0

1
1

文字

分享

0
1
1

物質結構與鍊金術——阿宅物理(3)

科學大抖宅_96
・2015/10/13 ・3419字 ・閱讀時間約 7 分鐘 ・SR值 576 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

先前,人稱(?)物理界蔡頭的大抖宅,向大家介紹了反物質的箇中奧妙,卻也帶出讓人困惑的問題:為何宇宙中的反物質這麼稀少?物理學家因此提出許多理論,試圖揭開這個謎底。

然而,組成物質與反物質的粒子其實相當多樣,特性亦不相同;於是,物質比反物質多的現象,也可能隨著粒子種類的區分而有不同因素,如果不追根究柢,就太辜負了阿宅的熱血!大家是否如鋼之鍊金術師愛德華‧愛力克[1]一樣,準備好探求物質的原理了呢?Go!

<鋼之鍊金術師>主角愛德華‧愛力克描述的科學家(出處:單行本第一卷)
<鋼之鍊金術師>主角愛德華‧愛力克描述的科學家(出處:單行本第一卷)

根據西方鍊金術的古老傳說,只要拔到獅子的鬃毛擁有賢者之石,就能將普通的金屬鍊成黃金;而在<鋼之鍊金術師>裡,「等價交換」是最基本的法則,主角愛德華‧愛力克是這麼說明的:「如果要得到某樣東西,就必須要付出同等的代價。」依現代化學理論而言,我們可以將等價交換法則理解為原子不滅定律與質量守恆定律,亦即:化學反應只是讓物質中的原子重新排列、組合,反應前後原子種類及數目不會改變,總質量也不會改變[2]

source:wallpapersis
source:wallpapersis

於是,說到底,要從沒有黃金成份的物質鍊出黃金是不可能的事,就算你有賢者之石也一樣(雖然它在許多電玩遊戲裡很好用)——因為金原子不會憑空出現,也無法由化學反應合成。但即使我們沒辦法真的鍊金,從碳製造鑽石倒是可能的:鑽石是由碳原子組成的特定結構,只要符合某些條件,我們就可以用碳合成出鑽石

<鋼之鍊金術師>裡針對等價交換的說明(出處:單行本第一卷)
<鋼之鍊金術師>裡針對等價交換的說明(出處:單行本第一卷)

「可是瑞凡,[3]」各位或許要問了:「原子到底是什麼呢?」如中學理化課所教,所有物體都是由原子構成的;原子又包含了原子核,以及環繞其外的電子。若以簡單的圖像表示,近似於:

原子結構示意圖(黑:電子,紅:質子,藍:中子。出處:維基百科)
原子結構示意圖(黑:電子,紅:質子,藍:中子。出處:維基百科)

位於中心的原子核,由質子(以紅色表示)與中子(以藍色表示)組成;電子則繞著原子核運行(不過必須注意的是,圖裡的顏色僅為區分之用,不代表真實顏色;電子的軌跡也不是圖中所畫這麼簡單)。原子核實際上只佔了原子中心極極極~微小的區域。通常,我們說原子的直徑約為10-10公尺(0.1奈米),原子核的直徑則大約是原子的萬分之一強。也就是說,如果原子核跟我們人類一樣大的話,那麼整個原子的大小就是圍繞你周圍十多公里遠的範疇[4]

電子是人類最熟悉的基本粒子之一,我們日常生活用到的電,都是藉由電子來輸送。因電子帶負電,為了方便,我們將其電荷定為 -1單位。同時,電子還有個結拜夥伴,稱為電子中微子(electron neutrino),顧名思義,是電中性的微小粒子。[5]這一對換帖的,我們歸類為輕子(lepton)第一代(first generation)。再者,我們有渺子[6](muon)和渺子中微子(muon neutrino)結成的輕子第二代;與濤子[7](tau)和濤子中微子(tau neutrino)搭配的輕子第三代。

這所謂第幾代,是以電子、渺子和濤子的發現順序來分,並無輩分大小——就像火影的初代目到七代目,[8]是以擔任時間來排序,不見得都有血緣關係。渺子、濤子與電子雷同,均帶 -1 單位電荷,但是質量較大,可看做威力加強版的電子。不過,因為渺子和濤子壽命極短、稍縱即逝,所以幾乎只能在實驗裡看到。

中微子

質子和中子也是我們很熟悉的粒子,它們組成了原子核。實際上,質子和中子都是由更基本的粒子(稱為夸克)所構成的。夸克跟輕子類似,兩兩一夥共三代,分別為第一代的上夸克(up)、下夸克(down),第二代的魅夸克(charm)、奇夸克(strange),和第三代的頂夸克(top)、底夸克(bottom)——這邊的配對順序很重要,就像<火影忍者>裡佐助X鳴人(攻受不可逆)一樣;其中,前者的上、魅、頂各帶 +2/3 單位電荷,而後者的下、奇、底各帶 -1/3 單位電荷。

兩個上夸克加一個下夸克構成了質子,帶 +1 單位電荷;一個上夸克加兩個下夸克構成中子,並且不帶電。像質子與中子這般由三個夸克組成的粒子,我們都歸類為重子(baryon)。同時,雖然有許多其他重子,但它們跟渺子、濤子一樣,無法穩定存在於自然界中。

fferfe

到此,我們似乎開始看出端倪了:所有物體都是由原子構成,而其中原子核裡的質子和中子屬於(夸克組成的)重子;外圍的電子則屬於輕子——所謂的原子其實包含了兩種不同類別的粒子。這也是為什麼上篇文章提及,科學家要把宇宙的發展中,產生物質多於反物質的過程,分別稱為重子始源(baryogenesis)與輕子始源(leptogenesis)。另外,剛剛提到的所有粒子,都有相對應的反粒子。[9]

在了解原子的結構之後,讓我們回到開頭的話題:要像愛德華‧愛力克那般鍊成黃金是否終究沒指望,只能洗洗睡了呢?等一下!既然化學反應無法製造金原子,那麼物理反應呢?所有原子核都是由質子和中子組成的,相異元素的原子核之間,區別在於質子數目的多寡不同。[10]

自由操縱質子、中子,以重組金原子核,是否可行?原則上,這件事大概或許也許不是不可能,但當下現實世界的地球人卻並不擁有這樣的技術,<空想科學讀本>已有詳細的分析,於此就不再贅述。總而言之,要無中生有鍊出黃金在目前仍然是超越人類能力的事情,雖然很遺憾,但也無可奈何就像大抖宅買了票要聽 Bon Jovi 邦喬飛在台灣睽違二十年的開唱,演出卻因杜鵑颱風取消一樣幹

<鋼之鍊金術師>裡將石頭鍊成黃金的一幕(出處:單行本第一卷)
<鋼之鍊金術師>裡將石頭鍊成黃金的一幕(出處:單行本第一卷)

然而,前一回留下的(重子始源與輕子始源)分類問題,現在只回答了一半。我們知道原子核裡的中子和質子,與環繞其外的電子分屬不同類別了(重子與輕子兩類),但它們除了名稱不同外又有什麼本質上的差異呢?分成同一類難道就不行?你有想過這個嗎?沒有。因為你只會想到你自己。電子又為什麼要跟中微子配對?莫非有什麼不可告人的特殊關係嗎?緊張緊張緊張!危險危險危險!刺激刺激刺激!欲知如何,下回請繼續收看阿宅物理第四話!

註解:

  • [1] 請參照漫畫<鋼之鍊金術師>。愛德華‧愛力克為該作主角。
  • [2] 此處所述僅就化學領域而言。
  • [3] 電視劇<犀利人妻>的經典台詞。
  • [4] 原子其實沒有固定的邊界,所以也並沒有確定的大小。這邊說的原子直徑是以測量相鄰原子之間的距離來定的。又,關於原子核只佔原子中心很小部份體積一事,可延伸參考中學時所教的拉塞福(Ernest Rutherford)散射實驗。
  • [5] 中微子又翻譯做微中子,然而為了避免與中子產生混淆,這邊均使用中微子的名稱。今年(2015)的諾貝爾物理獎便與中微子相關,之後會另有專文介紹其性質。
  • [6] 有時亦翻譯成緲子。
  • [7] 有時亦做陶子(不是跟李李仁結婚那位)。
  • [8] 請參照漫畫<火影忍者>。
  • [9] 所有粒子都有對應的(質量相等但電荷相反的)反粒子;然而有些粒子會是自己的反粒子。反粒子組成的物質就稱為反物質。詳情請參閱系列前兩篇文章。
  • [10] 換句話說,當兩個不同原子核裡質子數目相同,我們就稱此二者是同一元素。至於中子的數量呢?請查詢同位素(isotope)一詞。

參考資料:

  1. David Griffiths (2008) Introduction to Elementary Particles, 2nd edition
文章難易度
科學大抖宅_96
35 篇文章 ・ 1118 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

3

7
3

文字

分享

3
7
3
為什麼量子電腦這麼難懂?大概就跟 60 年前要聽懂原子筆一樣難!——專訪旺宏電子盧志遠總經理
科技大觀園_96
・2021/07/21 ・4276字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

近代知名的理論物理學家理查.費曼 (Richard P. Feynman)曾經說過一句名言:
「我認為,沒有人能真正了解量子力學!」
(I think I can safely say that nobody understands quantum mechanics.)

量子力學到底是什麼?為什麼量子力學可以這麼難懂?最近夯翻天的量子電腦,又是怎麼一回事呢?

中央研究院盧志遠院士不僅曾擔任交通大學教授、 AT&T Bell Lab 計畫主持人,回國後至工研院電子所、經濟部次微米計畫專案總主持人,也投身產業界,先後擔任世界先進積體電路公司、欣銓科技公司、旺宏電子公司等高階決策及董事會團隊,榮獲工研院院士、世界科學院院士、美國國家發明家學院院士、總統科學獎等榮譽,在產、官、學、研四方均有崇高的成就與地位。

因此,科技大觀園特別邀請盧志遠院士,透過訪談,為我們解開量子科技的神秘面紗。

盧志遠院士。圖/盧志遠 院士提供

我談的是足球場,你卻在講足球

盧志遠表示,量子力學會這麼難懂,跟我們看世界的「尺度」有關,當我們看世界的尺度不一樣了,很多看起來應該要很怪的現象,都會變得不奇怪了。

以人類的視角為例,雖然人類在地球上生活了這麼久,但我們的視野實在是太小了,小到仍有許多人認為地球是平的,對許多人來說,要想像自己住在一顆大圓球上,這真的是太怪了!

在當今科學界由人類發展出來的理論中,古典物理適合解釋人們生活的範圍,相對論擅長處理大世界的、天文物理的現象,而量子力學則專門處理「小世界」的問題。

以我們最熟悉的古典物理為例,在地球人生活的範圍和尺度中,以牛頓力學為基石的古典物理都是沒有問題的、具有解釋力的,然而,當我們的眼光放大到整個銀河系時,古典物理就不行了。

同樣的,當我們把視野縮得非常小,小到原子以下時,即使牛頓復活,他與他的運動定律對微觀尺度的現象也將無可奈何。

這些尺度的差異,就像是足球場與足球,甚至是足球場與一滴汗水的大小差異一樣,當尺度不同時,我們看到的現象與解釋方法也會不盡相同,這也就是人們「難以搞懂量子力學」的真正原因,畢竟,量子力學談的東西真的太、小、了!

那些年,讓科學家黑人問號的商品

面對近期出現的「量子」商品,盧志遠笑著問道:「你們有沒有想過,為什麼原子筆要叫做『原子』筆?」

原子筆跟原子有什麼關係呢?圖/pixabay

1960 年代左右,當原子筆準備從歐美進入中文市場時,原子筆尚未擁有自己的中文名稱。

然而,在原子彈、原子能源崛起的年代,「原子」在當時是非常高科技、前端的科學名詞,這種新產品又是當時最新潮、最高級的文具, 因此廠商將其命名為「原子筆」,象徵它是一種尖端科技下的高檔文具

也就是說,原子筆會叫做原子筆,單純只是因為「原子」聽起來很潮。

看到這裡,你是否感到無言以對?隨著科學進展、科學教育普及,接受過十二年國教的我們都知道,「原子」不過就是組成物質的基本結構之一。

原子鍵盤、原子衛生紙、原子杯?天哪!根本一點邏輯都沒有啊!

從原子筆的故事中,我們不難發現,面對「新穎、陌生的科學名詞」時,一般大眾時常抱持著憧憬嚮往、高科技的想像,為了吸引消費者的目光,各大廠商也會為自家產品,冠上這些根本毫無邏輯可言的名詞,濫用新穎的科學概念,像是太空被、磁場面膜、量子假睫毛、AI 牙刷等等。

一顆量子?「量子」根本不是一個東西!

盧志遠感慨道,大約每過十年,就會有產品都會被冠上類似的新名詞,而廠商會透過這些科學名詞,讓大家覺得它們的商品很新鮮、有力量又性感。

近年來,量子力學逐漸走入大眾視野,由於量子力學艱深又新穎,就如同原子筆一樣,許多錯誤的理解和誤用逐漸浮現在世人眼前,例如,市面上已經有許多民生用品、心理諮商的服務被廠商冠上「量子」的名義,甚至以為量子就像是一顆一顆原子一樣,誤將量子當作實體的名詞。

事實上,量子(Quantum)並不是一個「子」,而是一種物理學概念,可以描述物質也可以描述能量。

如果一個物理量存在最小的不可分割的單位,那麼這個最小單位就稱為量子。例如在微觀的世界中,能量的狀態是不連續的,是由一小塊、一小塊能量所組成的能量,而這個最小且不能分割的能量狀態,就是量子。

因為人的世界是巨觀、是連續的,所以不能體會微觀的世界,在巨觀解析度不夠的情況下,才會誤認能量是連續的。就是因為量子是如此的微小,這麼巨大的人類,又怎麼能輕鬆弄懂「量子疊加態、量子糾纏」呢?在我們人類自身尺度、溫度等各種環境中,如此的觀念或現象是極少能夠被體驗的!

既然搞不懂,量子電腦又是怎麼來的?

想必大家都有聽過「量子電腦」的鼎鼎大名,甚至耳聞「量子霸權」這等氣勢恢弘的名詞,可是,之前費曼不是說過沒有人可以搞懂量子力學嗎?既然如此,量子電腦又是怎麼做出來的呢?

IBM的量子電腦。圖/flickr

簡單來說,就是「縱使相當多科學家不完全懂,但是每一個人都會用」。

大家一定都有過「我不懂這個公式從哪來,但是我知道怎麼用」的經驗,就算我們已經忘了如何推導橢圓公式,也搞不懂橢圓公式的原理,但高中生都可以靠著公式,有效解決數學考卷上的各種題目。

又好像每個人都在滑手機,但對於手機裡的中央處理器及高階 3D 記憶體是甚麼東西?相互作用的原理又是甚麼?不要說一般人,可能連非本科的專家都參透不多。

雖然不懂原理,我們一樣可以把手機功能用的淋漓盡致,讓每個人都可以是傳說中具有神力的千里眼順風耳。

而量子電腦也是類似的概念,雖然我們距離完全了解量子力學還有很長遠的距離,還好的是,只需要少數專家皓首窮經了解深層原理與細部操作後,其他領域的專家或工程師就只需要知道在哪些特殊條件下,物質會呈現出量子力學的某些明顯特徵,並且運用這些特徵來進行計算,這樣就足夠推使人類科技應用及生活便利性往前進一大步。

現行量子電腦大多使用低溫環境滿足量子運算的條件,當量子電腦在接近絕對零度的極端低溫環境下時,每個原子的平均動能都非常低,不會破壞別人的量子態,如此一來,科學家就可以操縱在量子現象出現的環境中,藉由量子的疊加態、糾纏、測量等現象來完成特殊的量子運算。

量子電腦有什麼特別的?

比起傳統數位電腦,量子電腦處理資訊的方式完全不一樣,在處理特定問題時,不僅運算力更強,計算速度也會更快。

那是因為量子電腦可以多個量子位元平行處理,不像數位電腦只能序列性、一條一條路徑依序運算。

數位電腦透過0、1的二進位來進行運算,若我們想要讓數位電腦變得更快,就必須勤能補拙,使每單位運算的速度倍增,如果今天的數位電腦一秒鐘可以算一百萬次,未來,我們就要努力讓它在一秒鐘內算上一億萬次。

然而,數位電腦其實並不「聰明」,舉例而言,當我們向電腦要求「從臺灣大學找出一條最快抵達哈佛大學的路線」時,數位電腦會列出所有的路線,再找出旅行時間最短的路線,縱使數位電腦每秒鐘速度已達億萬次以上,要尋找這麼多的途徑,還是得花上很長的時間,有時需要萬年甚至比所謂宇宙生命更長的時間,也就是說,沒辦法解答!

但若以量子電腦來解決相同的問題,則量子位元可以將所有路徑一次性平行處理、同時計算,因此速度將變成指數式(量子位元數)的倍增。

而量子電腦則因為量子位元的特性,當位元數為 n 個時,比起傳統電腦的 n 或是 2n, 量子電腦的訊息空間為 2 的 n 次方,具有指數性成長的優勢,面對越困難複雜的問題,越能顯現量子電腦驚人的威力。

換句話說,量子電腦真正的威力並非計算速度較快,而是能夠平行處理問題。

量子科技興起,我們該如何應對?

2019年,Google與合作團隊提出了量子霸權(Quantum supremacy)的概念,並聲稱自己 53 量子位元(Qubit)的量子電腦達到了量子霸權的境界,可以處理傳統電腦無法處理的難題。由此可知,量子科技是將來的重要發展趨勢之一,我們可預期量子科技一定會對臺灣科技業造成很大的影響。

針對臺灣的未來,盧志遠保守的說,雖然臺灣擁有優秀的高科技人才、半導體產業,但我們只能說在量子科技領域中臺灣沒有處於劣勢,但也無法預期具備什麼明顯的優勢。因為一個從原理、技術、機器設備或使用材料都可能不同的新科技,過去的成功經驗不一定能完美複製,屆時產業及政經環境可能都有不同,既有的優點,有時反而造成拖累,此種現象,在科技破壞性替代時,曾經屢屢出現。

但也因為量子科技是無法迴避的趨勢,我們該如何應對?

以半導體產業做比喻,半導體產業粗分 IC 設計、晶圓製造、封裝、測試,同時需要許多高科技設備和原物料相配合,從結果來看,並沒有單一個企業能夠在不同領域都獲得成功、稱霸一方。

因為每個領域所需的專業技術或營運能力不同、投資也不同,如果同樣概念也適用量子科技產業,企業或國家都應該檢視自己的特長,隨時保持警覺,在最適當時機將有限資源投入最好的運用。

但即使量子科技浪潮來襲,盧志遠認為年輕人並不需要著急、也不需要跟風。可以選擇站在浪尖,也未嘗不可只在岸邊觀潮。

投入量子科技的科學研究,或是關注量子科技趨勢、使用量子科技帶來的成果與便利,創造因量子科技帶來的新應用領域,以破壞性創新發明新商業模式,可能反而是最大的機會。

就個人前途而言,應分析並認識自己的特質與人格找到屬於自己的方向,好好鑽研、好好做事。「成功」的最終門檻,仍然是內心的狂熱和喜歡。

參考文獻

  • Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., … & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
  • 張元翔(2020)。量子電腦與量子計算|IBM Q Experience實作。碁峰。
  • Even Physicists Don’t Understand Quantum Mechanics
所有討論 3
科技大觀園_96
82 篇文章 ・ 1104 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

1

5
4

文字

分享

1
5
4
兩百年前的原子量是怎麼誕生的?
姚荏富_96
・2021/03/08 ・2200字 ・閱讀時間約 4 分鐘 ・SR值 547 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

說到原子量大家可能想到的就是什麼氧是 16、碳是 12……之類的元素與數字的關係,但你知道為什麼氧是 16 碳應該是 12 嗎?又或者原子量到底要用來幹嘛的呢?我想大部分的人在課堂中並不會得到比較具體的答案,所以筆者想在這裡和大家聊聊原子量到底是什麼。

原子量其實就是「一顆原子的質量」,今天如果想要測量一個物質的質量,通常是把物質放到天秤上來測量,但若要把「一顆原子」放到天秤上測量質量,並不是不可能啦,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到(當然,還有要用什麼砝碼來跟「一顆原子」平衡,什麼樣的天秤才足夠靈敏之類的問題)。

要把「一顆原子」放到天秤上測量質量,其實並不是不可能,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到。圖/Wikipedia

有趣的是,早在 18 世紀末期,原子量就出現了!還有具體的數字以及對照表(雖然說跟現在比起來有不少的誤差),兩百多年前可沒什麼「光聶」可以用,想必當時的科學家肯定不是用天秤量出「一顆原子」的質量,那這些原子量是怎麼出現的呢?

當年「元素」是物質的「最純形態」

在 18 世紀後期,科學家們將組成物質的「最純型態」叫做「元素」,而組成物質的「最小單位」叫做「原子」,在十八世紀以前雖然有「原子」這種講法,但當時「原子」與我們現在所學的概念並不相同,在更早以前的人認為所有的物質拆到最小都會是同樣的原子小球,會有不同元素的差異是因為原子排列方式的不同所造成。但其實「每種元素都有屬於自己的原子」,像是氫就有氫原子、氧就有氧原子,你是什麼元素就會決定你是什麼原子。

而這些概念的確立就要討論到 18 世紀末期科學家陸續發現的「定比定律」以及「倍比定律」兩大定律。

定比定律是同一種化合物他裡面的成分質量比都會是固定的,以水為例,水中含有氫與氧,但不管是你的合成水或是野外裝到的水,他的質量比都會是 1:8,這就好像上帝的食譜一樣,每個化合物都會有自己的元素配方和指定的質量比例。

而倍比定律呢?則是成份元素如果種類相同的話,每種物質他們的相同的元素也會出現簡單的整數比關係,舉例來說甲烷和乙烯,兩個都是由碳與氫組成的化合物,這時候分析裡面碳與氫的質量組成比例,就會發現當我碳固定質量時,甲烷和乙烯的的氫質量比就會呈現 2:1。

瞭解這兩個原理之後,科學家發現了相同化合物裡面的元素質量,和不同化合物的元素質量之間,都有著微妙的比例關係,但他們有一個問題遲遲無法解決,那就是不同元素的「一份」應該分別是多重。這時英國科學家道爾吞在 1803 年開了第一槍,他將化合物分為最簡單的二元 (AB)、三元 (A2B or AB2) 以及四元 (AB3 or A3B),並簡單粗暴的認定如果 A、B 兩種元素組合後只能有一種化合物的話,那這種化合物就會是一比一組成的二元化合物。現在看來這個判斷稍嫌武斷,但如果道爾吞沒有這樣定義的話原子量的概念就不會這麼早出來。

如果道爾吞沒有將化合物定義為最簡單的二元 (AB)、三元 (A2B or AB2) 以及四元 (AB3 or A3B),原子量的概念就不會這麼早出來。圖/Wikipedia

道爾吞依據前面的兩個定律與他提出的組成原則,將化合物中通常質量比數字都是最小的氫定為原子量 1(雖然現在我們的氫也是 1 但與這時的氫原子量概念並不完全相同),並以此為基準做了大量的原子量計算,像是根據氨的重量分析,其中氫和氮的重量組成 20:80,那依照上面氫原子量是一的情況下,氮的原子量就是 4(現在看是錯的喇因為當時他認為氨是 NH 但事實上氨是 NH3),又或者是根據水的重量分析,其中氫與氧的重量組成是 15:85,所以氧的原子量是 5.66,又在用氧的原子量去分析碳酸氣(二氧化碳),得出碳的原子量就是 4.5,以上述的原子量推定方式來看就可以知道原子量並不是一個絕對的數字,而是一個相對質量的概念,所以原子量又可以稱之為相對原子質量。

不過你可能會覺得 18、19 世紀的原子量跟我們現在學的數字根本就不一樣,但這又是另一個故事了,我們暫且打住。不過原子量的測定邏輯,基本上還是從道爾吞製作的第一張原子量表延續到現在,其概念就是「既然我們無法抓一顆原子來測定他的質量,我們還可以找出物質化合的質量比例,來找出不同元素的原子之間他們的相對質量」而這就是原子量的基本概念。

相關科學史事件

  •  1789年 愛爾蘭化學家希金斯發表《燃素與反燃素理論的比較》,除了支持拉瓦節的觀點外,他也推測原子只能按一定比例進行化合
  • 1792~1802年 李希特(J.B Richter)提出定比定律
  • 1799年 法國藥劑師普羅斯用人工與天然的鹽基碳酸銅去做測定,確定定比定律
  • 1800年 戴維在《化學和哲學研究》分析了N2O、NO、NO2的重量組成(倍比定律的起始)
  • 1801年 貝托萊在《親和力之定律的研究》中反對定比定律
  • 1803年 道爾吞在論文中假定原子按簡單比例化合
  • 1804年 道爾吞分析甲烷和乙烯之比例,提出倍比定律
  • 1808年 道爾吞出版《化學哲學新體系》

參考資料

  1. 化學通史 – 凡異出版
  2. 化學史傳 – 商務印書館

所有討論 1
姚荏富_96
3 篇文章 ・ 6 位粉絲
成大化學畢,文字/影像工作者,LIS初代科學史圖書館,著有《科學史上最有梗的20堂化學課》。興趣廣泛,涉足科普寫作、影像製作、投資理財、社會觀察、社群經營......技能樹持續擴張中,目標是將學會的知識或技能用有趣簡單的方式分享給大家。