0

0
0

文字

分享

0
0
0

一桶水就能辨識魚種新技術

活躍星系核_96
・2015/11/28 ・1882字 ・閱讀時間約 3 分鐘 ・SR值 612 ・十年級
相關標籤:

國小高年級科普文,素養閱讀就從今天就開始!!

國立臺灣大學生命科學系范姜文榮編譯/國立臺灣師範大學生命科學系李冠群副教授責任編輯

生物多樣性的保育與生物資源的永續利用,近年受到各國的重視。為促進生物多樣性,生物多樣性的監測技術是不可或缺的。若想對海洋、河川、湖泊的魚類多樣性進行監測,潛入水中觀察或使用魚網等漁具捕撈等,除需大量勞力及費用外,尚有必要長時間的調查,及具備專業的知識與經驗。

最近研究發現包括魚類等生物,代謝廢物、受傷組織或脫落的表皮細胞等DNA,會隨著體表黏液或糞便等同時被釋放至水體中,此物質稱為「環境DNA(environmental DNA)」。DNA鹼基序列(base sequence)含有辨識物種的訊息,藉由讀取該訊息,能應用在各種層面。過去研究,環境DNA已成功檢出特定外來種的棲息水域、棲息河川內鯉魚的生物量、以及日本天然紀念物種大山椒魚(Japanese giant salamander)的棲息地,其成果受到高度矚目。

但環境DNA不僅只是特定魚種的DNA,也包含其它各種生物的DNA。若能開發出環境DNA分析的有效技術,就能解決魚類多樣性監測目前面臨勞力、時間、及費用等困境。收集環境DNA予以分析,來辨識物種的技術,被稱為「關連族群條碼(metabarcoding)」。過去使用「次世代基因定序儀」解析微生物物種,最近將此技術應用在魚類的環境DNA上,已確認能成功透過水域環境DNA來辨識特定魚種。因此日本東京大學等研究團隊開發新型「魚類關連族群條碼」技術,來檢驗該技術的有效性。

魚類關連族群條碼技術的有效性,需滿足以下三個條件,(1)須找到任何魚種都具有共通且保守的2片段之DNA鹼基序列。(2)該2片段所包夾的鹼基序列「差異」足以辨識魚種。(3)環境DNA易劣化, DNA鹼基序列差異長度宜短。

研究團隊取得880魚種的粒線體基因體(mitochondrial genome),比較全部基因序列,找出滿足上述3條件的DNA鹼基序列。若能設計一對引子(primer)與上述魚類共通2 DNA片段序列結合,該引子就能辨識魚類所特有DNA序列。再藉由聚合酶連鎖反應(polymerase chain reaction;簡稱PCR),將微量且具物種差異性的DNA予以增幅,就能獲得2個引子及2魚種鹼基序列差異所需數量。最後經次世代基因定序儀解析大量樣本。

圖片來源 : http://www.jst.go.jp/pr/announce/20150722-4/index.html
圖片來源 : http://www.jst.go.jp/pr/announce/20150722-4/index.html

首先選取全世界約30000萬魚種中具代表性的96種,自組織內抽取DNA,檢驗所設計引子的性能,結果每一種抽取的微量DNA,都能經PCR反應達到良好的增幅。接著,從沖繩美麗海水族館的4個水槽抽出環境DNA予以增幅,經次世代基因定序儀解析,成功檢出4個水槽內飼育超過9成168魚種(93.3%)。另檢出鄰近珊瑚礁開放海域中的93種亞熱帶魚類。

該研究所開發的魚種辨識法,僅需取水一桶數公升,經過濾,再抽取其環境DNA予以分析,非常簡便。目前作為參照的DNA資料庫網羅約5000魚種,若未來能充實魚種DNA資料庫至世界上30000魚種,便能即使未具魚類分類的專業知識,也能進行高效率、高頻率魚類相調查,達到有效監測魚類多樣性的目的。該研究成果於2015年7月刊載科學期刊「Royal Society Open Science」。

名詞解釋

引子 : 於聚合酶連鎖反應(微量DNA片段增幅技術之一),所使用的單股DNA片段。

參考文獻

MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species

M. Miya, Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T.Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh, W. Iwasaki

編譯來源:水をくんで調べれば、生息する魚の種類が分かる新技術を開発 ~魚類多様性の調査にもビッグデータ解析時代の到来~

延伸閱讀:

物種多樣性

本文原發表於科學Online-科技部高瞻自然科學教學資源平台,經授權轉載。

「科學Online」在科技部高瞻計畫指導下執行,為一具有指標性與權威性的科教網站,擁有以大學教授為主的專業責任編輯群,強調科學知識推廣的正確性,涵括豐富的自然科學實驗與講座影音、教學與學習資源、科技報導、科學圖鑑等,並結合App、Podcast與社群網站等媒體,提供科學教育多元且無地域界限的自主開放學習園地。

logo

 

文章難易度
活躍星系核_96
754 篇文章 ・ 93 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

2

1
0

文字

分享

2
1
0
烘焙東西軍,有添加麵包 vs. 無添加麵包,今天想吃哪一道?
鳥苷三磷酸 (PanSci Promo)_96
・2022/09/20 ・2178字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文由 家樂福食物轉型計畫 委託,泛科學企劃執行。

  • 文 / 陳彥諺

《烘焙東西軍》熱映開播啦!這一集真的很「熱」,因為節目邀請到了兩位烘焙達人來到現場熱烘烘的烤!麵!包!

第一位華麗登場的,是有著亮麗小鬍子、動作咻咻咻超有效率的「有添加師傅」,另外一位古意老實、動作慢條斯理的,則是近年來越來越被看重的「無添加師傅」——這是一場「有添加」與「無添加」的世紀大對決!

《烘焙東西軍》這次邀請了「有添加師傅」和「無添加師傅」來烤麵包。圖/家樂福提供

「有添加」與「無添加」的世紀大對決

外表亮麗的有添加師傅,其實早已憑著「三好」稱霸市場多年。所謂的三好,是好快、好吃、好美!為何會這麼說呢?

食品添加物存在於食品中許久,早期因為食物加工技術不夠精良,為了食品安全無虞,便添加可以讓食物安定的添加物,延長保存期限。又因為食品添加物可以改變食品的外觀、口感、縮短製作時程等,因此,長期以來受到業者及消費者的偏愛。

有添加師傅憑著「好快、好吃、好美」稱霸市場多年。圖/家樂福提供

不過,近來由於食安事件頻繁,食品添加物早已偏離了原先讓食物安全的初衷,在追求好吃、好快、好美的背後,卻可能造成身體上的負擔與健康風險!製造過程是否安全合理?乾淨衛生?也是打了許多問號。

再加上現在因健康養生的意識抬頭,消費者們越來越注重吃下肚子的食物成份,開始努力追求簡單無添加。也因為隨著食品加工技術越來越棒,能夠透過改善製程,有效減少添加物的必要性。終於,在消費者意識抬頭、技術成熟等各方條件皆備下,古意老實、耗費工時的無添加師傅,多年以後,開始受到矚目啦!

在這場世紀對決中,有添加師傅在民眾都還來不及反應時,就已經做好了熱騰騰的麵包,每一個麵包都飽滿好看、香氣濃郁,簡直是施了魔法一樣!但見到這麼多食品化工添加物做出來的麵包,難道就不能有更健康的材料選擇或做法嗎?

反觀無添加師傅,他按部就班的從麵粉開始精心挑選,接著再逐一加入可以溯源的材料,接下來,順應麵包的特性自然發酵。即使有添加師傅已經端出熱騰騰的麵包了,無添加師傅仍然不為所動,他循序漸進,寧可耗時製作,堅持做自己的無添加麵包。

無添加師傅之所以堅持,那是因為他秉持著麵包不用任何添加物,不講求快速便利,用純淨的原料配方、遵循傳統法國工法,做出來的麵包也可以照樣香氣四溢、美味好吃,更重要的是每一口都吃的健康又安心!

無添加師傅堅持不用任何添加物,不講求快速便利,用純淨的原料配方、遵循傳統工法。圖/家樂福提供

當兩位師傅的麵包端上評審桌⋯⋯

有添加師傅的麵包外表金黃澎潤漂亮,無添加師傅的則是外表非常質樸。

不過,當評審們吃下麵包後,外表質樸的無添加師傅,竟然擄獲了評審們的心!

怎麼辦到的呢?這是因為花了較多時間製作的無添加麵包,保濕度較佳,口感也較有層次。當評審一口接著一口品嚐,會發現吃的都是食物的鮮甜原味—無添加麵包是名為「裸麵包」的寶藏男孩啊!他不同於外表上看起來質樸敦厚,只要用心切開,裏頭包裹著滿滿新鮮在地的果乾和堅果,是誠心誠意的美味。

烘焙界的寶藏男孩「裸麵包」,是怎麼來的?

堪稱烘焙界的寶藏男孩「裸麵包」,是來自於家樂福自製的烘焙產品。長期關注食物真實性與為顧客把關健康的家樂福,2014 年就開始著手了「無添加驗證計畫」,也在 2019 年取得了「A.A. 無添加驗證標章」,更透過第三方專業機構親赴產線檢驗、不定期抽查等層層審核程序,取得了嚴謹認可。

要打造寶藏男孩般的「裸麵包」,並不是容易的事。許多標榜安心安全的麵包,都只能做到製程及配料上的無添加;而追求極致的家樂福,自製白吐司則從特製 100% 的無添加麵粉開始,掌握源頭,做最純淨、最真實且赤裸的麵包。

這是一款依循歐盟規範,取得 A.A. 無添加標章,第三方驗證後可信賴的麵包。

這是關注在地的暖心麵包,嚴選在地好食材、講求動物福利,選用當季水果、非籠飼雞蛋、透明鮮奶、以安佳奶油取代人造奶油⋯⋯。

這是減塑又減廢,以醜蔬果製作配料,減少食材浪費,更導入環保包材,友善環境的麵包。

烘焙東西軍「有添加師傅」與「無添加師傅」的對決,我們看到了,天公疼憨人,穩扎穩打、工法較繁複的無添加製程,受到消費者的青睞——這一場對決,由純粹、誠實、充滿善意的裸麵包,「無添加師傅」獲勝。

【家樂福食物轉型計畫】烘焙東西軍「有添加麵包」v.s.「無添加麵包」的世紀對決,今天你選哪一邊?影/YouTube
文章難易度
所有討論 2
鳥苷三磷酸 (PanSci Promo)_96
146 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

0
0

文字

分享

2
0
0
燕麥奶為什麼這麼好喝?如牛奶般微甜、絲滑的口感是怎麼來的?——解析燕麥奶的加工原理
Evelyn 食品技師_96
・2022/09/25 ・3646字 ・閱讀時間約 7 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

你喝過燕麥奶了嗎?相信很多人第一時間都會想到 Oatly,它原先流行於歐美咖啡界,後來因全球興起植物性飲食,加上具有健康、永續等訴求,使得燕麥奶的風潮也迅速吹進臺灣來。

燕麥奶背後代表的健康與永續等訴求,讓風潮在這幾年間快速傳開。 圖/GIPHY

現在知名連鎖咖啡店星巴克與 Cama 的燕麥奶拿鐵皆使用 Oatly 製作;路易莎與 85 度 c 則採用愛之味研發的咖啡師燕麥奶;後來連鎖超商的現煮咖啡也紛紛跟進,如今「燕麥奶拿鐵」已成為咖啡廳菜單上必喝的飲品之一。

但是你有沒有想過,充滿膳食纖維的燕麥,做成飲料感覺應該是口感稠厚,並且有顆粒和渣渣感,然而這個新型態的植物飲品燕麥奶,喝起來卻有如牛奶一般,具有微甜、絲滑的口感,到底是如何辦到的呢?

燕麥有多營養?內含 β-葡聚醣幫助保健

那麼就先從「燕麥」這個原料開始談起。

燕麥(Avena sativa L.),因其果實外穎先端芒尖分叉如燕尾狀而得名,為溫帶地區一年生的作物[1]

燕麥果實外穎先端芒尖分叉如燕尾狀。圖 / 參考資料 1

燕麥穀粒結構一般可簡單分成胚芽(germ)、胚乳(endosperm)及麩皮(bran)三個部分,胚乳主要成分是碳水化合物與蛋白質,也是製造成燕麥奶最主要的來源;纖維主要存在於麩皮;而礦物質及維生素多存在於胚芽及麩皮中[2]

燕麥營養價值高,為蛋白質和膳食纖維的良好來源,其蛋白質含量約為 15-20%,燕麥球蛋白(avenalin)是最主要的蛋白質(約佔 70-80%),在穀類中被視為優良蛋白質的來源之一[3]

而 β-葡聚醣( β-glucan)是燕麥最具保健功效的水溶性膳食纖維,在遇水後會膨脹,形成人體無法吸收的膠狀體。故可延緩食物消化吸收的速度,延長飽足感,也具有降低血液中的低密度脂蛋白膽固醇(low density lipoprotein-cholesterol ; LDL-C)與血糖含量等益處[4]

燕麥穀粒結構。 圖 / 參考資料 3

改善燕麥糊化後變稠的關鍵——酵素水解

燕麥的主要由澱粉組成,具有高溶脹(high-swelling)的特性,在加熱過程中會快速吸水膨潤,於攝氏 44.7-73.7 度間(糊化溫度)糊化產生高黏稠性米白色漿體,甚至可達到如凝膠狀態的稠度[2]

這樣不但限制燕麥的添加比例,也增加製造過程中的操作與清洗難度。為了讓它保持流動性,有一道「酵素水解」的程序(酵素又稱為酶),可將澱粉分解成小分子以提升流動性,在加工過程中就能夠順利流動[2]

延伸閱讀:烘焙系動畫利用米做麵包——淺談米的科學與應用

而燕麥因澱粉含量高,需使用澱粉酶(amylase)進行水解,一般廣泛應用於澱粉水解的酵素有兩種,為 α-澱粉酶與 β-澱粉酶。

α-澱粉酶(α-amylase)是一種內切型葡萄糖苷酶,可任意切斷 α-1,4 糖苷鍵(glycosidic bond),生成大小不一的分子,包括直鏈和支鏈寡糖、麥芽糖、葡萄糖及糊精等產物,因反應完後產物黏度會急劇下降,故又稱「澱粉液化酶」。

β-澱粉酶(β-amylase為外切型葡萄糖苷酶,從澱粉的非還原端逐次以一分子麥芽糖為單位,切斷 α-1,4 糖苷鍵,產物為麥芽糖、少量糊精或葡萄糖,因此又稱「澱粉糖化酶」[5]

另外有研究指出,燕麥在水解過程中若單一使用 α-澱粉酶或 β-澱粉酶,無法使燕麥水解液兼具黏度降低與產生麥芽糖的優點,兩者混合使用的效果最佳[2]

微甜又絲滑的燕麥奶是怎麼來的?

既然澱粉酶是製造燕麥奶的關鍵,那到底是如何加工的?

首先,將燕麥加水浸泡軟化,研磨成燕麥漿,接著升溫至澱粉酶適合的作用溫度,加入澱粉酶進行水解。燕麥漿會從濃稠狀逐漸轉變為流動狀,並產生許多麥芽糖或少量葡萄糖等,甜度也會因此而提高。

水解結束後,將燕麥漿加熱至攝氏 90 度以上使澱粉酶失去活性(即蛋白質變性),然後進行過濾,去除無法水解的纖維和殘渣,獲得澄清的米白色液體,為燕麥水解液[2]

再將燕麥水解液與水、植物油、食鹽、磷酸鹽類或是其他營養成分混合,例如:可添加碳酸鈣,彌補燕麥奶缺乏鈣質的缺點;添加膠體以提升飲品穩定性;或是添加香料來增添風味。

將上述原料混合後進行均質(homogenization)[注 1],形成質地穩定的飲品,這樣就完成微甜(來自麥芽糖或葡萄糖等)又絲滑(來自植物油)的燕麥奶,即可進行殺菌、包裝來販售囉!

如此一來,我們熟悉的好喝燕麥奶就完成了。 圖/envato.elements

β-葡聚醣不見後,燕麥奶又為什麼能打成奶泡?

然而這樣的加工方式有個遺憾的缺點,那就是在後段進行過濾去除殘渣時,容易造成 β-葡聚醣損失。

因 β-葡聚醣大部分存在於大粒徑的殘渣中(麩皮),這些殘渣多為不溶性膳食纖維,故不會被澱粉酶水解[2],所以若想要補充 β-葡聚醣,建議直接沖泡燕麥片來食用會較容易達到保健的效果。

此外,燕麥奶之所以能打成綿密的奶泡,是因為燕麥含有的「蛋白質」具有起泡性。

燕麥奶打入空氣後,蛋白質展開,吸附到氣體與液體之界面處包住氣泡,蛋白質的疏水端隨之移動到氣泡內,親水端則移到氣泡外,與液體相互作用形成液體膜層,氣泡就被這個膜保留住,形成綿密的奶泡。

而起泡性會受到 pH 值、離子強度和糖質種類的影響,一般而言,添加鹼性材料可增加泡沫體積;添加糖質可增加泡沫安定性[5]

故一般市售燕麥奶均會添加磷酸鹽類(鹼性材料);糖質來自燕麥水解液本身的產物,即麥芽糖或葡萄糖等,就不需再額外添加。

燕麥奶本身含有的蛋白質,與添加磷酸鹽類,都可以幫助燕麥奶打出綿密的奶泡。(本圖僅供示範,請勿浪費食物!) 圖/GIPHY

為什麼燕麥奶的成份表沒有標出「酵素」?

不過,仔細看市面上燕麥奶的成份標示,似乎都沒有標出「酵素」或「澱粉酶」等字樣,依《食品添加物使用範圍及限量暨規格標準》,酵素屬於食品添加物[注 2],不是應該要標示出來嗎?

因為法規特別規定,食品添加物若在食品加工製造使用,在終產品完成前,經過中和、去除或以其他方法使其失去活性,對終產品無功能者,得免予標示[注 3]

上述分享了這麼多燕麥奶的小知識,是因為隨著友善環境與健康意識的抬頭,植物基產品已成為現代人的食尚新選擇,而「燕麥奶」便是新型態植物基飲品的最佳代表。

燕麥奶不但能打發出綿密細緻的奶泡,適合搭配咖啡或茶,最近還發展出更多元的料理方式,像是製作成燕麥奶吐司、燕麥奶甜點,甚至還能入菜,做成燉飯或是燕麥奶火鍋等,提供素食者更多友善低負擔的美味餐點[8]

相信未來會有愈來愈多人來一同響應這股蔬食趨勢,甚至成為新的飲食型態。

相信未來會有愈來愈多人喜歡上這股新形態的飲食風潮。  圖/GIPHY

註解

1. 均質(homogenization),利用高壓所產生的剪切力,將大小不一的脂肪球撞碎成大小均一且細小的脂肪球,使脂肪球能均勻散佈在水中,形成穩定且均勻飲品,才不會產生油水分離的現象。

2. 酵素在《食品添加物使用範圍及限量暨規格標準》中,被歸於第 (十七) 其他類別的食品添加物[6]

3. 食品安全衛生管理法施行細則第九條第二項指出,食品添加物若對終產品無功能者,得免標示之[7]

參考資料

1. 莊溪,2000。燕麥。認識植物。

2. 陳愉婷,2020。燕麥應用於植物性飲品之研究開發。食品工業 52:07,49-54。

3. Chu, Y. and Blatner, D. J. 2016. The Whole Grain Picture: Sharing the Science Behind Oats. International Journal of Food Science and Nutrition 1: 6 1-10.

4. Deswal, A., Deora, N. S. and Mishra, H. N. 2013. Optimization of Enzymatic Production Process of Oat Milk Using Response Surface Methodology. Food and Bioprocess Technology 10.1007/s11947-013-1144-2

5. 顏國欽,2020。最新食品化學。臺中市:華格那出版有限公司。

6. 食品藥物管理署,2022。食品添加物使用範圍及限量暨規格標準。衛生福利部。

7. 食品藥物管理署,2017。食品安全衛生管理法施行細則。衛生福利部。
8. 經濟日報 新聞部編輯中心,2021。台灣首發「燕麥奶入菜」 美味復「蔬」計劃正式啟動。聯合報系。

所有討論 2
Evelyn 食品技師_96
14 篇文章 ・ 11 位粉絲
一名食品技師兼研發專員,對食品科學充滿熱忱。有鑒於近年發生許多食安風暴,大眾對於食品安全的關注越來越高,網路上卻充斥著不實資訊或謠言。希望能貢獻微薄之力寫些文章,讓更多人有機會認識食品科學的正確知識!想獲得更多食品營養資訊可追蹤作者的粉絲專頁喔!https://www.facebook.com/profile.php?id=100066016756421

0

0
1

文字

分享

0
0
1
宇宙到底從哪來?從量子力學和相對論來看「宇宙起源」,解釋完全不一樣!——《宇宙大哉問》
天下文化_96
・2022/09/25 ・2200字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

宇宙從何而來?

每當仰望滿天星斗絢爛壯麗的夜空,或驚嘆微觀世界錯綜複雜的美景時,你不禁會問:「這一切從何而來?宇宙為什麼存在?是什麼東西或是誰負責這一切?」

長期以來,人們一直不斷臆測,讓人驚嘆不已的宇宙真實起源。當然,這比起我們擁有物理學或漫畫的時間要長得多。瞭解宇宙起源很重要,因為有可能會解釋我們存在的來龍去脈。我們想知道我們是怎麼來的,因為這問題的答案可能揭露:我們為什麼在這裡,以及我們應該如何度過時間。如果你知道宇宙從何而來,你的生活方式可能會改變。

因此,在所有問題中最大的問題是,物理學究竟可以告訴我們什麼?

在一開始的時候

在我們問宇宙從何而來或它是如何形成之前,我們需要先退一步想想。我們首先要問的應該是「宇宙是誕生出來的,還是本來就一直存在?」

你可能會驚訝的發現,物理學對這個問題有很多論述。可惜的是,很多論述內容並不是很一致。事實上,量子力學和相對論這兩個偉大的理論,在宇宙主題上指出了兩個截然不同的方向。

量子宇宙

量子力學表明宇宙遵循著我們不熟悉的規則。根據量子力學,粒子和能量以奇怪和不確定的方式表現。這可能令人非常困惑,但幸運的是,這跟我們手上的問題並不相關。因為量子力學對宇宙的過去和未來實際上是一清二楚的。

量子力學用量子態來描述事物。量子態告訴你,與量子對象交互作用時,事情可能發生的概率。例如,它可能會告訴你粒子位置的機率。你可能不知道粒子現在在哪裡,但你可以知道它可能在哪裡。

量子態很有趣,因為如果你知道今天量子物體的狀態,你可以用它來預測明天、兩週後,或者十億年後的狀態。量子力學中最著名的方程式是薛丁格方程式,跟貓和盒子無關。薛丁格方程式告訴你:如何利用你對宇宙的瞭解並將宇宙向未來投射。它也可以反推,可以利用你對現在的瞭解,告訴你宇宙在過去是什麼樣子。

根據量子力學,這種預測能力沒有時間限制。它的基本原則是:量子資訊不會消失,只是轉變為新的量子態。也就是說,如果你知道宇宙今天的量子態,就可以計算出它在任何時間點的量子態。量子力學告訴我們,宇宙在時間上永遠向後和向前推展。

這代表一個非常簡單的事實:宇宙一直存在,並將永遠存在。如果我們對量子力學的理解是正確的,那麼宇宙就沒有起始點。

相對論宇宙

然而,愛因斯坦相對論卻告訴我們一個截然不同的故事。量子力學有個問題,它通常假設空間是靜態的,就像一個固定的背景,你可以在那裡懸掛粒子和場。但是相對論告訴我們,這觀念大錯特錯。

根據相對論,空間是動態的,它可以彎曲、伸展和壓縮。我們可以看到空間在黑洞或太陽之類的重物體附近彎曲。愛因斯坦的理論還描述了整個空間如何膨脹。空間不僅僅是平坦的空虛;它被重物局部扭曲,並且愈來愈大。

這個瘋狂的想法最初來自於相對論中的數學,但現在我們有實驗能加以證明。透過望遠鏡,我們可以看到星系每年愈來愈快的遠離我們。宇宙中的一切似乎都變得愈來愈分散和愈來愈冷,就像氣體在膨脹時冷卻一樣。

對宇宙的起源來說,這代表什麼含義呢?呃……如果把時鐘倒轉,我們的觀察預測出宇宙曾經更熾熱、更密集。如果回溯足夠遠的時間,宇宙就會到達一個特殊的點:奇異點。

此時,宇宙的密度實在是太大了,甚至讓相對論的計算結果顯得有點荒謬。相對論預測宇宙變得非常緊密,空間又異常彎曲,最終達到了一個無限密度點。

按照相對論的觀點,宇宙在某種程度上確實有個開端,或者說至少有個「特殊時刻」。我們所看到的一切,包括所有空間,都來自奇異點。可惜的是,相對論不能告訴我們那一刻發生了什麼,但我們知道它與之後的任何時空點都不一樣。它就像一堵無法跨越的牆,無法用相對論解釋。

孰是孰非?

現代物理學的兩大支柱以大相逕庭的觀點來解釋可能的宇宙起源。一方面,量子力學告訴我們宇宙是永恆的,一直存在。另一方面,相對論告訴我們宇宙來自一個發生在一百四十億年前的無限密度點。

我們知道量子力學不可能完全正確,因為它沒有辦法描述關於宇宙的某些事。例如,量子力學沒有辦法描述重力或空間彎曲。但同時,我們也知道相對論並不完全正確,因為它在奇異點處崩潰,並且忽略了宇宙的量子性質。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
107 篇文章 ・ 588 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。