0

0
0

文字

分享

0
0
0

電晶體誕生-《創新者們》

天下文化_96
・2015/09/28 ・1643字 ・閱讀時間約 3 分鐘 ・SR值 552 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

有了貝爾實驗室的新團隊,蕭克利重拾五年前的理論,研究如何用固態物質取代真空管。他判斷,假如半導體材料旁邊有強烈的電場,電場會把某些電子吸引到半導體片的表面,並讓電流穿過半導體片。這樣一來,或許就能讓半導體用非常小的訊號來控制較大的訊號。以極低功率的電流為輸入電流,控制(或開關)較高功率的輸出電流。如此半導體就和真空管一樣,能做為放大器或電路開關。

像這樣的「場效應」有個小問題:蕭克利測試理論時(他的團隊用一千伏特的電壓為金屬板充電,然後讓它離半導體表面只有一毫米)卻發現行不通。「沒有可觀測到的電流變化,」他在實驗日誌中寫下。他後來表示這「頗離奇」。釐清理論失敗的原因,才能知道改進的方向,所以蕭克利請巴丁設法找出原因。他倆耗費無數小時討論所謂的「表面態」(surface state)—物質表面原子層的電子特性和量子力學描述。五個月後,巴丁有了自己的看法,他寫在黑板上與布拉頓分享。

巴丁領悟到,半導體帶電後,電子會困在表層,無法自由移動,形成了屏障,即使相隔一毫米之外有強烈電場,都無法穿透壁壘。「新增的電子陷在表面態中,無法移動,」蕭克利指出:「事實上,表面態保護半導體內部不受帶正電荷的控制板影響。」研究小組現在有個新任務:設法打破半導體表面形成的屏障。「我們把焦點放在與巴丁的表面態相關的新實驗,」蕭克利解釋。他們必須突破壁壘,才能讓半導體發揮調節、開關和放大電流的功能。

pansci好書選讀 創新者們 電晶體
因為發明電晶體得到1956年諾貝爾物理獎的蕭克利、巴丁、布拉頓        Source: wiki/transistor

次年的進度十分緩慢,但到了1947 年11 月,突然出現一連串突破,大家後來稱之為「奇蹟之月」。巴丁採用的方法是以「光伏效應」理論為基礎,光伏效應是指不同材料相互接觸的界面,會因為受到光照而產生電壓。他推測在過程中,可能會迫使某些形成屏障的電子開始移動。和巴丁並肩作戰的布拉頓則設計了一連串聰明的實驗,測試各種做法。

過了一陣子,幸運之神意外眷顧。布拉頓在保溫瓶中進行某些實驗,以測試不同溫度下的反應。但矽表面凝結的水氣會干擾實驗結果,要解決這個問題,最好的辦法是把整套實驗器材置於真空中,但這要耗費很大的工夫。「基本上,我是懶惰的物理學家,」布拉頓坦承:「所以我想到一個辦法,把整套器材浸在介電液中。」他把保溫瓶灌滿水,這是避免水氣凝結的簡單方法。他和巴丁在11月17 日做實驗,發現效果奇佳。

那天是星期一,接下來幾天,各種理論概念和實驗構想紛紛冒出。到了星期五,巴丁已經想出毋須把實驗器材浸在水裡的做法。他提議,只需把一小塊尖銳金屬戳進矽片,並且在接觸點滴下一滴水或一點點凝膠就可以了。布拉頓反應熱烈的說:「好啊,咱們就動手吧!」但其中有個困難,不能讓金屬接點碰到水滴,不過鬼才布拉頓靈機一動,用一點點封蠟解決了問題。他找到一塊矽板,在上面滴了一滴水,然後用蠟包覆金屬線造成絕緣,再讓金屬線穿過水滴,刺進矽板。成功了,這個方法真的可以放大電流,至少可以稍微放大。有了這個「點接觸」裝置,電晶體於焉誕生。

pansci選書 創新者們
在貝爾實驗室發明的第一個電晶體之複製品       Source: wiki/transistor

創新者們,泛科選書

本文摘自《創新者們:掀起數位革命的天才、怪傑和駭客》,由天下文化出版。

 

 

 

 

延伸閱讀:

 

文章難易度
天下文化_96
107 篇文章 ・ 592 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

2
1

文字

分享

1
2
1
【2004諾貝爾化學獎】蛋白質的分解機器
諾貝爾化學獎譯文_96
・2022/09/12 ・6710字 ・閱讀時間約 13 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2004諾貝爾化學獎】蛋白質的分解機器

  • 譯者/蔡蘊明|台大化學系名譽教授

譯者前言:今年的諾貝爾化學獎又落入了生化學家的口袋,連續兩年頒給生化學者並不常見,我想這應該是反映了現在化學研究的熱門趨勢。今年的諾貝爾化學獎讓我們注意到細胞是如何精妙的去控制它的蛋白質系統,昨日(十月六日)我在中研院生醫所聽了一場 2002 年諾貝爾生理及藥學獎的得主 H. Robert Horvitz 的演講,那是另一個熱門的題目:細胞凋亡,真是一場精采的演講,同樣的我們看到這些蛋白質的另一種運作。前幾日與一位生技系的學生聊到他未來想走的方向,言談之間他似乎認為蛋白質的化學已經熱門了好一陣子了,恐怕熱潮已過。不過從現實來看,在諾大的生命體系中,我們對它的瞭解實在是太少了,由這些蛋白質的研究看來,我覺得蛋白質的化學仍應是方興未艾吧!

後記:  詹健偉是我在 2003 年教過的學生,他原在植微系,後來轉入了生化科技系,從起初對生物系統的興趣加上對化學的熱愛導致他轉入生化科技的領域,然而這些年他逐漸的體認:「只有化學才能完美的解釋生物體系」,現在他已經決定投入“化學生物學”的領域。健偉是個認真的學生,他讀我的翻譯文章極為仔細,更進一步的從一個學生化的背景看出我許多翻譯的謬誤以及不通順之處。約莫半年前碰到他,他主動的提及願意幫我修改,一直到最近才讓我如願。有學生如此,是我的福分,感謝健偉也祝福他!

— 蔡蘊明 謹誌於 2006 年 10 月 9 日

一個人的細胞中含有上百萬種的不同蛋白質,它們具有無數的重要功能:例如以酵素(或稱為酶)的型式存在的化學反應加速者,以荷爾蒙的型式存在的訊息傳導物質,在免疫的防禦上扮演要角以及負責細胞的型態和結構。今年的諾貝爾化學獎得主:席嘉諾佛(Aaron Ciechanover)、赫西柯(Avram Hershko)以及羅斯(Irwin Rose)研究在細胞中如何對一些不需要的蛋白質加上一種稱為泛素(ubiquitin)的多胜肽標籤,藉以調節某些蛋白質的存在,他們的研究在化學知識上有重要的突破。這些被加上標籤的蛋白質,接著會在一個稱為蛋白解體(proteasome)的細胞"垃圾處理機"中迅速的降解。

透過他們發現的這個蛋白質調節系統,這三位學者使得我們能在分子的層次瞭解細胞如何的控制許多重要的生化程序,例如細胞週期、DNA 的修補、基因的轉錄以及新合成之蛋白質的品質管制。有關這種形式之蛋白質凋亡控制的新知識也使得我們能解釋免疫防禦系統如何的運作,這個系統的缺陷可造成包括癌症在內的不同疾病。

被貼上毀滅標籤的蛋白質

分解是否需要能量?

當大部分的注意力和研究都集中在企圖瞭解細胞如何的控制某些蛋白質的合成時(這方面的研究產生了五個諾貝爾獎),與其相反的蛋白質降解則一直被視為是較不重要的。其實有一些簡單的蛋白質降解酶是早就知道的,一個例子就是胰蛋白酶(trypsin),這是一個存在於小腸中,將食物中的蛋白質分解為胺基酸的一種酵素。類似的,有一種稱為溶體(lysosome)的細胞胞器也早就被研究過,它的功能是把由細胞外吸入的蛋白質降解。這些降解程序的共通性在於這些功能不需要能量。

不過早在 1950 年代的實驗就顯示要分解細胞本身所具有的蛋白質是需要能量的,這個現象一直困擾著研究者,這個矛盾也就是今年的諾貝爾化學獎的背景:亦即細胞內蛋白質的分解需要能量,但是其它蛋白質的分解卻不需要額外的能量。解釋這個需要能量的蛋白質分解過程是由 Goldberg 與其研究夥伴在 1977 年踏出了第一步,他們從一種稱為網狀紅血球(reticulocyte)之未成熟的紅血球,製造出一個不含細胞的萃取物,倚賴ATP(ATP = adenosine triphosphate;是一種細胞的能量貨幣)的能量,這種物質可以催化不正常蛋白質的分解。

運用這個萃取物,今年的三位諾貝爾化學獎得主在 1970 年代後期及 1980 年代初,透過一系列劃時代的生化研究,成功的顯示在細胞中的蛋白質分解,是透過一系列一步步的反應,導致要被摧毀的蛋白質被掛上一個稱為泛素(ubiquitin)的多胜肽標籤。這個過程使得細胞可以非常高的專一性分解不需要的蛋白質,而且就是這一個調控的過程需要能量。與可逆的蛋白質修飾例如磷酸化(1992 年的諾貝爾生理醫學獎)不同之處是:被聚泛素化(polyubiquitination)調控的反應,常是不可逆的,因為被掛上標籤的蛋白質最後被摧毀了。大部分的這些工作是在以色列 Haifa 大學的赫西柯以及席嘉諾佛在休假年,於美國費城的 Fox Chase 癌症中心的羅斯博士的實驗室所完成的。

泛素的標籤

這個後來被發現用在需要分解掉的蛋白質上所貼的標籤,早在 1975 年就從小牛胸腺中被分離出來,它是一個由 76 個胺基酸所組成的多肽,該分子被認為參與在白血球的成熟過程中,其後由於這個化學分子在各種不同的組織和生物體中(細菌除外)亦被發現,因此被賦予了泛素(ubiquitin)的名稱(ubique在希臘文中有到處或廣泛的意思)(圖一)。

(圖一)泛素:一個共通的多胜肽代表"死亡之吻"

發現由泛素所媒介的蛋白質分解

在赫西柯取得博士學位之後,研究了一陣子肝細胞中倚賴能量的蛋白質分解,不過在 1977 年決定改為研究上述的網狀紅血球萃取物,這個萃取物含有大量的血紅素,嚴重的影響實驗,在企圖利用層析法來去除血紅素時,席嘉諾佛以及赫西柯發現這個萃取物可被分成兩個部分,二者個別都沒有生化活性,但是他們發現一旦二者混合在一起,那個倚賴 ATP 的蛋白質分解活性就恢復了。在 1978 年他們發表了其中一個部分中的具活性物質,是一個對熱穩定的多肽,分子量只有 9000,他們稱之為 APF-1,這個物質後來證實為泛素。

席嘉諾佛,赫西柯,與羅斯在 1980 年發表了兩份決定性的突破工作,在這之前 APF-1 的功能是完全不清楚的。這頭一份報告顯示 APF-1 是以共價鍵(就是一種很穩定的化學鍵結)與萃取物中的各種不同蛋白質結合。在第二部份的報告更進一步的顯示有許多個 APF-1 鍵結在同一個目標蛋白上,此一現象被稱為聚泛素化(polyubiquitination)。我們現在知道這個將目標蛋白質多次泛素化的步驟,是一個導致蛋白質在蛋白解體(proteasome)中降解的啟動信號;也就是這個聚泛素化反應,在蛋白質貼上降解的標籤,或可稱其為"死亡之吻"。

就這麼一擊,這些完全未預期的發現,改變了其後的研究方向:現在就可以集中力量開始鑑定那些將泛素接上蛋白質標靶的酵素系統。由於泛素普遍的存在於各種不同的組織和生物體中,大家很快的體認到,由泛素所媒介的蛋白質分解對細胞一定是很普遍而重要的。研究者更進一步的推測,那個倚賴 ATP 的能量需求,可能是為了讓細胞控制這個程序的專一性。

這個研究領域就此大開,而在 1981 到 1983 年間,席嘉諾佛,赫西柯,羅斯與他們的博士後研究員及研究生發展了一套“多重步驟泛素標籤化假說”,這個假說是基於三個新發現之酵素的活性,他們稱這三個酵素為 E1、E2與E3(圖二)。我們現在知道一個尋常的哺乳類細胞含有一個或數個不同的 E1 酵素,大約幾十個 E2 酵素,以及幾百個不同的 E3 酵素,就是這個 E3 酵素的專一性,決定了在細胞中要為哪些蛋白質貼上標籤,然後在垃圾處理機中摧毀。

到這個節骨眼為止,所有的研究都是在沒有細胞的系統中進行的,為了也能夠研究泛素所媒介的蛋白質降解之生理功能,赫西柯與其協同工作人員發展了一種免疫化學方法:用數種放射性胺基酸,以瞬間脈衝的方式來培養細胞,可標定細胞內某一個瞬間所合成的蛋白質。但是泛素中剛好沒有這幾種胺基酸,所以在這瞬間合成的泛素並未被放射性標記。利用泛素的抗體,可以將 "泛素-蛋白質"複合體自該細胞中分離出來,而其中的蛋白質的確具有放射性標記。實驗結果顯示,細胞中也確實以泛素系統來分解有缺陷的蛋白。我們現在知道細胞中大約 30% 的新合成蛋白質都會被垃圾處理機分解,因為它們沒有通過細胞的嚴格品質管制。

(圖二)泛素所媒介的蛋白質降解
  1. E1 酵素活化泛素分子,這個步驟需要 ATP 形式的能量。
  2. 泛素分子被轉移到另一個不同的酵素 E2。
  3. E3 酵素可辨認需要摧毀的目標蛋白質,"E2-泛素"複合物和"E3酵素"結合的位置,非常接近目標蛋白質。這個非常接近的距離,使得泛素標籤足以被轉移到目標蛋白上。
  4. E3 酵素釋放出具有泛素標記的蛋白質。
  5. 最後一步重複數次直到一個由泛素分子構成的的短鏈接在目標蛋白質上。
  6. 這個泛素的短鏈在垃圾處理機的開口處被辨識後,泛素標籤脫落而蛋白質被允許進入並被切成碎片。

蛋白解體-細胞的垃圾處理機

什麼是蛋白解體?一個人類細胞含有約 30,000 個蛋白解體,這個桶狀的結構體可以基本上將所有的蛋白質分解為七到九個胺基酸長短的胜肽,蛋白解體的活性表面是位於桶的內璧,也就是與細胞的其它部份是分隔開來的,唯一能進入蛋白解體的桶中活性表面的方式是必須透過"鎖",鎖能夠辨認接有多個泛素構成的短鏈之蛋白質,藉由 ATP 的能量將蛋白質變性(denature),並在泛素構成的短鏈移除後允許蛋白質進入,並將之降解,降解出來的胜肽由蛋白解體的另外一端釋放出來。因此蛋白解體本身並不能挑選蛋白質,決定哪一些蛋白質需要貼上銷毀的標籤,是 E3 酵素的工作。(圖三)

(圖三)細胞的垃圾處理機。黑點代表具有蛋白質分解活性的表面。

最近的研究

當貼上泛素標籤的蛋白質分解過程背後的生化機制在 1983 年被暴露後,它在生理學上的重要性尚未能完全掌握,雖然知道它在銷毀細胞內具有缺陷的蛋白質上是非常重要的,但是再進一步的,就需要一個突變的細胞來研究泛素的系統,藉著仔細的研究一個突變的細胞與正常的細胞在不同的生長條件下有何不同,希望知道細胞中有哪些反應是與泛素的系統有關,這才能得到更清晰的概念。

一個突變的老鼠細胞在 1980 年由一個東京的研究小組分離出來,他們的突變老鼠細胞含有一個因為突變之故而對溫度非常敏感的蛋白質。在較低溫度時它能發揮應有的功能,但是在高溫時則否,因此在高溫時培養的細胞會停止生長。此外,在高溫時它們顯示其 DNA 的合成會有缺陷以及一些其它的錯誤功能。一群在波士頓的研究人員很快的發現這個突變鼠細胞中對熱敏感的蛋白質是泛素活化酵素 E1,顯然泛素的活化對細胞的運作及複製是不可或缺的,正常蛋白質分解控管不僅對細胞中不正確蛋白質的銷毀很重要,也可能參與了細胞週期、DNA 的複製以及染色體結構的控管。

從 1980 年代末期開始,研究者鑑定出許多生理上很重要的基質是泛素所媒介的蛋白質分解機制中的標靶,在此我們僅提幾個最重要的為例子。

避免植物的自我授粉

大部份的植物是兩性或雌雄同株的,自我授粉將會導致基因多樣性的逐漸喪失,長期而言將造成該物種的完全絕滅,因此為了避免這個情形,植物利用泛素所媒介的蛋白質分解機制來排除"自身"的花粉,雖然完整的機制尚未明朗,但是已知 E3 酵素參與了運作,而且當加入蛋白解體的抑制劑時,排除自身花粉的能力就被削弱。

(圖四)細胞週期中控制染色體分離的機制:剪刀代表分解蛋白質的酵素而綁住剪刀的繩子代表它的抑制劑,APC 將這條繩子貼上標籤造成繩子的分解,剪刀就會釋放出來,接著將那條綁在染色體周圍的繩子切斷,最後造成染色體分離。

細胞週期的控制

當一個細胞要複製自己的時候會有許多的化學反應參與其中,在人體中的 DNA 有六十億個鹼基對必須複製,它們聚集成必須拷貝的 23 對染色體。普通的細胞分裂(也就是有絲分裂),形成生殖細胞(減數分裂),都與今年的諾貝爾化學獎的研究領域有許多交集。在此運作的 E3 酵素稱為"有絲分裂後期促進複合體"(anaphase-promoting complex簡稱 APC),其功能在檢查細胞是否離開了有絲分裂期,這個酵素複合體也被發現在有絲分裂及減數分裂過程中,對染色體的分離扮演了重要的角色。有一個不同的蛋白質複合體,它的功能就好像是一條綁在染色體周圍的繩子,將一對染色體綁在一起(圖四)。在一個特定的訊號出現後,APC 會在一個"降解蛋白質酵素"的抑制劑上貼上標籤,因此這個抑制劑就會被帶到蛋白解體中分解掉,而前述的那個降解蛋白質的酵素就會被釋放出來,在經過活化後將那條綁在染色體周圍的繩子切斷,一但繩子脫落,那一對染色體就會分離。在減數分裂時,錯誤的染色體分裂,是造成孕婦自然流產最常見的原因;一條多出來的人類第 21 號染色體會導致唐氏症;大部份的惡性腫瘤會具有數目改變的染色體,其原因也是由於有絲分裂時錯誤的染色體分裂。

DNA 的修補,癌症以及細胞凋亡

蛋白質 p53 被封為"基因體的守護神",它也是一個腫瘤抑制基因(tumor-suppressor gene),這個意思是只要細胞能製造 p53 就可以阻擋癌症的發生。可以非常確定的,在所有人類癌症中有至少一半的蛋白質是突變的。在一個正常細胞中,蛋白質 p53 一直不斷的被製造和分解,因此其數量是很低的,而它的分解是透過泛素標籤化過程以及負責與 p53 形成複合體的相關 E3 酵素來調控;當 DNA 受到損傷後,蛋白質 p53 會被磷酸化而無法與 E3 酵素結合,p53 的分解無法進行,因此細胞內的 p53 數量迅速增高。蛋白質 p53 的功能是作為一個轉錄因子(transcription factor),換言之就是一個調控某些基因表現的蛋白質。蛋白質 p53 會與控制 DNA 修補以及細胞凋亡的基因結合,並調控該基因,當它的數量升高時會影響細胞週期藉以保留時間給 DNA 修補的運作,倘若這個 DNA 的損傷過於嚴重,計劃性細胞凋亡將會啟動而導致細胞的"自殺"。

人類乳突病毒的感染與子宮頸癌的發生有極大的關聯性,這個病毒避開了 p53 所控制的關卡,它的方法是透過它的蛋白質去活化並改變某一個 E3 酵素(稱為 E6-AP)的辨識行為,E6-AP 被騙去將蛋白質 p53 貼上死亡的標籤而造成 p53 的消失,這個後果是被感染的細胞無法正常的修補其 DNA 所受到的傷害或者引起計劃性細胞凋亡,DNA 突變的數目增加最後終於導致癌症的發生。

免疫與發炎反應

有某一個轉錄因子調控著細胞中許多與免疫防禦及發炎反應有關的重要基因,這個蛋白質,亦即這個轉錄因子,在細胞質中是與一個抑制蛋白質結合在一起的,在這個結合的狀態下,此一轉錄因子是沒有活性的。當細胞暴露到病毒時或有其它的訊號物質出現時,這個抑制蛋白質就會被磷酸化,接著被貼上銷毀的標籤而送到蛋白解體中分解掉,此時被釋放出來的轉錄因子被運送到細胞核中,在那裡它與某些特定的基因結合,進而啟動這些基因的表現。

免疫防禦系統中,被病毒感染的細胞,會利用泛素-蛋白解體系統,將病毒蛋白質降解到適當大小的多肽,這些多肽會被呈獻到細胞的表面。T 淋巴細胞會辨識這些多肽然後攻擊這些細胞,這是我們的免疫系統對抗病毒感染的一項重要防禦方式。

纖維囊腫症(cystic fibrosis)

一個稱為纖維囊腫症的遺傳疾病,簡稱 CF,是由一種不具功能的細胞膜氯離子通道(稱為 CFTR;纖維囊腫跨膜通道傳導調節蛋白)所造成。大部份的纖維囊腫病患都具有一個相同的基因損傷,也就是一個在 CFTR 蛋白質上缺少了一個苯丙胺酸的胺基酸。這個突變導致了這個蛋白質的錯誤摺疊結構,使得該錯誤摺疊蛋白被保留在細胞的蛋白質品管系統中,這個品管系統要確實的將此一錯誤摺疊的蛋白質透過泛素-蛋白解體系統銷毀,而不能將之傳送到細胞膜上,一個沒有正常氯離子通道的細胞將無法透過細胞膜傳送氯離子,這就影響到肺部以及一些其它組織的分泌系統,造成肺黏膜液的增加而破壞其功能,更大幅的增加其受到感染的危險性。

這個泛素系統已經成為一個很有趣的研究領域,可用來發展治療各種疾病的藥物,在此的工作方向可以利用泛素所媒介的蛋白質分解機制去避免某些特定蛋白質的分解,也可以設計成讓這個系統將某一個不想要的蛋白質清除。已經有一個在進行臨床實驗的藥,那是一個稱為 Velcade(PS341)的蛋白解體抑制劑,可以用來醫治多重性骨髓瘤(multiple myeloma),這是一種會影響體內製造抗原的細胞的一種癌症。

今年的得獎者從分子的基礎上解釋了一個對高等細胞而言極為重要的蛋白質控制系統,由泛素所媒介的蛋白質分解機制所控制的細胞功能,現在一直不斷的有新的發現,而這方面的研究也在世界各地無數的實驗室中進行著。

參考資料

這份文章是譯自諾貝爾獎委員會公佈給大眾的閱讀資料:

http://nobelprize.org/chemistry/laureates/2004/public.html

有意進一步的瞭解就得詳讀以下資訊:

http://nobelprize.org/chemistry/laureates/2004/adv.html

原文附有一個很精采的動畫,對這個蛋白質控制系統有畫龍點睛之妙,推薦各位看看:

http://nobelprize.org/chemistry/laureates/2004/animation.html

所有討論 1
諾貝爾化學獎譯文_96
15 篇文章 ・ 18 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

5
1

文字

分享

0
5
1
從「自動化」進化成「智動化」——智慧製造是半導體產業的未來趨勢
鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・3611字 ・閱讀時間約 7 分鐘

  • 文/曾繁安

台灣擁有傲視全球、成熟完整的半導體產業聚落,在世界科技領域中扮演舉足輕重的角色。這個國家的經濟命脈,經過全自動化的時代後,即將迎來另一次生產技術的大變革——智慧製造。

當訂單越來越多,人力卻不夠,半導體業者該怎麽辦?

半導體產業包含了矽晶圓[註]、相關化學品與氣體及導線架等封裝材料,其中又以晶圓厰為大宗,例如台積電便是全球規模最大的晶圓代工厰。素有「現代科技應用的大腦與心臟」之稱的半導體,是現代多數電子產品的核心單元,因為各項產品正是利用半導體電導率變化的特性來處理資訊。然而,目前半導體製造業卻面臨人力資源跟不上產量需求提高的挑戰。

晶圓是積體電路製程中的載體基片。圖/wikimedia

一般半導體廠場域面積大,人力短缺使企業面臨管理人手吃緊,再加上人員進出無塵室的過程繁瑣耗時,也是另一大負擔。與此同時,在廠內儀器參數比對和規劃生產計劃上,傳統人力也可能有出現誤差的風險。疫情時代也促成在宅經濟和 5G 應用的高速發展,各領域對晶片的需求大增,造成半導體產業出現產量需求高,但人力短缺的現象。

因此對不少業者而言,可有效緩解人力不足、大幅提升作業效率的數位轉型(Digital Transformation),可謂勢在必行。

從「自動化」升級到「智動化」的智慧製造

那半導體產業的數位轉型,該怎麽做?所謂數位轉型,不僅僅只是將資料或作業數位化,還包括導入人工智慧(Artificial Intelligence,簡稱 AI)與數位科技,來改變企業的整個營運生產模式。AI 指的是電腦程式可模擬人類思維過程的能力,而在 AI 概念下的機器學習(Machine Learning,簡稱 ML),即為機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能

結合 ML 的製造執行系統,需搭配裝置在工廠各處的多個傳感器(Sensor),來收集與回傳各樣的生產數據。它們與工廠設備的相互連接,即是運用了物聯網(Internet of Things)的技術。有賴於 5G 科技的發展,數據可以達成高速率傳輸與低延遲,使得機器與機器之間可以達成溝通,在整合分析各方數據資訊後,有效率地完成各種指令操作,可以比自動化製造系統,更進一步為人類代勞工廠運作的大小事務。

舉例來説,當工廠的生產過程出現問題,自動化系統只會跳出異常通知,還是需要仰賴人員來進行手動排除;但換作應用 ML 系統的話,便可透過自我學習,來自動調整製作流程以解除異常狀況,無需人力介入便可自主解決,提升良率,達成「智動化」智慧製造(Smart Manufacturing)的最終目的。

機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能。 圖/elements

懂得精益求精、提高品質產量的智慧工廠

一座運用智慧製造的半導體工厰,不但能自主克服製程中的疑難雜症,更能幫助提高晶圓的產量品質。在研發方面,AI 可以協助理解高複雜、高維度的製程開發挑戰,也可與 ML 軟體分析感測資料和檢測影響,進行品質管理與缺陷檢查。

此外,數據治理和數位分身,也是智慧製造的關鍵策略。對企業整體的數據進行管理和控制以提高數據的價值將因為數據產生的成本風險降到最低,是數據治理(Data Governance)的核心精神。

在兼顧資訊安全下,數據治理的體系能使跨部門間的數據共享更為方便暢通。輔以 AI 及 ML 的運算,便可以使業務部門的客戶需求、供應鏈管理等資料,與工廠生產部門的設備控制與品管等流程,有更迅速緊密的配合,規劃好合適的未來生產計劃,指導人員進行相關作業。

如同我們可以在電玩游戲或社交媒體上,按照自己的個人形象,來打造自己的虛擬化身,工厰也能藉助現今的科技,來為產品的物理實體,在資訊化平臺或系統的虛擬空間中,打造一個類比實物數位分身(Digital Twin)

數位分身模型之概念圖。圖/wikimedia

數位分身也是物聯網的應用之一,半導體廠中,由傳感器所收集到的晶圓製造數據,在 AI、ML 和軟體分析的協助下被整合,對映成數位空間中「雙胞胎」的存在。這位孿生兄弟不僅能夠隨物理實體的變化而即時做出相應變化,還可以提供無法在實體產品上測試計算的數據。

理想情況下,數位分身可以經由機器學習,分析過去的歷史資料或多重來源的數據,來推估實體的未來情境。因此在危機或異常事件發生前,業者便可預先進行預測性的設備維護與產品的良率分析,比起傳統人力的判斷更加精確,降低技術風險,大大提高生產效率。

工業 4.0 浪潮來襲,智慧製造是產業未來趨勢

運用通訊科技、資料庫和電腦系統達成全自動化生產,已不是新鮮事,如今人類社會正迎來第四次工業革命的新一波浪潮。主打網絡與機械相互連接的核心精神,導入人工智慧、機器學習、物聯網感測與大數據分析等人機協作的智慧製造,是因應多變市場需求的時下趨勢。

在半導體領域中,企業龍頭台積電可説是數位轉型的成功案例,從二十年前的全自動化製造系統,如今致力於打造組織內部友善 AI 的工作環境,努力向智慧製造全面轉型。數位轉型的技術支援不能沒有半導體產業製造的晶片,而如今數位轉型也有望帶領半導體產業突破產能吃緊、人才短缺的困境,走向智慧製造的新紀元。

以台灣在地企業的智慧製造覆蓋率而言,就已在短短 6 年內成長 50%。舉全台最大的國際半導體展 SEMICON Taiwan 為例,智慧製造相關的展商在近六年內的成長幅度也同樣攀升了 50%。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦,匯集橫跨高科技製造業智慧製造解決方案業者、系統整合、軟硬體商及智慧製造需求端業者,如盟立自動化、倍福自動化、家登精密、攝揚企業、日商 JEL 等不容錯過。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦。圖/SEMI

因應疫情下數位轉型成為全球企業的重要任務,今屆展覽中的「高科技智慧製造論壇」將由美光科技、 Lam Research、 Rockwell Automation、Siemens 等知名企業專家以人工智慧工廠為主軸,探討 GEC 技術藍圖,內容包含五個部分包含數據管理、智能分析、數位分身預測等重點實務經驗分享,從晶圓厰到設備製造商和解決方案提供者的角度,讓參與者得以探究 AI 智能工廠的前景和挑戰,跟上數位轉型的步伐。

除了智慧製造議題,展覽期間共有超過 20 場重磅級的國際趨勢論壇,豐富主題涵蓋先進製程、異質整合、化合物半導體、車用晶片、永續製造、半導體資安及人才。論壇將在今年 9 月 13 日率先開幕,展覽則於 9 月 14 日至 16 日於臺北南港展覽館一館盛大開場,規模創歷年新高,届時將有 700 間國內外指標性大廠共襄盛舉,現場將有 2,450 個攤位展出,完整串聯全球半導體供應鏈,目前展會參觀與論壇皆已開放報名,參與席次有限,有興趣者趕快手刀至官網報名起來!

註:晶圓(Wafer)是半導體晶體圓形的簡稱,是從半導體材料如最常見的矽,經過拉製、提煉等一系列處理過程,製成的圓柱狀半導體晶體經過切片、抛光而來。這些圓形薄切片被用於積體電路製程中的載體基片,也可用來製作太陽能電池。

參考資料

  1. 半導體是什麼?晶片產業一次看懂
  2. About SEMI Smart Manufacturing initiative
  3. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(上
  4. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(下)
  5. 泛科學:每分鐘 15 次的駭客攻擊,5G 世代的臺灣資安挑戰——資安所王仁甫策略總監專訪
  6. Data Governance – 臺灣人工智慧行動網
  7. 「數據治理」:人工智慧企業的基本功
  8. 科技大觀園:從全自動化製造邁向智慧製造
  9. 聯剛科技股份有限公司
  10. 【新興領域:9月焦點8】數位分身(Digital Twin)技術發展趨勢與不同層次應用模式
  11. 半導體資安的新挑戰!後疫情時代,如何全面打造半導體供應鏈數位韌性
  12. 工業4.0大全,從淺到深一篇搞懂它!
鳥苷三磷酸 (PanSci Promo)_96
147 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
噔噔愣噔愣~縮小術!用光學微影把 IC 晶片變小了
研之有物│中央研究院_96
・2022/08/10 ・6070字 ・閱讀時間約 12 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 整理撰文/郭雅欣、簡克志
  • 美術設計/蔡宛潔

手機越來越快, IC 晶片卻越來越小,關鍵是「光學微影」

自光學微影技術出現以來,積體電路(Integrated circuit, IC)的體積跟隨著摩爾定律不斷縮小,到我們踏入 5 奈米量產世代的今日,IC 可以說足足縮小了百萬倍!這樣的成果並非一蹴可幾,而是多年來半導體研發人員和工程師的心血累積而成。中央研究院 111 年知識饗宴的科普講座中,林本堅院士以「光學微影縮 IC 百萬倍」為題目,分享了光學微影這一路走來,如何將半導體元件尺寸愈縮愈小、推向極限。

林本堅院士分享半導體微影技術的發展歷程。資料來源/中央研究院

隨著積體電路(IC)與半導體製程的進展,我們的手機、平板等 3C 產品,體積愈來愈小,速度卻愈來愈快,功能也愈來愈多、愈強大。這歸根究柢,是因為現在的半導體技術把 IC 愈做愈小了,在 3C 產品中可以放入的元件數量愈來愈多,自然能做的事情更多了,效率也增加了。

IC 愈做愈小的關鍵技術在於光學微影(Optical Lithography)。光學微影簡單來說,就是在製作元件的過程中,將元件的組成材料依所需位置「印」在半導體晶圓上的技術。能印出愈精細的圖案,就能製作出愈小的元件。

如果讀者好奇手機或電腦的 IC 晶片是怎麼做出來的?請參考以下蔡司公司製作的影片,解釋了晶片從原料到封裝的整個過程,影片中的曝光(exposure)步驟,就是我們這篇文章要介紹的主題。

衡量元件尺寸的關鍵指標之一為「電晶體閘極長度」(Gate length),這個數字與 IC 速度直接相關。以場效電晶體來說,閘極長度愈小,電流可以花更少時間通過電晶體的汲極和源極。

如果要表示元件微縮的程度,另一個關鍵指標為線寬和週距(Pitch),通常以金屬層線與線的週距為參考基準,週距做得愈小,線寬也愈小,元件微縮程度愈高,見以下示意圖。

線寬與週距(Pitch)的示意圖,週距為線寬加上線與線之間的間距,可表示金屬線週期性排列的尺度大小。圖/研之有物

如今,到了單位數奈米的世代(例如 7 奈米或 5 奈米製程),這些數字已經逐漸演變為僅是世代的號誌。雖然 IC 還是愈小愈好,但是新世代製程工藝可能代表運算快、密度高、價錢便宜等其他綜合優點。

那 IC 目前到底縮小了多少呢?我們可以先有個概念,如果把每個世代視為實際尺寸來看,自從 1980 年代有光學微影技術以來,線寬從一開始的 5,000 奈米,如今已降到 5 奈米、甚至往 3 奈米邁進了。線寬不斷往下縮小,每一代大約縮小為上一代的 0.7 倍,到 5 奈米已經是第 21 代。經過了這樣的「代代相傳」,線寬縮小了 1,000 倍,換算下來,同一面積所能放入的元件數量高達原本的 100 萬倍!

光學微影技術如魔法般把線寬一步步縮小,靠的是多年來研發人員一步步的努力。林本堅院士在「光學微影縮 IC 百萬倍」這場科普講座中,一一細數其中的關鍵改良,以及箇中挑戰。

IC 晶片縮小術,秘訣在於追求最小線寬

讓我們先從一個核心的光學解析度公式開始:

半週距(Half Pitch)= k1λ/sinθ

半週距:一條線寬加上線與線的間距後乘以 1/2。曝光解析度高時,半週距可以做得愈小,意味著線寬可以愈小。

k1:一個係數,與製程有關,縮小半週距的關鍵,是所有半導體工程師致力縮小的目標。

λ:微影製程中使用的光源波長,從一開始的 436 奈米,現已降到 13.5 奈米。

sinθ:與鏡頭聚光至成像面的角度有關,基本上由鏡頭決定。

光線通過透鏡系統聚焦成像示意圖,n 為介質折射率,θ 為鏡頭聚焦至成像面的角度。圖/研之有物

由於光在不同介質中,波長會有所改變,因此我們在考慮如何增加解析度時,可將鏡頭與成像面(晶圓)之間的介質(折射率 n)一併納入考量,將 λ 改以 λ0/n 表示,λ0 是真空中的波長。

半週距(Half Pitch)= k1λ0/n sinθ

因此,增加曝光解析度(半週距 ↓)的努力方向為:增加 sinθ、降低 λ0、降低 k1、增加 n。

另一方面,為了讓微影製程有足夠大的曝光清晰範圍,鏡頭成像的景深(DOF)數字愈大愈好(註1),但是景深變大的副作用是——半週距也會跟著變大,因此在製程改良上必須考慮兩者的平衡或相互犧牲。

巨大複雜的鏡頭,都是為了增大 sinθ

sinθ 與鏡頭聚光角度有關,數值由鏡頭決定,sinθ 愈大,解析度愈高。光學微影所使用的鏡頭,並不如我們平常使用的相機或望遠鏡那般簡單——而是由非常多大大小小、不同厚薄及曲率的透鏡,經過精確計算後,仔細堆疊組成的(如下圖)。

這樣極其精密的鏡頭,林本堅透露:「6,000 萬美金的鏡頭已經不值得驚奇了,一億美金都有可能。」鏡頭做得這樣複雜、巨大又昂貴,是為了盡可能將 sinθ 逼近它的極值,也就是 1,他接著說:「目前的鏡頭可將 sinθ 值做到 0.93,這已經是非常辛苦了。」

微影機的鏡頭設計相當複雜,林本堅提到目前業界盡可能提升 sinθ 值到 0.93。圖中的 NA = n.sinθ = 0.9,空氣折射率 n 約為 1,故此鏡頭 sinθ 水準為 0.9。鏡頭模組實際使用時會立起來垂直地面(如下圖)。圖/研之有物
林本堅院士於演講中強調,微影機的鏡頭模組非常巨大,而且重得必須使用起重機才能搬運。圖/111 年中央研究院知識饗宴

鏡頭材料精準的搭配:縮短波長

第二個方法是縮短波長。雖說改變使用的光源,就能得到不同的波長,但因為不同波長的光經過透鏡後的折射方向不同,因此鏡頭的材料也必須相應改變。林本堅表示,當波長愈縮愈短,「我們能選擇的鏡頭材料也愈來愈少,最後就只有那兩三種可以用。」

用少數幾種材枓來調適光源的頻寬愈來愈難。所以後來大家轉而選擇單一種合適的材料,並針對適合這種材料的波長,將頻寬盡量縮窄。林本堅說:「連雷射的頻寬都不夠窄小,現在把頻寬縮窄到難以想像的程度。」

另一種解決問題的方法,則是在鏡頭的組成中加入反射鏡,這樣的鏡頭組合稱為反射折射式光學系統(Catadioptric system)。因為不管是什麼波長的光,遇到鏡面的入射角和反射角都是相等的,因此若能以一些反射鏡面取代透鏡,就可以增加對光波頻寬的容忍度。

上圖為波長 193 奈米光源所使用的曝光鏡頭模組,從示意圖可看到在透鏡組合之間加入了反射鏡。圖/研之有物

後來到了 13.5 奈米(極紫外光,EUV)的波長時,甚至必須整組鏡頭都使用反光鏡,稱為全反射式光學系統(All reflective system),可參考以下 ASML 公司的展示影片。林本堅表示,這種全反射鏡的系統,必須設計得讓光束相互避開,使鏡片不擋住光線。此外,相較於透鏡穿透的角度,鏡面反射的角度對誤差的容忍度更低,鏡面角度必須非常非常精準。以上這些都增加了設計的困難度。

曝光波長的改變還會牽涉到底下的曝光光阻,光阻材料從化學性質、透光度到感光度等各項特性,都必須隨著曝光波長的改變而調整,「這是個浩大的工程。其中感光速度非常重要,是節省製造成本的關鍵」,林本堅說。

值得一提的是,光阻材料的感光速度在微縮 IC 的歷史中相當重要。1980 年代,時任 IBM 的 C.G. Willson 和 H. Iro 率先提出一種以化學方式放大光阻感光速度的方法,將感光速度提升了 10~100 倍,大幅增加了曝光效率。這項重大發明,讓 C.G. Willson 在 2013 年榮獲「日本國際獎」(Japan Prize),可惜當時 H. Iro 博士已故,無法一同受獎。

提高解析度的關鍵:降低 k1

提高解析度的重頭戲就在於如何降低 k1。林本堅說:「你可以不用買昂貴的鏡頭,也可以不選用需要很多研發功夫的新波長。只要你能用聰明才智與創造力,將 k1 降下來。」

首先是「防震動」,就好像拍照開防手震功能一樣,在晶圓曝光時設法減少晶圓和光罩相對的震動,使曝光圖形更加精準,恢復因震動損失的解析度。再來是「減少無用反射」,在曝光時有很多表面會產生不需要的反射,要設法消除。林本堅表示,改良上述這兩項, k1 就可以達到 0.65 的水準。

提高解析度還可以使用雙光束成像(2-beam Imaging)的方法,分別有「偏軸式曝光」(Off-Axis Illumination, OAI)及「移相光罩」(Phase Shift Mask, PSM)兩種。

偏軸式曝光是調整光源入射角度,讓光線斜射進入光罩,原本應通過光罩繞射的三束光(1 階、0 階與 -1 階),會去掉外側的一束光(1 階或 -1 階),只留下其中兩束光(例如 0 階和 1 階)。透過角度的調整,可以很巧妙地讓這兩道光相互干涉來成像,使解析度增加並增加景深。

移相光罩則是在光罩上動些手腳,讓穿過相鄰透光區的光,有 180 度的相位差。相位差 180 度的光波強度不會改變,只是振幅方向相反。如此一來,相鄰透光區的光兩兩干涉之後,剛好會在遮蔽區相消(該暗的地方更暗),增加透光區與遮蔽區的對比,進而提高解析度。

「這兩種做法都可以讓 k1 減少一半。」林本堅笑說:「可惜這兩種方法都是用 2-beam Imaging 的概念,不能疊加起來使用。」

目前業界多半多半使用偏軸式曝光,林本堅表示:「移相光罩一方面比較貴,另一方面,它不能任意設計圖案,必須考量鄰近相位不抵消的問題。」利用各種降低 k1 的技術,目前已將 k1 降到 0.28,「這幾乎是這些技術所能做到的 k1 極限了。」

要進一步降低 k1 ,還有辦法!就是用兩個以上的光罩,稱為「多圖案微影」。簡單來說,它將密集的圖案分工給兩個以上圖案較寬鬆的光罩,輪流曝光在晶圓上,這樣可以避免透光區過於接近,使圖案模糊的問題。缺點則是因為曝光次數加倍,等於效率降低了一半。

鏡頭與晶圓之間的介質:浸潤式微影技術

在增加微影解析度的路上,最後一個可以動手腳的就是鏡頭與晶圓之間的介質。由林本堅提出的浸潤式微影技術中,將鏡頭與晶圓之間的介質從折射率 n~1 的空氣,改成n= 1.44 的水(對應波長為 193 奈米的光),形同將波長等效縮小為 134 奈米。

浸潤式微影技術讓半導體工藝在 12 年內往前走了 6 代——從 45 奈米直到 7 奈米。林本堅補充說,這個技術的優勢在於「你可以繼續使用同樣的波長和光罩,只要把水放到鏡頭底部和晶圓之間就好。」

乾式微影光學系統與浸潤式微影光學系統的差異。圖/研之有物

不過,林本堅話鋒一轉。「我說得很輕鬆,把水放進去就好。但這背後其實有很多技術。」例如水中的空氣可能讓水產生氣泡,必須完全移除。另外,放進去的水必須很均勻,在透光區照到光的水,會變得比遮蔽區的水要熱一些,這個溫差就會讓水變得不均勻,影響成像。為了避免溫差,必須讓水快速流動混合,但又可能會產生漩渦。

「這很考驗我們機台放水的裝置,如何讓水流快速均勻又不起漩渦?這是個大學問,至今放水裝置起碼重新設計了六到八次。」

水的另一個特點,就是「它是很好的清洗劑。」林本堅說。在使用浸潤式微影技術時,水很容易把鏡頭等所有接觸到的東西上的雜質都洗下來,「結果就是晶圓上有上千個缺陷(defects)。我們花了很多功夫把缺陷的數量從幾千個,降到幾百個、幾十個,最後降到零。」林本堅說:「那是需要投入很多人力和晶圓才能完成。」

半導體人才需要是專才、通才,也要是活才

演講的最後,身為清華大學半導體研究學院院長的林本堅提及人才的培養。半導體的技術已經演進到非常複雜的程度,沒有一個學生能精通所有的技術層面。林本堅說:「所以你會發現,半導體需要團隊互助合作。」

而踏入這塊領域的學生,林本堅期許除了要有基本的理工能力外,還需要有對問題的好奇心,會發現新問題,也會找到有趣的新技術(活才)。「如果不能自己發現新的技術,會永遠跟在別人後面。」

林本堅強調,這不是簡單的事情,因為「真的有學不完的東西。」半導體可以分成材料、製程、設計、元件四個領域,「我們希望學生至少在一個領域很精通,有本領深入鑽研(專才)。但對其它的領域,也得有某種程度的認識(通才),才能彼此合作,解決問題。」

關於半導體人才的培養,林本堅院士期許學生先專精在一個領域,並對其他領域有一定程度瞭解,促進團隊合作、解決問題,進而發現新的技術。圖/林本堅

註解

註1:DOF=k3λ/sin2(θ/2),k3 是因應高 NA 值的曝光鏡頭所引入之係數。

延伸閱讀

研之有物│中央研究院_96
248 篇文章 ・ 2046 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook