剖析出線蟲捕捉菌 A.oligospora 的五個犯案步驟:

吸引獵物 → 發現獵物 → 設下陷阱 → 抓住獵物 → 飽餐一頓!

事情要從 C.elegans 線蟲的蟲生故事說起,它從蟲卵長為成蟲大約只需兩日,終其一生只有兩個使命:成長、交配。從這個角度來看真好命。

因為線蟲捕捉菌無法移動,需要想辦法「吸引」獵物上門。薛雁冰團隊發現,真菌 A.oligospora 看準線蟲隨時隨地都在尋找「交配對象」和「食物」,於是分泌出和線蟲性賀爾蒙相似的化合物、以及像線蟲食物的化合物,藉此吸引獵物。

真菌 A.oligospora 分泌多種化合物,味道很像 C.elegans 線蟲的食物和性荷爾蒙。線蟲透過嗅覺神經「聞」到,因此受到吸引並靠近。 資料來源│Hsueh YP, Gronquist M, Schwarz EM, Nath R, Lee CH, Gharib S, Schroeder FC, Sternberg PW (2017) The nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 6:e20023 圖片重製│林婷嫻、張語辰

線蟲捕捉菌 A.oligospora 如何知道獵物來了呢?請試著回想:當你肚子餓了,如何發現附近有食物?可能是鼻子聞到「前面那個好香喔」。線蟲捕捉菌 A.oligospora 也類似如此,當它偵測到線蟲身上特殊的「誘惑」,就知道要趕快設下陷阱、捕捉獵物。

C.elegans 線蟲並沒有夢幻誘惑的體香,而是會分泌稱作 Ascarosides (暫無中文譯名)的醣分子,這種醣分子的結構約有一百多種,例如下圖舉例:

C.elegans 線蟲分泌的不同 Ascarosides 醣分子。中間紅色的六環結構基本相同,尾端鏈結的碳鏈長度和分子有些微差異。 資料來源│Jeong PY et al. Nature. 2005; Butcher RA et al. Nat Chem Biol. 2007; Srinivasan J et al. Nature. 2008; Srinivasan J et al. PLoS Bio 2012; Choe A et al. Curr Biol 2012

不同結構的 Ascarosides 醣分子,有些用於調控線蟲自身發育,有些作為尋找交配對象的語言。

身為獵食者的真菌 A.oligospora ,可謂是既聰明又有心機,知道這些 Ascarosides 醣分子是線蟲的必要分泌物,那麼獵食者只要學會辨識這些醣分子,就能偵測身邊有沒有好吃的線蟲靠近,並且趕快長出黏黏的菌絲陷阱,將線蟲黏住,最終化為肚中物。

即使環境中氮養分不足,線蟲捕捉菌 A.oligospora 還是只有一般菌絲(左圖) 。但若偵測到身邊有好吃的線蟲,就會趕快長出黏著的陷阱(右圖)。 資料來源│Vidal-Diez de Ulzurrun G, Hsueh YP (2018) Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biotechnol, 102: 3939. 圖片重製│林婷嫻、張語辰

「在這互動中,線蟲的哪些 Ascarosides 醣分子,會引誘線蟲捕捉菌長出陷阱?這些真菌偵測線蟲的靈敏度會不會有變化?又是哪些基因變異,產生這些改變?」薛雁冰說明,團隊除了觀察短時間內獵物和獵食者的攻防戰,也透過實驗操作來觀察兩者長時間的演化軍備競賽 (Evolutionary arms race)。

演化軍備競賽,就像歷經數十年至數百年的武裝升級過程。獵物經由基因和性狀的變異,提升自己的防禦值,成功存活下來的獵物,便可以將這組基因遺傳給子代;同時,獵食者也會發生基因和性狀的變異,提升自己的攻擊力,才能更容易抓到獵物。

「演化軍備競賽」可以想像成是獵物和獵食者,在你來我往的攻防戰中,各自改變基因和性狀,提升自己存活下來的機會。只是,「回合」是以「世世代代」來計算。 截圖取自│薛雁冰實驗室影片 圖說設計│林婷嫻、張語辰

當線蟲和線蟲捕捉菌打得火熱,牠們可能沒想到,旁邊正有一群好奇的研究團隊,一邊透過顯微鏡觀察戰況,一邊透過實驗解析雙方的戰鬥防禦力。為了將來的寄生性線蟲生物防治發展,讓我們對於這些在實驗室犧牲小我的線蟲們,致上最高的敬意。

延伸閱讀

研之有物│中央研究院_96
296 篇文章 ・ 3568 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook