0

0
0

文字

分享

0
0
0

【Gene思書齋】讓科學告訴你,父親究竟重不重要?!

Gene Ng_96
・2015/11/27 ・2260字 ・閱讀時間約 4 分鐘 ・SR值 519 ・六年級

人類是個很特殊的動物,大部分雄性哺乳動物都是射後不理,可是鬧出人命把妹肚子搞大的男人,只要夠有種,就要為尿布、奶粉和養育而做牛做馬後半輩子。因此,父親在人的成長過程中,就成了一個尷尬的角色。在亞洲文化,父親尤其是個不可親近的角色,似乎主要功能是提供經濟資源和發號司令。相信很多亞洲家庭,母親管小事,父親管大事,所以家裡幾乎沒有大事。

現在因為西化,加上少子化,父親的角色和傳統的大不同了。有些朋友在外地拚事業時,要刺激他們,就只要跟他們說,小心小孩長大後把他們當怪叔叔。今天吃飯時,朋友說個另一個朋友的八卦,就是因為兒子把爸爸在家中地位排在媽媽、阿嬤和姐姐之後而大受傷。

老實說,我跟我爸不太熟,在家幾乎從來沒有好好說過幾句話,因為我從中學時就離家,生命迄今有長達三分之二的時間在外面的世界唸書和工作。在外面的世界,大多數時間人與人之間講的是理,可是回家後父親為了要維護尊嚴而擺出的威權,很難接受,沒吵架就已經算是天下太平了,能不說話儘量不說話。打回家的電話只要是爸爸接的,幾乎馬上轉給我媽,如果媽媽不在幾乎是交待晚點再打後馬上掛掉。直到我博士班畢業時,爸爸覺得有點面子了,到美國參加畢業典禮時,我開車帶爸媽出去玩時,才有好幾個小時平等的長聊,不過那是空前,也是絕後,回到家裡,爸爸又回到裝權威的老樣子。

其實對哺乳動物而言,過去一般認為母親對孩子的影響遠遠超過父親,不僅是因為相處時間較多,還是幼兒時營養唯一來源,還有在子宮孕育的時間也不算短,而且受精卵細胞質大部分是來自母親的卵子,父親似乎在生物學上僅貢獻了一半遺傳物質,如此而已。可是近年,因為遺傳學研究技術的大幅進展,愈來愈多證據發現,父親在我們的遺傳物質上也留下了意想不到的影響,在母親懷孕時也能不同程度地影響胎兒未來的健康。

-----廣告,請繼續往下閱讀-----
source:Richard Leeming
source:Richard Leeming

我們在實驗室的書報討論時,有人報導了肥胖的父親在孩子的DNA上留下印記到孫輩,也有討論了父親抽菸也會在DNA留下印記而讓子孫有不良健康。這些發現連我們這些成天和DNA打交道的生命科學工作者都嘖嘖稱奇。為了慶賀這些科學的新發現,好幾位孩子的父親保羅‧雷伯恩(Paul Raeburn)就用《父親重不重要?讓科學告訴你!》Do Fathers Matter?: What Science Is Telling Us About the Parent We’ve Overlooked)來為父親的新認識而立碑!這是一位父親旺盛好奇心的科學探索之旅!他走訪了許多科學家和實驗室,為大家帶來精彩的報導。其中有許多是從其他不同動物的研究而來的,讓我們思索人為何為人?

這些有趣的問題,只要有父親的人都該知道:父親到底有多麼重要?孩子會不會影響父親的健康?父母親的遺傳基因如何進行拉鋸戰?誰的基因影響孩子較多?神經科學和荷爾蒙如何影響一個父親的表現?父親的荷爾蒙在孩子發育的各個階段會出現什麼變化?孩子成長過程中,父親扮演什麼樣的角色?母親懷孕期間,父親有什麼變化?嬰兒出生後,身為父親的男人會發生什麼事?一夫一妻制對於父母親代表著什麼意義?父親與青少年的性格轉變有何關聯?父親對於家庭有何貢獻?男性在「將為人父」時會有什麼改變?父親會影響子女的語言發展嗎?高齡父親要面臨什麼樣的風險、會得到什麼樣的回報?

上述問題,科學記者保羅‧雷伯恩,從演化生物學、神經科學、社會學、發展心理學的角度深入探討「父親」這個家長,在孩子各個成長階段所扮演的角色。是一本很有故事的書,讓我們可以一次瞭解科學家現在發現了什麼,涵蓋範圍從精子到社會都有。《父親重不重要?讓科學告訴你!》讓我們清楚地瞭解到,身為一位好父親有多重要!男人在拚事業的同時,千萬不要忽略了和孩子的親密互動!因為父親在孩子成長過程,在生理和心理上都有顯著影響!父親的參與,也為母子互動加分!

過去,我們認識了孟德爾遺傳學,可是近年愈來愈多證據顯示環境因子會在我們的DNA上做記號,就像在課本上劃重點一樣,讓同樣的DNA序列也能有不同解讀。這個後天的劃重點,影響居然不僅是我們自己而已,連子孫輩都會有影響,我們的身心健康居然有一部分是由爸爸甚至爺爺年輕時過的生活而決定的!這顛覆了過去在學界的許多認知,更甭提對社會大眾來說有多匪夷所思。男人身為人父的年紀,對孩子也有正面和負面的影響。

-----廣告,請繼續往下閱讀-----

《父親重不重要?讓科學告訴你!》裡提到的,有許多是近年才發現的,這個領域還方興未艾,未來鐵定還會有許許多多科學新發現,所以不管《父親重不重要?讓科學告訴你!》說的關於父親的重要性有多少,都只是冰山一角而已,雖然已經夠令人感到新奇和震撼了!生命科學的研究,肯定會帶來更多更多驚喜!

可喜的是,當社會愈來愈不缺溫飽,父親就愈能夠參與孩子的成長,至少現在愈來愈多男人不僅是拿錢回家後就啥事都不管,也想要讓孩子長大後對他們有美好的回憶。在這樣情況下,整個社會是否該思考亞洲富裕國家的超長工時,讓父親少了和孩子的許多互動,是否像是吸毒,在生物學上就葬送了下一代的幸福未來?

本文原刊登於The Sky of Gene

文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
心絞痛不輕忽!可能造成猝死的冠狀動脈心臟病?冠狀動脈繞道手術是什麼?
careonline_96
・2024/06/07 ・2957字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

「有位 50 多歲的男性糖尿病患者,因為重度冠狀動脈狹窄接受過多次心導管支架治療,但是冠狀動脈都反覆阻塞,且出現心臟衰竭的狀況,才終於決定接受冠狀動脈繞道手術。」林口長庚醫院心臟血管外科主任陳紹緯教授指出,「冠狀動脈繞道手術的原理就是使用病人自體血管繞過狹窄的位置,幫助心肌獲得充足的血液循環。」

由於患者有糖尿病,術後出現傷口併發症(包含感染)的風險較高,於是使用術後負壓傷口照護系統以期降低風險。陳紹緯教授說,術後負壓傷口照護系統能夠排除傷口積液,降低感染風險,幫助傷口癒合。在心臟外科團隊的照顧下,患者狀況穩定,於術後七天順利出院。

如今,心導管介入手術已相當進步,但是冠狀動脈繞道手術仍在治療冠狀動脈心臟病中扮演相當重要的角色。相較於接受心導管塗藥支架治療,糖尿病合併多條冠狀動脈阻塞的病患,在追蹤五年後,接受冠狀動脈繞道手術可有效降低死亡風險,並能大幅降低心肌梗塞的風險,因此建議優先採用冠狀動脈繞道手術 1

冠狀動脈是供應心肌氧氣與養分的血管,當冠狀動脈狹窄或阻塞便會造成冠狀動脈心臟病(冠心病)。陳紹緯教授解釋,如果冠狀動脈狹窄導致冠狀動脈血流量無法滿足心肌的需求,便會產生心絞痛;如果冠狀動脈突然阻塞,冠狀動脈血流中斷,心肌便會缺氧壞死,稱為心肌梗塞,狀況非常危急,患者可能猝死。

很多原因可能造成冠狀動脈心臟病,危險因子包括:糖尿病、高血壓、高血脂、抽菸、體重過重、家族病史等。陳紹緯教授說,心絞痛發作時,症狀表現包括頭暈、胸悶、胸痛、壓迫感、呼吸急促等,疼痛會延伸至下巴、肩膀等處。

針對急性心肌梗塞、病人狀況很差時,建議緊急進行心導管介入治療。陳紹緯醫師說,因為作心導管打通血管的速度較快、侵入性較小,有機會搶救缺氧的心肌。針對穩定型心絞痛,也就是在身體活動或情緒激動的時候,冠狀動脈血流供應不足的患者,重度冠狀動脈狹窄病人採用冠狀動脈繞道手術能夠長期達到較佳的血管通暢度,減少心血管不良事件,降低死亡風險。陳紹緯教授說,如果三條冠狀動脈都阻塞或左主冠狀動脈狹窄,就會建議進行冠狀動脈繞道手術。包括前美國總統柯林頓、日本明仁天皇都曾經在最好的醫療團隊建議下接受冠狀動脈繞道手術。

2021 美國/歐洲心臟科學會冠心病治療指引(2021 ACC/AHA Guideline for Coronary Artery Revascularization)特別建議下列族群應優先採取冠狀動脈繞道手術而不建議心導管支架手術,包括:糖尿病患者合併多條血管阻塞、複雜性多條或左主冠狀動脈阻塞(SYNTAX score 大於 33 分)、左心室功能不全(收縮分率小於 50 %)、多條血管合併多條血管狹窄、不適合抗血小板藥物、或無法負擔新型塗藥支架的病人。

不可輕忽的傷口併發症

冠狀動脈繞道手術是相當成熟的心臟手術,開胸手術不代表是落後的治療,針對病情複雜而嚴重的病人,反而有最好的效果。經驗豐富的醫療團隊都會特別留意,盡可能降低心臟衰竭、中風、出血等併發症的風險。陳紹緯教授說,冠狀動脈繞道手術因是針對複雜性冠狀動脈疾病的病人,因此除了在病情較單純且病灶適合的病人可以採用微創小傷口的方式,目前大多數還是要開胸、及多處傷口拿血管,因此術後的傷口照護相當重要。因為冠狀動脈心臟病患常常都有糖尿病,傷口癒合較慢且容易感染,出現傷口併發症的風險較高。

「倘若出現傷口併發症,可能進展為敗血症,甚至會導致死亡。」陳紹緯教授說,「特別是胸骨,萬一遭到感染,死亡率也會比較高。」

為了減少傷口併發症,必須多管齊下。陳紹緯教授說,包括把血糖控制穩定、使用預防性抗生素、術前手術部位的清潔、採用術後負壓傷口照護系統等來一起降低傷口併發症產生的風險。

傷口併發症的發生常跟傷口內的積液有關,因為傷口在縫合之後,仍會滲出組織液,而積蓄在傷口內的組織液可能滋生細菌,漸漸導致化膿、蜂窩性組織炎、甚至菌血症。陳紹緯教授說,術後負壓傷口照護系統的做法是在縫合傷口後,覆蓋特殊的敷料,然後連接一個能夠抽吸的小型主機,讓傷口維持負壓的狀態。

術後負壓傷口照護系統能夠有效排除傷口積液,降低感染風險,並幫助保持皮膚乾燥,避免傷口旁皮膚浸潤。陳紹緯教授說,維持負壓的狀態也可以幫助拉近縫合的傷口,減少側邊張力,並增加傷口附近的血流量,刺激肉芽組織生長,從而增加傷口癒合機率。在黏貼完成後,術後負壓傷口照護系統可以連續保護傷口 5 至 7 天,減少換藥頻率與不適。

糖尿病、體重過重、年紀較大、慢性腎臟病、長期使用類固醇患者等,都是出現傷口併發症的高危險群,接受手術前,可以和醫師討論如何事先做好預防措施,以降低傷口感染的風險。

筆記重點整理

  • 如果冠狀動脈狹窄導致冠狀動脈血流量無法滿足心肌的需求,便會產生心絞痛;如果冠狀動脈突然阻塞,冠狀動脈血流中斷,心肌便會缺氧壞死,稱為心肌梗塞,患者可能猝死。
  • 如果三條冠狀動脈或左主冠狀動脈都嚴重狹窄,建議進行冠狀動脈繞道手術。
  • 相較於接受心導管塗藥支架治療,糖尿病合併多條冠狀動脈阻塞的病患,在長期追蹤後,接受冠狀動脈繞道手術可有效死亡風險,並能大幅降低心肌梗塞的風險,因此建議優先採用冠狀動脈繞道手術 。
  • 因為冠狀動脈心臟病患常常都有糖尿病,傷口癒合較慢且容易感染,出現傷口併發症的風險較高。因此,把血糖控制穩定、使用負壓傷口照護系統皆有助於降低傷口感染的風險。

註解

  1. Head SJ, Milojevic M, Daemen J, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data [published correction appears in Lancet. 2018 Aug 11;392(10146):476]. Lancet. 2018;391(10124):939-948. doi:10.1016/S0140-6736(18)30423-9 ↩︎

careonline_96
494 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站