Loading [MathJax]/extensions/tex2jax.js

0

3
0

文字

分享

0
3
0

除了你家的小強,還有其他漂亮的蟑螂

miss9_96
・2015/08/20 ・2037字 ・閱讀時間約 4 分鐘 ・SR值 483 ・五年級

蟑螂,這麼可怕的生物,怎麼會有人當成寵物飼養呢?蟑螂最古能追溯到石炭紀(約三億年前) [1],而現存的蟑螂中除了熟知的「小強」,在古巴還有晶瑩剔透的綠蟑螂,澳洲有愛挖洞又充滿慈愛光輝的犀牛蟑螂,以及用聲音彼此溝通的馬達加斯加蟑螂等。就讓我們來看看這些有趣的蟑螂家族吧~

晶瑩剔透的水果蟑螂-古巴蟑螂 

在加勒比海一帶有種晶瑩剔透、喜吃水果的蟑螂。中文的名字是古巴蟑螂(Panchlora nivea),或稱綠香蕉蟑螂,外型如同名稱一般,翠綠色的身軀附著黃白色的翅膀,長約1-2公分,由於外型亮麗,也被作為寵物昆蟲飼養。和我們所熟知的蟑螂不同,古巴蟑螂愛吃的是香蕉、棕櫚樹皮和可可樹葉,雖然聽起來非常無害,但由於牠們的食物同時也是經濟作物,所以對於農家而言仍屬害蟲的一種 [2]。

Panchlora nivea
Source from Pavel Kirillov

蟑螂界的聲樂家-馬達加斯加蟑螂 

馬達加斯加蟑螂(Gromphadorhina portentosa)的原產地如同於名稱,牠原生於非洲外海的馬達加斯加島。成體長度5-9公分(註:iPhone 6 Plus寬度約為7.8公分)[3],最吸引人的特徵是馬達加斯加蟑螂不論性別、成體或幼蟲,都能透過體表的透氣孔發出明顯的嘶嘶聲,而最讓科學家和飼主著迷的就是這聲音的用途。科學家發現,雄性在求偶和交配時,都會發出不同的嘶嘶聲,而如果兩隻雄性正相互對戰,雙方的嘶嘶聲甚至可以代表著誰是此戰役的贏家 [3]。由於特殊的外型和有趣的聲音,許多昆蟲飼主們也十分喜愛馬達加斯加蟑螂。

Gromphadorhina portentosa
Source from wikimedia

超重量級蟑螂-犀牛蟑螂

犀牛蟑螂(Macropanesthia rhinoceros在蟑螂界有巨人的稱號,外型猶如鋼鐵人的「浩克毀滅者」,粗壯且渾身蓋滿硬甲。成體長約8公分,重量可超過30公克[4]而德國蟑螂成體一般約在0.05公克 [5],兩者相較之下,犀牛蟑螂確實稱的上是蟑螂界的巨人。目前只生活在在澳洲的東北方,喜食尤佳利樹的落葉,是生態圈極為優秀的回收者。犀牛蟑螂有著這麼粗壯的外型卻有著慈愛的個性,當幼蟲被孵育而出後,成年蟑螂至少會撫育牠們6個月,直到後代能夠獨立成家為止 [6]。

-----廣告,請繼續往下閱讀-----
Macropanesthia rhinoceros
Source from ArachnoVobicA

###以下將介紹大強&小強,附生動照片,膽小者慎入~###

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----

蟑螂家族裡的閃電俠-美洲蟑螂 

美洲蟑螂(Periplaneta americana)就是大家口中俗稱的「小強」,身長可達4公分,是台灣最常見的居家型蟑螂之一。牠們喜歡住在陰暗且高濕度的環境,喜食腐敗的食物,所以算是生態系統的清道夫 [7]。但美洲蟑螂一旦開始與人類同居,絕不挑食的飲食習慣成了人類最頭痛的問題,膠水、書籍、頭髮、皮革和啤酒等,凡是能咬的東西通通來者不拒 [8]。而讓人瞠目結舌的是牠那神速的移動能力,加州大學柏克萊分校(University of California, Berkeley)曾測得美洲蟑螂的速度為5.4 公里/小時,相當於每秒飛奔40-50個身長,以人類的標準來說,我們的奔跑速度得要提升到約300公里/小時才能跟牠並駕齊驅 [9],並且由於具備飛行能力,受到驚嚇時會四處亂竄或「啪答啪答」地振翅飛行,對於許多人來說,遇到這種會飛的蟑螂,真的算是一種夢魘…

Periplaneta americana
Source from wikimedia

「啪嘰!」跑出更多小蟑螂!-德國蟑螂 

「『啪嘰』!擊斃蟑螂後不到1秒,數十隻小蟑螂從屍體中逃出,飛竄上拿著拖鞋的手…」,這可不是網路恐怖故事,將卵鞘帶在身上直到孵出後代為止,正是德國蟑螂(Blattella germanica)的特性之一 [10]。德國蟑螂長約1公分,由於身型較小,喜歡群居,反而比美洲蟑螂更難被殲滅,而卵鞘內可以有30-40顆卵,換句話說,打死一隻母蟑螂,換來的可能是數十隻小蟑螂飛竄而出的景象。德國蟑螂的飲食習慣跟人類很像,雖然曾被記錄吃過肥皂和牙膏,但牠最愛的仍是高糖類、高油脂的食物,因此在家中儲藏甜點及油炸餅乾的食物櫃,很自然地就成了德國蟑螂眼中的美食自助吧 [11]。

1
左右圖皆為德國蟑螂, 右圖為攜有卵鞘的母蟑螂, 來源皆為wikimedia
  1. Marion Copeland (2012) Cockroach (Animal) Reaktion Books
  2. William H. Robinson (2005) Urban Insects and Arachnids: A Handbook of Urban Entomology, Cambridge University Press
  3. Margaret C. Nelson, Jean Fraser (1980) Sound production in the cockroach, Gromphadorhina portentosa: evidence for communication by hissing, Behavioral Ecology and Sociobiology, 6(4), 305-314
  4. W.V Brown, H.A Rose, M.J Lacey, K Wright (2000) The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinocerosSaussure (Blattodea: Blaberidae: Geoscapheinae): analysis with respect to age, sex and location, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,127(3), 261-277
  5. Yuping Wei, Arthur G Appel, William J Moar and Nannan Liu (2001) Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica(L), Pest Management Science, 57(11), 1055-1059
  6. Liangwen Xu, Edward P. Snelling, Roger S. Seymour (2014) Burrowing energetics of the Giant Burrowing Cockroach Macropanesthia rhinoceros: An allometric study, Journal of Insect Physiology, 70, 81-87
  7. Jones, Susan C. (2008) Agricultural and Natural Resources Fact Sheet: American Cockroach, Ohio State University
  8. Adiyodi, K.G. (1981) The American Cockroach, Springer
  9. Marko B. Popović (2013) Biomechanics and Robotics, CRC Press
  10. William J. Bell, Louis M. Roth, Christine A. Nalepa (2007) Cockroaches: Ecology, Behavior, and Natural History, Johns Hopkins University Press
  11. Michael K. Rust, John M. Owens, and Donald A. Reierson (1995) Understanding and Controlling the German Cockroach, Oxford University Press
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1084 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
貓咪真的不愛你嗎?讀懂高冷主子的傲嬌告白
F 編_96
・2024/12/28 ・2729字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

身為貓奴應該都思考過這個問題:「我家貓到底愛不愛我?」(尤其是你怎麼叫牠都不理你的時候)

比起狗狗總是搖尾示好、恨不得時時刻刻陪伴主人,貓咪反而顯得疏離。這些獨立、冷淡的態度,是否代表牠們根本「不愛人類」?還是只是與我們表達情感的方式不同?現有的研究並未能給出單一「是」或「否」的答案,但科學界逐漸認為:貓的性格並非冷漠,而是有著自己獨特又多變的互動模式。

為何貓比狗看起來更不「熱情」?

談到「人與動物的愛」,第一個被拿來對照的對象往往就是狗。狗傾向於把人視為社群領袖或保護者,牠們會展現出明顯的依附行為,例如跟隨、舔舐、撒嬌等。這背後牽涉到狗的馴化史,科學家普遍認為,狗至少在 2.3 萬年前(亦有其他研究推至 3 萬年以上)就已開始與人類共同生活。人類在漫長世代裡,選擇性繁殖更順從、更依賴的犬隻,讓牠們不斷強化對主人的服從與感情表達。

相較之下,貓的馴化歷史要晚得多。大約在 1 萬年前,農耕社會出現,儲藏穀物吸引老鼠,貓因捕鼠能力而漸與人共生。牠們「半自願」式的走近人類聚落,並未經過大規模的繁殖選擇,以致貓咪的野性特質與獨立性一直保存到今天。

-----廣告,請繼續往下閱讀-----

由此可見,狗對人的依附,是經過長時間精心培育的結果,而貓雖然與人類同住,也享受人類提供的食物與安全環境,但牠們在某種程度上仍維持了更高的自主意識與獨立特質。

貓咪與狗狗的馴化過程不同,這也導致兩者在與人類互動上的不同。圖/envato

如何判斷貓咪是愛或不愛?

每個人對於「愛」的表現,判斷上還是很主觀的。因此有些研究嘗試用「科學指標」來測試貓對人的情感,如觀察荷爾蒙水平、或偵測貓在不同情境下的行為模式。

催產素俗稱「愛的荷爾蒙」,常在親密互動或撫摸時分泌。根據 2015 年的一項實驗(收錄於 BBC節目「Cats v Dogs」):在貓與狗都受到撫摸後,狗的催產素水平平均提升約 57.2%,但貓僅提升12%。這被部分人解讀為「貓對我們沒有那麼有愛」,但也要注意,這只是「平均值」,樣本量也僅 10 隻狗與貓,並不代表所有貓都只有「12%」的情感。此外,催產素本身也容易受其他因素干擾,例如環境壓力、個體差異等。

另外在 2021 年,英國林肯大學的研究團隊針對 3,994 位貓主做問卷調查,藉由「開放式關係、疏離關係、一般交情、相依關係、友誼」等五大類型,歸納出貓與主人的情感連結。結果顯示,約有一半的貓跟主人間呈現較緊密的情感投射,另一半則較疏離。由此可知,貓與人之間的情感並非「一面倒」的冷漠,也不見得如狗那樣強烈依附;而是要看飼主的參與度、貓的個性以及如何尊重牠們的獨立空間。

-----廣告,請繼續往下閱讀-----

有一項早期(2008年)的一項研究則觀察到,當貓遇到自己熟悉的人類時,血壓和心率會出現上升,顯示牠們對人產生情緒波動,可能是期待食物或獎勵,也可能是情緒上的激動。這說明貓對特定人確實有「在意」的表徵,只是表達方式或目的不一定和狗相同。

你越近,貓越逃?貓咪喜歡怎麼樣的互動?

要怎麼做才能獲得貓咪的抱抱?圖/envato

貓咪多半不喜歡被強迫互動,若人類持續不斷地撫摸、抱起貓而不顧牠們的意願,往往得到的反應是掙扎、攻擊或逃走。對貓來說,「選擇權」至關重要。若牠們能自在地決定互動距離、持續時間,以及撫摸的部位,牠們更可能接受、甚至主動親近主人。

2021 年的研究指出,若飼主能理解貓在肢體語言上的細微表達,例如耳朵朝後、尾巴抖動、身體僵硬或發出低鳴,代表牠們已有不適或抗拒;這時「收手」是上策。相反地,那些忽視貓表示不要的信號,堅持要撫摸或抱住貓的人,更容易被貓認定為「壓迫者」,長期下來貓會選擇逃避或變得易怒。

與狗一樣,每隻貓的個性也不盡相同。有些貓喜歡頻繁親密互動,也有貓更向往安靜獨處;基因、社交化過程、早期經驗都可能影響牠們長大後對人的友善度。此外,若飼主從貓幼齡期就常常輕柔地接觸牠們,並在牠們想脫離時尊重牠們,長大後通常會更願意與人類培養信任感。

-----廣告,請繼續往下閱讀-----

如何與貓建立更深的情感連結?

既然科學研究顯示貓的「情感投放」需要更精細的方式,那麼身為飼主或愛貓人士,該如何做才能拉近與主子的距離呢?

  1. 給予空間與選擇
    • 不要隨意抱起或撫摸正在休息、清潔毛髮、或顯露抗拒姿勢的貓。讓貓可以自由進出房間、躲進安全的角落,也能確保牠們在緊張或害怕時有地方可退。
  2. 正向回饋與獎勵
    • 若貓主動靠近、蹭你或發出呼嚕聲,這是牠願意互動的信號,可在牠舒服的情況下溫柔撫摸。可以搭配口頭稱讚或小零食,使貓把你聯想到「好事」。
    • 但記住,貓咪不喜歡被「過度餵食」,適度才是關鍵,否則容易讓牠們失去對零食的興趣或導致肥胖。
  3. 學習貓的身體語言
    • 觀察耳朵、尾巴與瞳孔的變化,若耳朵緊貼腦後、尾巴劇烈擺動或瞳孔放大並伴隨低鳴,表示貓正處於緊張或警戒狀態。此時停止撫摸、後退,給牠時間冷靜。
    • 如果貓慢慢走近你,尾巴微翹、耳朵稍微前傾,代表牠感到放鬆,可能願意互動。
  4. 尊重貓的作息特質
    • 貓是夜行性動物,白天或許大部分時間都在睡覺或懶洋洋地活動;若你在白天想和貓「猛玩」,牠可能沒有興趣。選在牠清醒或精神較好的時段進行互動或遊戲,更能提升彼此感受。

貓與人的緣分,在於理解與尊重

貓咪歷經數千年從田間捕鼠者,逐漸成為受全球喜愛的寵物,卻依然保留高度獨立、選擇權至上的「個人主義」風範。許多科學研究指出,貓雖沒有狗般明顯的熱情與依賴,但仍能與人產生深厚羈絆──關鍵就在於飼主是否願意花時間、心力,並遵循「了解貓貓、尊重貓貓」的原則與牠們相處。從理解貓的生活形態、情緒信號,到給予牠們適度的獨處與自由,若能做到這些,或許某天牠就會主動跳到你的腿上呼嚕,用專屬的方式告訴你:「莎朗嘿(사랑해)~

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

1

7
3

文字

分享

1
7
3
看見蟑螂就害怕?為什麼我們總特別怕牠?
PanSci_96
・2023/08/26 ・3929字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

***溫馨提醒,本文有小強畫面,請斟酌觀看***

唐伯虎點秋香讓小強成為蟑螂的代名詞。圖/經典放映

周星馳的唐伯虎點秋香上映後,讓小強成為蟑螂的代名詞,但你看到小強的瞬間,是順手將它解決,還是尖叫著逃跑呢?

台灣曾做過調查——不做調查也知道,蟑螂絕對是大家最討厭的害蟲第一名。美國甚至做過大規模調查,有超過四分之一的美國人表示自己最討厭的害蟲就是蟑螂,是第二名蜘蛛的兩倍之多!

所以,若要幫全人類找一個共同的敵人,蟑螂肯定算得上是一個。

但過去的日本節目中,卻發現北海道人竟然不怕蟑螂,難道他們都是勇者嗎?或是我們能從他們身上找到克服蟑螂恐懼的方法?

-----廣告,請繼續往下閱讀-----
北海道人好像沒看過蟑螂?!圖/Hituzi Chang

恐懼源自於未知?北海道人為什麼不怕蟑螂

你是不是光想到蟑螂的外表,就覺得全身起雞皮疙瘩?

面對蟑螂還能如此淡定,甚至能覺得牠們可愛的北海道人,別說你不敢相信,一群演化心理學家也是覺得匪夷所思,開始針對這些人做起了研究。

演化心理學就如字面上的意思,是將達爾文演化論套用到現代人的心理特質上,試圖以天擇的角度解釋許多無法解釋的人類心理現象。

例如近年來被診斷率越來越高的注意力不集中與過動症,也就是所謂的 ADHD,在演化心理學看來其實不是需要治療的「病」,而是環境變化太大導致的適應不良。想像一下,如果你是上萬年前生活在野外的人類,每天都必須在山林裡一邊躲避猛獸、一邊想辦法靠打獵與採集獲取食物。

-----廣告,請繼續往下閱讀-----

在這種環境下,眼觀四面、耳聽八方,且隨時保持能戰能跑的機動性,反而都是生存必須的特質,自然會成為演化過程中被保留下來的心理特質。隨著人類社會在近幾百年快速進步,我們不需要再去當高風險的獵人,但那些經年累月刻印在基因裡的特質還來不及被汰換掉,反而讓這些天生的獵人無法適應現代生活。

獵人的基因反倒讓人無法適應現代生活。圖/Giphy

同樣的道理,演化心理學認為人類對蟑螂的莫名恐懼,其實是來自於大腦主動識別並排斥潛在威脅的生存機制。在醫療資源匱乏的過去,隨便受個傷、生個病都有可能是致命的,人類只能戰戰兢兢,想辦法避開任何可能會傷害到自己的東西。這讓我們在無法辨別敵友時,會本能地戒備未知的東西。

即使從生態系的角度出發,同時兼具環境清道夫與許多動物主要食物來源的蟑螂,是維持自然平衡不可或缺的益蟲。但在無法感受到牠們好處的普通人眼裡,經常出沒於被我們視為髒亂、有害健康的垃圾與廚餘堆的蟑螂身上,只會被貼滿很髒,甚至是有害的負面標籤,當然不可能有好印象。

我猜這時有些觀眾心中閃過了「那又如何」、「我就討厭蟑螂啊」的念頭,但千萬別小看這份理所當然。雖說蟑螂因為生存與繁衍力強,被人類刻意撲殺這麼多年都還沒有要絕跡的意思,但其他昆蟲就沒那麼幸運了。由於人類對昆蟲,特別是只占大約10%的害蟲抱有負面觀感,使得這些小生物常在生態保育的討論中被冷落,甚至就這樣默默絕種,在地球生態系中留下無法彌補的缺口。久而久之,嘗到苦果的還是人類自己。

-----廣告,請繼續往下閱讀-----

話說回來,既然演化心理學表明恐懼來自於未知,那只要我們學到關於這些昆蟲的正確知識,就能扭轉刻板印象了,對吧!那麼看完泛科學,想必你就能擺脫對小強的恐懼!

只要學到正確知識,就能對蟑螂的恐懼了嗎?圖/Giphy

——雖然我很想這樣說,但很可惜,事情沒這麼簡單。還記得北海道人的訪問嗎?按照演化心理學,這些從來見過蟑螂本螂的北海道人,既然對蟑螂完全陌生,那麼應該不會有這麼正向的反應。就算不覺得被威脅,至少也該有點基本的戒備才是啊?

一篇發表於 2021 年的日本研究,正是想探討這個落差。研究團隊分析過往研究,發現「增加昆蟲相關知識」與「減輕恐懼」之間似乎沒有必然的關聯。而且,與出身郊區的人相比,從小生活在都市的人對於昆蟲竟然普遍有著較強、也較難改變的昆蟲嫌惡。

深入研究後,才發現,原來連怕不怕蟑螂這種事都得要看出身的。

-----廣告,請繼續往下閱讀-----

都市化—嫌惡假說

在針對13,000名日本人進行調查後,研究團隊提出了「都市化—嫌惡假說」。此假說以都市化為起點,拆解出兩條人類培養對昆蟲嫌惡感的路徑。

你不該出現在我家!由破壞安全感引發的厭惡

首先,由於都市化導致自然環境縮減,無法適應都市環境的昆蟲大量減少,相對的,像蟑螂、蒼蠅、蜘蛛等適應良好的昆蟲,數量不可避免地會增加,也更容易出現在室內環境裡。對我們來說,穩固的牆壁與天花板會帶來與外界隔絕的安全感。因此,當有不請自來、侵門踏戶的東西出現,除了對昆蟲本身的厭惡,我們對所處環境原有的信任也跟著崩塌了。

回想一下,上次在家裡或辦公室茶水間看到蟑螂,就算當下就把它消滅了,在接下來的一段時間內,是不是會到處疑神疑鬼,總覺得某些角落或通風管裡藏著一支蓄勢待發的蟑螂大軍,準備趁你不注意時再出來嚇你一跳?

對蟑螂的厭惡可能源自於牠破壞了你對環境的信任感。圖/Giphy

同樣的,就算不是在你家,而是外出用餐時在餐廳裡看見蟑螂,基於恨烏及屋的情感連結,你對於餐廳的信任感也跟著下降,甚至激動一點當場走人也有可能。但換個場景,假如你今天是在馬路上看見蟑螂,或許還是會覺得害怕、覺得噁心,但反應很可能不會像在家裡這麼大。

-----廣告,請繼續往下閱讀-----

這便是都市化—嫌惡假說第一條路徑強調的重點。在都市化程度高的環境裡「室內」跟「室外」的界線變得分明,因此當有不該存在的東西出現,我們的反應也會更強烈。

因為不熟,所以討厭?

至於都市化—嫌惡假說的第二條路徑,是延續演化心理學裡,人們對於不了解的事物會產生恐懼的觀點。但比起針對單一種昆蟲,都市化—嫌惡假說發現,都市化環境會普遍降低其居民接觸大自然的頻率。就算是出生於郊區環境的人,在都市生活久了也會喪失這股熟悉感,甚至開始對大自然出現排斥心理。

同樣的,今天即便你是個都市小孩,只要到郊外生活夠久,而且自發地去接觸自然環境,那份對昆蟲的恐懼便會在洪水療法下逐漸被減敏感。說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處喔!

說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處!圖/Hituzi Chang

從「害怕蟑螂」看見早期教育

除了解釋了我們對蟑螂的厭惡,都市化—嫌惡假說其實也點出了現代社會一個很重要的議題,那就是在現代科技的干擾下,我們接觸真實世界的頻率正在下降,無形中也失去不少珍貴的「經驗」。

-----廣告,請繼續往下閱讀-----

我們的大腦仰賴經驗法則才能運轉,想學習新技能、建立穩固的知識結構,都需要持續且頻繁地暴露在特定刺激下。讀書、背講義是一種刺激,與人社交締結關係是一種刺激,走出戶外接觸山林也是一種刺激,任何一種刺激少了,我們就會錯過發展相應能力的機會。

就好像最近幾年特別被重視的語言教育、科學教育、情感教育,甚至是平權與美感教育,其實都是在努力把握小孩子學習的黃金期,讓他們盡早接觸到足夠的相關刺激,打下扎實基礎。這在教育心理學叫做「早期暴露」(early exposure),這個理論反對只把重心放在學齡後與學校教育的傳統觀念,認為父母在學齡前給予孩子多元化刺激同樣重要。

不需要花大錢上才藝班,平時多帶孩子出門走走,或是準備不同的課外讀物與嗜好,都是很好的新奇刺激,不單能增進大腦發展,還可以培養認知彈性,讓他們在未來遇到未知事物時能保持好奇心、積極自發地去吸收新知,而非縮在固有觀念裡。

早期暴露對兒童發展學習尤為重要。圖/Pexels

這個乍看很冷門、沒什麼了不起的研究,其實衍生出來的意義可是與我們息息相關。就好像我們常說在家裡看到一隻蟑螂,代表看不見的地方還有十隻。怕不怕蟑螂事小,因為享受現代科技的便利而錯失與真實世界互動的經驗,才是最得不償失的。

-----廣告,請繼續往下閱讀-----

要在都市中增加對昆蟲的好感不容易,但也有像是中山女中蔡任圃老師,成功透過一系列的觀察、研究等課程活動,讓許多學生愛上了蟑螂這個小生物。那麼你呢,你覺得你還有機會跟小強達成和解嗎?

  1. 這還用說嗎?馬上當成寵物養起來!每天一起睡
  2. 先不要,我們彼此人蟑殊途不犯河水
  3. 絕對不可能,只要看到蟑螂,這個房子我就不要了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1