今年 2015年 7月 1日,位於龍門的核四廠正式封存。這座三十幾年來於興建過程中曾停建再復建的核能發電廠,尚在測試階段,未曾正式啟用,就進入三年的封存計畫。近年來,核四爭議遲遲未能停消,反核、擁核的爭論也未曾平息。
能源議題無庸置疑與我們的過去、現在跟未來息息相關,關於能源的使用跟發展,我們還「能」怎麼做呢?
由工業技術研究院、PanSci 泛科學與經濟部能源局聯合主辦的還「能」怎樣—公民的能源通識課,一共有八場,全台跑透透,而首場就在8/6於台北正式開跑。這次講座的講者總共有兩位,分別是 PanSci泛科學的專欄作者 廖英凱以及成功大學資源工程系副教授 謝秉志。
這次邀請的兩位講者,對於能源議題的知識領域各有所長。廖英凱介紹一般民眾較為關心的台灣再生能源(風力、太陽能、海洋能、地熱能)及非再生能源(火力發電、核能)發展及現況;講者謝秉志則介紹較不為一般大眾所熟知的非傳統能源─(非傳統)油氣能源(頁岩氣、油砂、天然氣水合物)的潛力和發展。
由核能議題探討台灣能源供應狀況──廖英凱
能源議題分成三個面向 – 經濟、政治社會、安全 ,期中最能以科學角度解釋的便是安全問題,它主要又可分成兩部分 :
一、發電方式是不是安全的?
二、發電方式的相關產物是不是安全的。
其中,大家最關心的當然就是核電問題,我們可以用幾個簡單的問答來
Q:核電廠在極端的狀況下會發生核爆嗎?
A:不可能。
因為要產生核爆,要足夠多的中子撞擊,而核電廠所使用的鈾235濃度過低,用產生核爆所需的臨界質量是人類無法企及的無窮大(最左邊的紅線);既然不可能達到幾何級數般的連鎖反應,自然也無法產生核爆。就像啤酒不能燒,但酒精濃度較高的高梁酒、藥用酒精是可以燃燒的道理類似。
Q:既然低濃度的鈾 235無法核爆,核電廠的能量從哪來?核電廠的核分裂怎麼發生?
A:核電廠用低濃度的鈾 235,運用精準控制中子數量和速度(還要叫中子慢一點),讓中子撞擊產生的核分裂足以引發下一次撞擊。
Q:福島核災的爆炸是怎麼一回事?
A:那不是核爆,是比核爆等級小得多的氫爆,但是氫爆把反應爐廠房炸開導致輻射外洩。
Q:人類在地球上已經丟過多少顆核彈?
A: 2053 顆。
核廢料主要分為兩種 : 高放射性廢棄物與低放射性廢棄物。高放射性廢棄物也稱作「用過核子燃料」、「乏燃料」,全部源自於核能發電產物。這些發電產物的處理程序大概是 :
1.從反應爐取出。
2.濕式貯存(貯存在核電廠的水槽裡冷卻)五年以上。
3.轉乾式貯存四十年(臺灣目前處在這個階段)。
4.尋找適合之深地質永久貯存或是回收再利用再處理。
另一種比較常見的低放射性廢棄物,主要也是來自於台灣的核能發電(包括核電廠除役的建材),其他醫療、工業、農業及學術研究。
相較於高放射性廢棄物,低放射性廢棄物的處置方式比較簡單 : 先固化封裝(包含金屬或粉末,都會先水泥化再放進桶子裡)、再設計一些工程結構或埋在地質障蔽(例如小山丘),尋找近地表處置或坑道存放。目前政府也想另尋較低爭議的低放射性廢棄物貯存地,有在考慮台東縣達仁鄉及金門縣烏坵鄉,但目前進度仍止於徵詢地方意見。
台灣再生能源發展狀況
若不想用核能發電,我們還有什麼其他自然資源可以運用在發電上呢?河川、風力、地熱、海洋能(洋流發電、溫差發電、波浪發電、潮汐發電)、太陽能等再生能源雖然發展前景看好,但是在發展這些自然資源的同時,也別忘了它們的發展阻力。
.水力發電:會影響河川生態。
.風力發電:受季節性影響,台灣夏天風小冬天風大,發電高峰和用電高峰錯置。除此之外,也可能帶來環境公害:噪音、陰影,甚至影響沿海生態。
.地熱發電:開發地都位處森林、山區及偏遠地區,有水土保護疑慮,目前的計劃案都停留在環評未過的階段,也還有管路結構和高溫鑽探等技術層面的問題仍待克服。
.洋流發電:設備必須符合防水、抗侵蝕,加上海底地形造成施工難度高,加上易受颱風來襲時可能造程設備損壞,建設完成後也可能造成漁業生態浩劫及航安問題。(地熱及洋流發電在台灣要進展到可以實際投入發電的階段,可能尚需5到10年的時間)
.太陽能發電:夜晚和日照不足其他的替代能源。另外,太陽能板的構造為半導體,製程有產生污染之疑慮,雖然在台灣尚未發生,但大陸已經有相關汙染事件
據工研院能源局及綠色公民行動聯盟的報告指出,再生能源發展未來潛力有限,在2025年,再生能源也。若是想要非核家園,以德國2013年的一周(7/1~7/7)用電量為例,白天太陽能發電約占總發電量1/3,然而大部分的發電量還是倚賴火力發電。回到台灣,若是在再生能源全力開發後,再加蓋2~5座台中火力發電廠的發電量,想必就能解決用電問題。但提到火力發電,就絕不能不提煤碳燃燒產生的空氣汙染、氣候變遷、全球暖化及全球暖化後續帶來的問題和影響。
以比爾蓋茲提出的公式:CO₂ = P × S × E × C(人類產生的排碳量 = 人數 × 每一個人使用的服務 × 這些服務所消耗的能源 × 以及生產這些能源所產生的二氧化碳)這個公式來思考,隨著全球人口數目、科技的發展,全球暖化和氣候變遷的問題恐怕難以避麵,雖然許多人都說要發展再生能源跟綠能,但以臺灣的環境而言,未來能源並不是個容許無限想像的問答題──恐怕是一個選擇非常有限的選擇題。
https://www.youtube.com/watch?v=SaJoR9k5oLI&feature=youtu.be
油氣能源的現在與未來──謝秉志
呼應比爾蓋茲提出的 CO₂ = P × S × E × C 公式,因為世界人口只會增加,經濟、科技的發展也需要許多能源,對於能源的需求只會越來越高,儘管大家都希望再生能源的發展可以讓化石能源比例壓低,根據一些比較有權威性的報導,在 2035年時,除非再生能源有突破性的進展,化石能源預計還是會佔七成。
其中,油氣資源主要可以分作兩大項:傳統油氣資源和非傳統油氣資源,非傳統油氣資源比較有名的例子,包含美國的頁岩氣、台灣有可能發展的天然氣水合物和加拿大的油砂。
非傳統油氣資源──頁岩氣、油砂
首先是這兩年最火紅的頁岩氣。顧名思義就是從頁岩岩層裡所開採的天然氣,在過去,因為技術層面的問題,導致頁岩氣資源難以被運用,但是在水力壓裂法(Hydraulic fracturing)技術日益成熟後,各國也重新開始省視頁岩氣的可能性。
例如:美國因為成功地商業化開採頁岩氣,已經是全世界最大的天然氣生產國,預計到 2040年,美國有將百分之五十的天然氣會來自頁岩氣,到了 2080年甚至有可能達到能源自主,成為第五個能源自主的國家。
接下來是最早出現的非傳統油氣─油砂。油砂是一種含有高粘度石油的砂子,必須要使用特殊方法讓它流動才能生產出來,,加拿大是唯一將油砂商業化開採的國家,也因此成為世界石油蘊藏量第三大的國家。
天然氣水合物─台灣的機會
再來看一下台灣的機會—天然氣水合物。
所謂的天然氣水合物,又稱可燃冰或甲烷氣水合物,天然氣水合物通常存在於海面下,必須派出探勘船進行震波測勘,如果我們發現反射面和海床的形狀平行我們稱為擬海底反射(BSR)就是天然氣水合物最底層的訊號,因為在天然氣水合物的下方通常是天然氣層,其密度很低,聲波從高密度的地方進入低密度的地方訊號差異會很大,所以就會出現強烈的擬海底反射訊號。
天然氣的開採說來容易,只要挖一口井到達天然氣水合物的地層裡面,把壓力降低,就會造成物質流動,天然氣就自然流出來了 。問題是,在海域上鑽井要價不菲,成功率只有七分之一,總投入的成本更是可觀,所以儘管台灣的西南海域藏有全世界最龐大的天然氣資源,據推估大約有兩兆七千億立方公尺資源量,但礙於技術瓶頸尚未突破,眼前並無商業化的機會。
二氧化碳捕獲與封存
提到油氣資源,不免就得一併提到碳排放的問題。二氧化碳封存的概念其實很簡單,就是「從地下來,回到地下」,在自然界也有非常多的例子。在美國有許多濃度超過百分之九十純二氧化碳氣層,在地底存放了上百萬年,也沒有發生任何意外。
台灣目前已經有相當成熟的地下儲氣技術──台灣飛牛牧場旁的鐵砧山上有一個很有名的鐵砧山儲氣窖,這個儲氣窖原本是生產天然氣的地層,天然氣使用完畢之後,地層結構就變成儲氣窖,經過多次地震測試確定是相當安全,可見二氧化碳地質封在台灣技術上已經是可行的了。
但即使可行,我們如果要進行碳封存,首要之務是與當地居民妥善溝通,當地民眾也必須完全參與了解達成共識,民眾擔心的點有幾個:會不會發生地震、會不會外漏等等,科學家一定要好好與民眾說明與溝通。
https://www.youtube.com/watch?v=12JX1N0t63U&feature=youtu.be