Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

魚目混珠 以假亂真

大海子
・2011/11/08 ・3066字 ・閱讀時間約 6 分鐘 ・SR值 552 ・八年級

從眼說起

眼睛被稱為靈魂之窗,既是流露情感、表現生命的出口,也是吸收外界繽紛變化的入口。化妝品中之所以從未缺少和裝扮眼睛有關的眼影膏、假睫毛、修眉用品等,就是因為透過高明的修容技巧,往往可以讓丁點大的瞇瞇眼瞬間變成萬人迷的大眼睛,甚至是放「電」的電眼。簡單來說,就是希望引人注「目」。就因為人眼睛的一舉一動,一開一閤,往往成為別人閱讀心思的焦點,於是自古有「眉目傳情」、「使眼色」等詞,正說明眼睛在生活溝通上扮演著舉足輕重的角色。

然而眼睛也容易被矇騙,沙漠中出現的海市蜃樓,就是因為光的折射所產生的幻影;電影則是把靜態圖像快速連續播放而呈現出動態影像。這些都是生活中常見的例子,因此「眼見為憑」有時還真說不出一個標準。視覺的重要性和個體生存息息有關,雖然失明尚不至於在一時之間有生命危險,卻會造成個體生活各方面的不便。但個體透過視覺所獲得的環境資訊,往往受到個體生理功能、心理認知、經驗多重影響而有不同的解讀,產生不同的意義,進而影響個體的反應。所謂「看走了眼」、「看錯了」,其實應該解讀成客觀的事實被主觀地解讀之後所產生的心理反應。

喪失視覺也易使個體誤入危險之中而全然不自知,間接影響個體的生存。且眼睛所在部位靠近個體中樞神經系統的腦部—維繫著全身生理功能運行和掌控個體反應行動的樞紐,一旦受到傷害,連帶所引發的一連串骨牌效應,往往可能造成無可避免的惡果—喪失生命。從戰略的觀點來看,打擊敵人如能擊中要害或癱瘓敵人的視覺,就可以輕易擊潰敵人。因而保護雙眼,避免受到傷害,成為不可或缺的措施。

生存是所有生物的基本訴求,為了填飽肚子,必須四處行動獵食,因而個體常面臨隨時遭受天敵攻擊的挑戰。為了能在捕食和被捕食之間取得平衡,以便獲取最大的利益,能在自然界減少被天敵攻擊的機會,或受攻擊時增加逃亡的機會,個體勢必發展出動態性的生存策略。

-----廣告,請繼續往下閱讀-----

在大自然界,獵物為了逃避天敵的襲擊,除了提高警戒,保持動作敏捷性,遇危險時能隨時逃入避難所(如洞穴中)外,尚可利用自身外形上的特殊紋路,達到偽裝欺敵或恐嚇的效果。其中類似真實眼睛的假眼點(false eye spot),就是許多生物的禦敵策略之一。

偽裝的真眼

在眼睛為蒐集環境資訊而必須外露卻又必須保護的考量之下,把雙眼加以偽裝,便能使其在維持視覺功能的基本運作下,又能降低眼睛被發現的風險。套句俗話說,就是讓天敵若不仔細「瞧」還真的看不出來。

既然每種生物的外形各有獨特性,如魚的外形就是流線形加上一個分叉狀的魚尾巴,因此當形狀特徵破裂不完全,輪廓也不復存在時,生物形體在別的個體眼中自然而然就「消失」在環境中。若能再利用視覺的呈像原理,使用相同色系讓對比效果差,使物體的輪廓不易顯現出來,就有欺敵的功用了。

舉例來說,鞍斑蝶魚身體後側上方有一明顯的大黑斑,破壞了魚輪廓的連續性,造成魚體外廓不成魚形,因而不易被天敵看出是完整的魚體;黃鑷口魚黑色的雙眼半隱入黑色頭部之中,只露出一半眼睛,半黑半白的頭部和身體明亮的黃色對比鮮明,魚形輪廓顯得支離破碎,讓敵人一眼望去,不知有魚的存在。這種利用互補顏色間接讓魚形完整性消失,且又達到隱密眼睛的功效策略,可說妙不可言。

-----廣告,請繼續往下閱讀-----

故弄玄虛的假眼點

「以假亂真、虛晃一招」是一種偽裝技巧,是使用不掩人耳目,反而引人注目的逆向思考所發展出來的戰術。既然躲也躲不掉,那就大大方方地顯露出來,讓敵人一眼就分辨出物體的所在,但其實是一個不折不扣的欺敵目標。

像某些種類的蛾類或蝴蝶棲息時,在翅膀下緣或周邊會露出兩個極大假眼點,這些假眼點又大又圓,輪廓明顯,顏色鮮艷,對比強烈,大老遠就可以看得出來是一雙烏溜溜的「大眼睛」。乍看之下,敵人會誤以為是龐然大物的眼睛,讓掠食者望之生畏,不敢靠近,而被獵殺的生物正藉這策略達到不戰而「驅敵」的心理戰效果,進而保護自身的安全。

海洋魚類中借用斑點或假眼點來避敵的種類比比皆是,其中又以棲息在陽光豔麗,水質清澈透明的珊瑚礁中的蝴蝶魚是箇中翹楚。海洋生物學家曾對蝴蝶魚身上的假眼點進行一系列的研究,發現假眼點之所以能在蝴蝶魚身上產生極大的保護作用,在於它可能具有欺敵、誤導或威嚇等多項功能。而為了能充分發揮這些功能,假眼點出現在魚體身上的部位,就是關鍵因素之一。

一般而言,蝴蝶魚的假眼點大都分布在魚體生理機能比較不重要的位置上,如背部上緣處,而非內臟所在的腹部。鏡斑蝴蝶魚就是最佳的例證,牠在鮮黃亮麗的體表上,背鰭下緣有一個明顯的假眼點,真正的眼睛則隱藏在深黑色眼罩(eye mask)內,不輕易被敵人看出。

-----廣告,請繼續往下閱讀-----

其中的原因在於眼睛位於頭部,是神經中樞所在,而大腦神經中樞掌管所有的生理機能,一旦受到攻擊破壞,所有的生理機能很可能隨即受到連帶的影響,個體行動能力也可能停止,甚至會癱瘓不能行動,遑論迅速逃離天敵的獵捕。由此可知,眼睛常是掠食者攻擊獵物的最佳參考點是有其道理的,因為若能有效攻擊獵物的眼睛,往往就可以達到一擊致命或癱瘓獵物的最佳效果。

有些魚類身上的假眼點在背鰭下緣、臀鰭邊緣或尾柄,這些位置雖略有不同,但都具有異曲同工之妙—遠離真正眼睛的位置。例如揚旛蝴蝶魚的假眼點出現在背鰭近末端上緣處,而背鰭後緣是質地柔軟的鰭條,即使受損了,既不會對個體產生生命的危險,又不會對游泳能力產生巨大的影響。在受到攻擊的瞬間,個體仍可以藉由尾鰭大力的擺動,迅速逃離天敵的攻擊範圍,躲入鄰近洞穴中或逃之夭夭。

有些蝴蝶魚身上的假眼點較真實眼睛大2至3倍,這些較大的假眼點從遠處看就是明顯可見的圓點,因而有讓天敵誤判發動攻擊距離的欺敵作用。因體型較大的物件往往會誤導掠食者,產生獵物和己身之間距離較近的錯覺,因而會在距離獵物較遠處就發動攻擊,結果使得獵物提早察覺掠食者的攻擊動向,而有充分的時間逃避或適時採取威嚇的動作,以防禦所遭受到的攻擊。

總括而言,假眼點受到天敵攻擊的蝴蝶魚,因為真實眼睛所在的頭部未受害,在受襲擊的一瞬間,雖受到驚嚇,但仍保有清晰的意識與奮力掙脫掠食者的逃避能力,頂多只是受到皮肉之傷或損失幾支背鰭的軟條而已,而非被擊中要害,喪失生命。

-----廣告,請繼續往下閱讀-----

老少皆宜 蔚為流行

以假亂真的偽裝技倆不僅適用在魚成體,許多種類的幼魚(juvenile)時期身體上都會出現假眼點,有些在背鰭,有些在尾鰭,有些則在臀鰭。雖然出現的位置因種類而異,但都有達到欺騙天敵而減少被攻擊的機會,增加生存機率的功能。雖然有些魚種類的幼魚長大之後,仍保有假眼點欺敵,但有些假眼點會消失,有些則是改變眼點出現的位置,和幼體並不相同。

這些假眼點也出現在體型較小的珊瑚礁魚類如藍刻齒雀鯛身上,在牠一身藍的體色中,只有在背鰭後半部基底邊緣出現一個黑點,顯得分外鮮明,藉此轉移掠食者的攻擊焦點。由此可見,處於危機重重的環境中,玩弄體色變化的欺敵戰術,在珊瑚礁魚類中還頗流行的。

俗話說:「一招半式走江湖。」棲息在危機四伏的大海中,魚兒若沒有演化出足以自保的招式,恐怕難逃險惡掠食者的毒手。珊瑚礁魚類發展出神奇的化妝術,運用顏色和形狀交互變化的效果,在花團錦簇的珊瑚礁生態系中,達到嚇唬天敵的目的,終能在險惡環境中存活下來。珊瑚礁魚類可說是把江湖「一點」訣發揮到極致的經典範例。

本文原發表於作者臉書網誌[2011-11-06]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

15
1

文字

分享

3
15
1
「菲利浦島蜈蚣」成幼鳥殺手!——在澳洲孤島上默默擔當頂級掠食者
藍羊_96
・2021/09/22 ・2038字 ・閱讀時間約 4 分鐘

冒險電影中,場景時常在偏遠不為人知的荒山野嶺,甚至住著猛獸的遙遠孤島,有著顛覆常識的生態環境和駭人怪物。然而根據新發表在《美國博物學家》的一篇論文,在現實中就有一個島嶼,由蜈蚣擔當島上食物鏈的最頂端掠食者。

此菲利浦島,非彼菲利浦島

地點位在澳洲的菲利浦島(Phillip Island)——說到這個島嶼,可能會聯想到島上每年吸引上百萬觀光客的小藍企鵝棲地,以及世界摩托車競速的主要賽場之一。

故事並非發生在這個澳洲南岸的菲利浦島,而是在距離澳洲本土東方 1500 公里遠,過去做為囚犯流放地的諾福克群島。那裡有另一個面積僅 2.07 平方公里,無人居住的菲利浦島。兩個島正巧都以 18 世紀後半的英國海軍上將亞瑟‧菲利浦(Arthur Phillip)為名,但地理位置相距甚遠。

屬於諾福克群島一部分的菲利普島(Phillip Island)。圖/維基百科

無人定居的菲利浦島兇猛島民

菲利浦島有 13 種海鳥會產卵繁殖,還有一些小型動物在此生活。其中最引人側目的居民是菲利浦島蜈蚣Cormocephalus coynei),這種蜈蚣最長可達 23.5 公分,雖然比起現生蜈蚣中最大的 30 公分等級還差一些,仍遠勝長約 10 公分的常見蜈蚣。

研究團隊調查紀錄菲利浦島蜈蚣在夜間的捕食行為,並以穩定同位素分析蜈蚣的食物來源比例,發現這種蜈蚣的食物來源,48% 來自脊椎動物,52% 來自無脊椎動物,各占約一半比例。

-----廣告,請繼續往下閱讀-----

菲利浦島蜈蚣最主要的食物是島上居住的蟋蟀、壁虎、石龍子,這些動物都小於體長超過 20 公分的大蜈蚣,算是合理的菜單。然而菲利浦島蜈蚣還有另外一個獨門佳餚,就是島上繁殖海鳥的幼雛。

菲利浦島蜈蚣(Cormocephalus coynei)。圖/ iNaturalist

菲利浦島蜈蚣的嘴下亡鸌

菲利浦島上最主要的築巢海鳥是黑翅圓尾鸌Pterodroma nigripennis),2017 年的紀錄約有 19000 對。黑翅圓尾鸌的成鳥體長約 30 公分,顯然蜈蚣面對牠們無法輕易取勝,因此脆弱的雛鳥就成為蜈蚣的下嘴目標。

菲利浦島蜈蚣會咬住黑翅圓尾鸌雛鳥的後頸並注入毒素,等雛鳥死亡後再啃食牠的頭頸部。而在兩年的調查期間,紀錄的雛鳥各有 19.6% 及 11.1% 被蜈蚣捕食。結合前面一年約有 19000 對黑翅圓尾鸌在此繁殖的紀錄來看,估計每年被蜈蚣吃掉的幼鳥在 2109~3724 隻之間。

其他在菲利浦島上繁殖的海鳥,活動期間可能跟蜈蚣活躍的夏季錯開,或是數量較少,黑翅圓尾鸌可能是菲利浦島蜈蚣最主要的獵捕鳥類。相較於脊椎動物吃節肢動物的紀錄,節肢動物大部分是清除死亡的脊椎動物屍體,像這樣反過來鳥類被節肢動物主動獵捕的紀錄非常罕見。

-----廣告,請繼續往下閱讀-----
黑翅圓尾鸌的雛鳥慘遭蜈蚣獵捕。圖/參考文獻 1

咦,蜈蚣怎麼吃到海裡的魚?

根據穩定同位素分析,菲利浦島蜈蚣的飲食中有 7.9% 是鳥類,然而魚類卻有 9.6%。住在陸地上的蜈蚣要怎麼吃到海裡的魚呢?這是另一個值得注目的問題。

據推測海鳥帶回巢中,供應給雛鳥食用的魚屍,應該是蜈蚣能吃到魚的主要來源。也就是海鳥不僅本身是蜈蚣的獵物,牠們為了育雛的投食被蜈蚣吃掉後,也帶動了海洋和陸地間的營養循環。

過去在諾福克群島流放囚犯時期,由人類引入的山羊、豬和兔子等大型動物對島上的環境造成破壞,也讓當地獨有的生態體系遭受嚴重威脅。這些外來物種在 20 世紀期間逐一從島上移除,受破壞的環境現正緩慢復原。

雖然菲利浦島蜈蚣離最大的蜈蚣還有點距離,在牠所住的環境卻已經足以佔地為王。現已滅絕的諾福克卡卡鸚鵡(Nestor productus)體型比菲利浦島蜈蚣大,但以果實為主食,顯然不會威脅到蜈蚣作為掠食者的地位。

-----廣告,請繼續往下閱讀-----
大英博物館內諾福克卡卡鸚鵡標本的畫。圖/維基百科

在島嶼生物地理學中,孤立海島上動物體型改變是一個重要的研究議題。在大陸上的大型動物,移居海島後因島嶼資源限制、天敵缺乏等因素,會縮小體型,稱之為島嶼侏儒化(Island Dwarfism);然而小型的動物卻會反過來巨大化,甚至取代原本大型動物所處的生態棲位,此現象即為島嶼巨型化(Island Gigantism)。

島嶼巨型化的案例如紐西蘭的奇異鳥、馬達加斯加島已滅絕的象鳥,以及在許多島嶼上各自獨立產生的巨大化齧齒動物;台灣在墾丁和部分離島分布的椰子蟹也是一個案例,不僅是保育類的甲殼動物,更是最大型的陸生寄居蟹。地處偏遠的菲利浦島,正是島嶼特殊生態系的一個案例,也是蜈蚣稱霸的極端案例。

參考文獻

-----廣告,請繼續往下閱讀-----
所有討論 3

1

0
0

文字

分享

1
0
0
魚目混珠 以假亂真
大海子
・2011/11/08 ・3066字 ・閱讀時間約 6 分鐘 ・SR值 552 ・八年級

從眼說起

眼睛被稱為靈魂之窗,既是流露情感、表現生命的出口,也是吸收外界繽紛變化的入口。化妝品中之所以從未缺少和裝扮眼睛有關的眼影膏、假睫毛、修眉用品等,就是因為透過高明的修容技巧,往往可以讓丁點大的瞇瞇眼瞬間變成萬人迷的大眼睛,甚至是放「電」的電眼。簡單來說,就是希望引人注「目」。就因為人眼睛的一舉一動,一開一閤,往往成為別人閱讀心思的焦點,於是自古有「眉目傳情」、「使眼色」等詞,正說明眼睛在生活溝通上扮演著舉足輕重的角色。

然而眼睛也容易被矇騙,沙漠中出現的海市蜃樓,就是因為光的折射所產生的幻影;電影則是把靜態圖像快速連續播放而呈現出動態影像。這些都是生活中常見的例子,因此「眼見為憑」有時還真說不出一個標準。視覺的重要性和個體生存息息有關,雖然失明尚不至於在一時之間有生命危險,卻會造成個體生活各方面的不便。但個體透過視覺所獲得的環境資訊,往往受到個體生理功能、心理認知、經驗多重影響而有不同的解讀,產生不同的意義,進而影響個體的反應。所謂「看走了眼」、「看錯了」,其實應該解讀成客觀的事實被主觀地解讀之後所產生的心理反應。

喪失視覺也易使個體誤入危險之中而全然不自知,間接影響個體的生存。且眼睛所在部位靠近個體中樞神經系統的腦部—維繫著全身生理功能運行和掌控個體反應行動的樞紐,一旦受到傷害,連帶所引發的一連串骨牌效應,往往可能造成無可避免的惡果—喪失生命。從戰略的觀點來看,打擊敵人如能擊中要害或癱瘓敵人的視覺,就可以輕易擊潰敵人。因而保護雙眼,避免受到傷害,成為不可或缺的措施。

生存是所有生物的基本訴求,為了填飽肚子,必須四處行動獵食,因而個體常面臨隨時遭受天敵攻擊的挑戰。為了能在捕食和被捕食之間取得平衡,以便獲取最大的利益,能在自然界減少被天敵攻擊的機會,或受攻擊時增加逃亡的機會,個體勢必發展出動態性的生存策略。

-----廣告,請繼續往下閱讀-----

在大自然界,獵物為了逃避天敵的襲擊,除了提高警戒,保持動作敏捷性,遇危險時能隨時逃入避難所(如洞穴中)外,尚可利用自身外形上的特殊紋路,達到偽裝欺敵或恐嚇的效果。其中類似真實眼睛的假眼點(false eye spot),就是許多生物的禦敵策略之一。

偽裝的真眼

在眼睛為蒐集環境資訊而必須外露卻又必須保護的考量之下,把雙眼加以偽裝,便能使其在維持視覺功能的基本運作下,又能降低眼睛被發現的風險。套句俗話說,就是讓天敵若不仔細「瞧」還真的看不出來。

既然每種生物的外形各有獨特性,如魚的外形就是流線形加上一個分叉狀的魚尾巴,因此當形狀特徵破裂不完全,輪廓也不復存在時,生物形體在別的個體眼中自然而然就「消失」在環境中。若能再利用視覺的呈像原理,使用相同色系讓對比效果差,使物體的輪廓不易顯現出來,就有欺敵的功用了。

舉例來說,鞍斑蝶魚身體後側上方有一明顯的大黑斑,破壞了魚輪廓的連續性,造成魚體外廓不成魚形,因而不易被天敵看出是完整的魚體;黃鑷口魚黑色的雙眼半隱入黑色頭部之中,只露出一半眼睛,半黑半白的頭部和身體明亮的黃色對比鮮明,魚形輪廓顯得支離破碎,讓敵人一眼望去,不知有魚的存在。這種利用互補顏色間接讓魚形完整性消失,且又達到隱密眼睛的功效策略,可說妙不可言。

-----廣告,請繼續往下閱讀-----

故弄玄虛的假眼點

「以假亂真、虛晃一招」是一種偽裝技巧,是使用不掩人耳目,反而引人注目的逆向思考所發展出來的戰術。既然躲也躲不掉,那就大大方方地顯露出來,讓敵人一眼就分辨出物體的所在,但其實是一個不折不扣的欺敵目標。

像某些種類的蛾類或蝴蝶棲息時,在翅膀下緣或周邊會露出兩個極大假眼點,這些假眼點又大又圓,輪廓明顯,顏色鮮艷,對比強烈,大老遠就可以看得出來是一雙烏溜溜的「大眼睛」。乍看之下,敵人會誤以為是龐然大物的眼睛,讓掠食者望之生畏,不敢靠近,而被獵殺的生物正藉這策略達到不戰而「驅敵」的心理戰效果,進而保護自身的安全。

海洋魚類中借用斑點或假眼點來避敵的種類比比皆是,其中又以棲息在陽光豔麗,水質清澈透明的珊瑚礁中的蝴蝶魚是箇中翹楚。海洋生物學家曾對蝴蝶魚身上的假眼點進行一系列的研究,發現假眼點之所以能在蝴蝶魚身上產生極大的保護作用,在於它可能具有欺敵、誤導或威嚇等多項功能。而為了能充分發揮這些功能,假眼點出現在魚體身上的部位,就是關鍵因素之一。

一般而言,蝴蝶魚的假眼點大都分布在魚體生理機能比較不重要的位置上,如背部上緣處,而非內臟所在的腹部。鏡斑蝴蝶魚就是最佳的例證,牠在鮮黃亮麗的體表上,背鰭下緣有一個明顯的假眼點,真正的眼睛則隱藏在深黑色眼罩(eye mask)內,不輕易被敵人看出。

-----廣告,請繼續往下閱讀-----

其中的原因在於眼睛位於頭部,是神經中樞所在,而大腦神經中樞掌管所有的生理機能,一旦受到攻擊破壞,所有的生理機能很可能隨即受到連帶的影響,個體行動能力也可能停止,甚至會癱瘓不能行動,遑論迅速逃離天敵的獵捕。由此可知,眼睛常是掠食者攻擊獵物的最佳參考點是有其道理的,因為若能有效攻擊獵物的眼睛,往往就可以達到一擊致命或癱瘓獵物的最佳效果。

有些魚類身上的假眼點在背鰭下緣、臀鰭邊緣或尾柄,這些位置雖略有不同,但都具有異曲同工之妙—遠離真正眼睛的位置。例如揚旛蝴蝶魚的假眼點出現在背鰭近末端上緣處,而背鰭後緣是質地柔軟的鰭條,即使受損了,既不會對個體產生生命的危險,又不會對游泳能力產生巨大的影響。在受到攻擊的瞬間,個體仍可以藉由尾鰭大力的擺動,迅速逃離天敵的攻擊範圍,躲入鄰近洞穴中或逃之夭夭。

有些蝴蝶魚身上的假眼點較真實眼睛大2至3倍,這些較大的假眼點從遠處看就是明顯可見的圓點,因而有讓天敵誤判發動攻擊距離的欺敵作用。因體型較大的物件往往會誤導掠食者,產生獵物和己身之間距離較近的錯覺,因而會在距離獵物較遠處就發動攻擊,結果使得獵物提早察覺掠食者的攻擊動向,而有充分的時間逃避或適時採取威嚇的動作,以防禦所遭受到的攻擊。

總括而言,假眼點受到天敵攻擊的蝴蝶魚,因為真實眼睛所在的頭部未受害,在受襲擊的一瞬間,雖受到驚嚇,但仍保有清晰的意識與奮力掙脫掠食者的逃避能力,頂多只是受到皮肉之傷或損失幾支背鰭的軟條而已,而非被擊中要害,喪失生命。

-----廣告,請繼續往下閱讀-----

老少皆宜 蔚為流行

以假亂真的偽裝技倆不僅適用在魚成體,許多種類的幼魚(juvenile)時期身體上都會出現假眼點,有些在背鰭,有些在尾鰭,有些則在臀鰭。雖然出現的位置因種類而異,但都有達到欺騙天敵而減少被攻擊的機會,增加生存機率的功能。雖然有些魚種類的幼魚長大之後,仍保有假眼點欺敵,但有些假眼點會消失,有些則是改變眼點出現的位置,和幼體並不相同。

這些假眼點也出現在體型較小的珊瑚礁魚類如藍刻齒雀鯛身上,在牠一身藍的體色中,只有在背鰭後半部基底邊緣出現一個黑點,顯得分外鮮明,藉此轉移掠食者的攻擊焦點。由此可見,處於危機重重的環境中,玩弄體色變化的欺敵戰術,在珊瑚礁魚類中還頗流行的。

俗話說:「一招半式走江湖。」棲息在危機四伏的大海中,魚兒若沒有演化出足以自保的招式,恐怕難逃險惡掠食者的毒手。珊瑚礁魚類發展出神奇的化妝術,運用顏色和形狀交互變化的效果,在花團錦簇的珊瑚礁生態系中,達到嚇唬天敵的目的,終能在險惡環境中存活下來。珊瑚礁魚類可說是把江湖「一點」訣發揮到極致的經典範例。

本文原發表於作者臉書網誌[2011-11-06]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

0
0

文字

分享

0
0
0
比傳說對決更精彩!線蟲與真菌的生死之戰
研之有物│中央研究院_96
・2018/12/11 ・3216字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

  • 執行編輯|林婷嫻  美術編輯|張語辰

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

自然界沒有一個物種是邊緣人,都是複雜生態系的一份子。其中,獵食者和獵物是生態系很常見的關係。以地球上數目最多的動物「線蟲」為例,若我們能了解它的天敵「線蟲捕捉菌」(真菌)是如何抓線蟲,就有機會找出生物防治方法,對抗危害人類或農作物的寄生性線蟲。

「蟲」──有些人看到這個字就嚇得腳軟,但對於薛雁冰而言,顯微鏡下的蟲,尤其是小小的線蟲,是會扭來扭去的小可愛。「它們雖然很小、肉眼看不清楚,但在顯微鏡下,它們有很多秘密要跟我們說。」

中研院分子生物研究所的薛雁冰助研究員,手上拿著線蟲娃娃,身旁一盒盒培養皿住著線蟲捕捉菌(真菌)。 攝影│張語辰

最小尺度攻防戰,隱含生物防治秘辛

小小的線蟲和線蟲捕捉菌,在顯微鏡下訴說的「秘密」,不是哪位明星談戀愛的八卦,而是獵物和獵食者彼此如何攻防。為了存活下去,沒有一方能在這場對決中耍賴不玩。因此,獵食者要抓準時機覺醒獵魂,而獵物要想辦法避開被捕食的處境。

-----廣告,請繼續往下閱讀-----

這種史詩般的狩獵對決,激起薛雁冰的好奇心,雖然沒辦法將野外的獵豹和羚羊抓回實驗室研究,但是生長快速的線蟲和線蟲捕捉菌,可以回答薛雁冰好奇的問題。

就像硬幣的兩側。我們一方面研究會吃線蟲的真菌如何捕捉線蟲,另一面也研究線蟲對於這些真菌的反應。

這除了是很有趣的生命現象,這類研究未來也有機會發展生物防治。因為大自然中有很多動植物的寄生性線蟲,有些會造成農作物生病、產量減少,有些會危害人或動物的健康。但若想對抗這些寄生性線蟲,第一步要先了解:它們的天敵是透過什麼樣的互動來抓住線蟲。

薛雁冰實驗室選擇的 C.elegans 線蟲,雖然不是寄生性線蟲,卻是一種從 1970 年代迄今被廣泛研究的模式生物,在顯微鏡下扭來扭去,為科學家解開生命之謎。許多諾貝爾獎的重大發現,都要歸功於 C.elegans 線蟲犧牲小我。

除了 C.elegans 線蟲,薛雁冰的實驗室也住著它的獵食者──大自然常見的真菌 A.oligospora 和杏鮑菇(沒錯,就是我們吃的杏鮑菇),這兩者在某些「飢餓」條件下都會捕食線蟲。

-----廣告,請繼續往下閱讀-----

獵魂覺醒!真菌這樣抓線蟲

會吃線蟲的真菌,例如 A.oligospora 和杏鮑菇,不是天生的戰鬥民族,而是它們在缺氮的環境中餓到了,需要捕食線蟲以攝取養分。兩者殺害線蟲的手段不一樣,可以簡單想像成:前者 A.oligospora 擅長設下「陷阱」,而杏鮑菇擅長「下毒」。

當環境中的氮養分不足,真菌 A.oligospora 一旦偵測到環境中存在線蟲,就會形成黏黏的菌絲陷阱,像蜘蛛網等待線蟲納命來。而杏鮑菇不管環境中有沒有線蟲,只要餓了就會分泌毒素,若有線蟲誤入毒素的範圍,就會被痲痹。

請各位讀者看看命案現場,請放心沒有血腥畫面。下方影片中,一旦 C.elegans 線蟲被真菌 A.oligospora 的菌絲陷阱黏住後,就會漸漸氣絕身亡,然後被慢慢消化掉。

這命案過程中間、以及案發前後發生了什麼事?薛雁冰團隊透過遺傳學基因體學神經科學分子生物實驗,像刑事鑑識中心般,剖析出線蟲捕捉菌 A.oligospora 的五個犯案步驟:

吸引獵物 → 發現獵物 → 設下陷阱 → 抓住獵物 → 飽餐一頓!

事情要從 C.elegans 線蟲的蟲生故事說起,它從蟲卵長為成蟲大約只需兩日,終其一生只有兩個使命:成長、交配。從這個角度來看真好命。

因為線蟲捕捉菌無法移動,需要想辦法「吸引」獵物上門。薛雁冰團隊發現,真菌 A.oligospora 看準線蟲隨時隨地都在尋找「交配對象」和「食物」,於是分泌出和線蟲性賀爾蒙相似的化合物、以及像線蟲食物的化合物,藉此吸引獵物。

真菌 A.oligospora 分泌多種化合物,味道很像 C.elegans 線蟲的食物和性荷爾蒙。線蟲透過嗅覺神經「聞」到,因此受到吸引並靠近。 資料來源│Hsueh YP, Gronquist M, Schwarz EM, Nath R, Lee CH, Gharib S, Schroeder FC, Sternberg PW (2017) The nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 6:e20023 圖片重製│林婷嫻、張語辰

線蟲捕捉菌 A.oligospora 如何知道獵物來了呢?請試著回想:當你肚子餓了,如何發現附近有食物?可能是鼻子聞到「前面那個好香喔」。線蟲捕捉菌 A.oligospora 也類似如此,當它偵測到線蟲身上特殊的「誘惑」,就知道要趕快設下陷阱、捕捉獵物。

C.elegans 線蟲並沒有夢幻誘惑的體香,而是會分泌稱作 Ascarosides (暫無中文譯名)的醣分子,這種醣分子的結構約有一百多種,例如下圖舉例:

C.elegans 線蟲分泌的不同 Ascarosides 醣分子。中間紅色的六環結構基本相同,尾端鏈結的碳鏈長度和分子有些微差異。 資料來源│Jeong PY et al. Nature. 2005; Butcher RA et al. Nat Chem Biol. 2007; Srinivasan J et al. Nature. 2008; Srinivasan J et al. PLoS Bio 2012; Choe A et al. Curr Biol 2012

不同結構的 Ascarosides 醣分子,有些用於調控線蟲自身發育,有些作為尋找交配對象的語言。

身為獵食者的真菌 A.oligospora ,可謂是既聰明又有心機,知道這些 Ascarosides 醣分子是線蟲的必要分泌物,那麼獵食者只要學會辨識這些醣分子,就能偵測身邊有沒有好吃的線蟲靠近,並且趕快長出黏黏的菌絲陷阱,將線蟲黏住,最終化為肚中物。

即使環境中氮養分不足,線蟲捕捉菌 A.oligospora 還是只有一般菌絲(左圖) 。但若偵測到身邊有好吃的線蟲,就會趕快長出黏著的陷阱(右圖)。 資料來源│Vidal-Diez de Ulzurrun G, Hsueh YP (2018) Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biotechnol, 102: 3939. 圖片重製│林婷嫻、張語辰

「在這互動中,線蟲的哪些 Ascarosides 醣分子,會引誘線蟲捕捉菌長出陷阱?這些真菌偵測線蟲的靈敏度會不會有變化?又是哪些基因變異,產生這些改變?」薛雁冰說明,團隊除了觀察短時間內獵物和獵食者的攻防戰,也透過實驗操作來觀察兩者長時間的演化軍備競賽 (Evolutionary arms race)。

演化軍備競賽,就像歷經數十年至數百年的武裝升級過程。獵物經由基因和性狀的變異,提升自己的防禦值,成功存活下來的獵物,便可以將這組基因遺傳給子代;同時,獵食者也會發生基因和性狀的變異,提升自己的攻擊力,才能更容易抓到獵物。

「演化軍備競賽」可以想像成是獵物和獵食者,在你來我往的攻防戰中,各自改變基因和性狀,提升自己存活下來的機會。只是,「回合」是以「世世代代」來計算。 截圖取自│薛雁冰實驗室影片 圖說設計│林婷嫻、張語辰

當線蟲和線蟲捕捉菌打得火熱,牠們可能沒想到,旁邊正有一群好奇的研究團隊,一邊透過顯微鏡觀察戰況,一邊透過實驗解析雙方的戰鬥防禦力。為了將來的寄生性線蟲生物防治發展,讓我們對於這些在實驗室犧牲小我的線蟲們,致上最高的敬意。

延伸閱讀

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3657 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook