近年,隨著近年尖端研究的難度不斷上升,想要得到嶄新的成果也更加困難。這個時代的研究人員不只花費更多的時間在研發新穎的實驗技術或熟習更困難的實驗程序,有時也需要使用極度昂貴的儀器試圖跨越前人所築起的高牆。在這樣的環境壓力下,由單一實驗室所組成的團隊逐漸開始無法獨立負擔這些龐大的作業,於是有科學家會說:「好,我來專心開發一個能夠突破偵測極限的技術」,另一個科學家也說:「好,那我專心負責提供研究材料」,若再加上一個科學家表示:「我知道了,那我專心來負責執行實驗吧」的話,這樣團隊將更有可能挑戰更加艱鉅的研究目標。當這三位科學家分別代表一個實驗室的狀況之下,過程中參與這種共同研究的人數可能就會相當可觀。視研究的規模與所使用的技術項目與困難度,近年來作者人數超過10人以上的實驗也是所在多有。舉個較為極端的例子,一篇今年刊載於Nature Genetics名為”Large-scale whole-genome sequencing of the Icelandic population”的論文[1],作者數將近50名,橫跨了3個國家,20個研究單位。
D.F.G., H. Helgason, S.A.G., F.Z., D.O.A., O.T.M., G. Masson, A.H., P.S. and K.S. wrote the initial draft of the manuscript. D.F.G., H. Helgason, S.A.G., F.Z., A.O., G. Magnusson, B.V.H., E.H., G.T.S., S.N.S., M.L.F., A.K., G. Masson and P.S. analyzed the data. D.F.G., H. Helgason, S.A.G., F.Z., A.G., S.B., H.G. and G. Masson created methods for analyzing the data. S.N.S., H. Holm, J.S., H.T.H., H.J. and O.T.M. performed the experiments. H. Holm, G.S., G.T., J.T.S., S.G., G.B.W., T.R., B.T., E.S.B., S.O., H.T., T.S., T.S.G., A.T., J.G.J., A.S., G.B., J.J.J., O.T., P.L., G.I.E., O.S., I.O. and D.O.A. collected the samples and information. D.F.G., D.O.A., G. Masson, U.T., A.H., P.S. and K.S. designed the study.
儘管分工這麼龐大,我們在這份分工裡還是可以大致上分類為「主導」的項目,這個項目負責掌握整體實驗的方向與負責最後的總結:例如實驗設計與論文撰寫;或是「執行」的項目,這些項目負責研究實施過程當中的材料準備或技術細節:例如蒐集檢體,執行實驗,分析方法的開發,執行分析等等。仔細察看各作者所參與的項目,我們不難發現論文的第一作者(D.F.G.)與通訊作者(P.S. and K.S.)都參與了所有「主導」以及部份「執行」的項目,同時我們也發現有近40名的相關人員的名字僅散見於各項有關「執行」的項目,卻沒有參與「主導」的項目;值得注意的是,與前面所提到作者為3人的狀況類似,這些共同作者在研究中扮演的角色主要在於參與提供撰寫論文所需的各種「科學事實」的過程(從準備實驗樣品,實驗,一直到分析後的實驗數據),而未必會參與在事前規劃與論文撰寫過程當中。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
近期科技界最熱烈討論的新聞,應該就屬韓國有研究單位宣布找到了新的室溫常壓超導體 LK-99 ,聽說可以在一般的高中大學實驗室中完成。這讓我不禁好奇它的製作原理,但,大部分的朋友應該跟我一樣都不是專業材料工程人員,看不懂論文怎麼辦呢?除了等泛科學出影片,別忘了我們有 AI 呀!今天我要來分享一套專門訓練來閱讀論文的 AI —— SciSpace Copilot。
今天的影片簡單的跟大家分享了基於 GPT 技術且針對閱讀學術文章進行特別優化的 AI —— SciSpace ,我只要遇到研究型文章都會特別開這個工具起來使用,其他的大語言模型都無法做到如此細緻。我覺得生成式人工智慧的未來就會到處是這種基於某種目的,比如讀論文,使用某個大模型進行微調 Fine-Tuning 之後的小模型,將會協助我們解決各種問題。