0

0
1

文字

分享

0
0
1

那些年, 我們一起DIY的天文望遠鏡

科學月刊_96
・2011/10/12 ・6042字 ・閱讀時間約 12 分鐘 ・SR值 497 ・六年級

-----廣告,請繼續往下閱讀-----

國中自製望遠鏡,只為一探月球奧祕;哈雷彗星造訪,從此與天文結下不解之緣。海外旅居,因緣際會下師承光學磨鏡大師。轉眼,在台灣親自指導製作的水管望遠鏡已超過1000 台。

科學月刊 第四十二卷第十期

文 / 吳俊輝

和許多人一樣,從小我就很想擁有一台天文望遠鏡,但由於價格昂貴,經常只能望著雜誌中的照片興歎。在國中一年級時(台中市居仁國中),母親便騎車載著我穿梭於台中市的各大書局和圖書館間,最後我依循幾本書中的資訊,硬著頭皮自製了兩台天文望遠鏡-用水管做的折射式望遠鏡和用廢木料做的牛頓式望遠鏡(圖一),其中的光學元件都是取材自日常生活中,如化妝鏡、老花眼鏡、放大鏡等等,所以光學品質並不理想,但因口徑不小,仍可以看得很遠。

圖一:(A)1983 年我在國中一年級時所自製的折射式水管望遠鏡,口徑10 公分
圖一:(B)1983 年我在 國中一年級時所自製的反射式(牛頓式)望遠鏡,口徑20 公分。

我原本只是想用望遠鏡親眼證實月球上的確有嫦娥或是其它生物存在,因為每每仰望月球時總覺有黑影晃動。結果我只找到了令人失望的答案。事隔兩年,在1986年的3月,哈雷彗星造訪地球,當時國三的我便利用這兩台自製的望遠鏡配合傳統的底片相機和以鐵絲及水管自製的轉接環,在台中的中興嶺上清楚拍攝到了它的蹤影(圖二)。該照片在學校引起不小的騷動,自此我便與天文結下了不解之緣。

-----廣告,請繼續往下閱讀-----
圖二:1986 年3 月,我在國三時用自製的望遠鏡所拍 攝到的哈雷彗星,由於翻拍自舊照片的關係所以只見電 漿尾而看不清塵尾。

精 進

雖然後來走上了專業天文的路,得以使用世界級的大口徑望遠鏡進行研究工作,但卻仍對如何自製望遠鏡、尤其是徒手磨鏡有莫名的憧憬,因為這是自小的缺憾。1999 年我自英國劍橋大學霍金教授的相對論小組獲得宇宙學博士學位後,便到美國柏克萊加州大學(U.C.Berkeley)任職,因緣際會認識了一位製作望遠鏡的名師蘇拉科夫斯基(Paul Zurakowski),他是史上第一位獲得「柯利弗霍姆斯獎」(RTMC’s Clifford Holmes Award,授予對天文普及具貢獻者)的人(於1978 年獲獎),小行星「12321」更是以他命名。在他門下,我一邊擔任義工一邊學習了兩年多,不但學會了徒手磨製一流光學非球面鏡的技術,還學會了許多量測及修正鏡片的技術,這些都是決定一台望遠鏡好壞的主要關鍵。

至此,心中感到充實萬分,長期以來夢想中的破洞總算補起來了。他告訴我,許多一流的非球面光學鏡片,其實都是仰賴手工打造出來的,除了靠經驗之外,有時還得倚賴準確的第六感,這並不是每個人都學得來的,所以他要我珍惜自己所擁有的能力。

無心插柳柳成蔭

返國服務後,自2003 年起連續四年獲得教育部顧問室「基礎科學人才培育計畫」補助(特別感謝褚德三教授、郭重吉教授、呂助增教授的支持),成立了台大望遠鏡製作實驗室,原本只是想帶著物理系的學生作點基礎性的研究和訓練,但沒想到受到顧問室的青睞與鼓勵,連續給了我們三年的全國優等獎並另案補助於2004 年辦理第一屆全國望遠鏡製作研習營(圖三),從徒手磨鏡開始,並以水管作為鏡身的主體材料。

圖三:2004 年由教育部顧問室主辦的第一屆全國望遠鏡DIY 研習營,鏡片皆由徒手磨製。

我們的實驗室另方面也同時協助國內外的計畫進行望遠鏡光學設計及測試工作( 例如A M i B A 宇宙望遠鏡計畫、POLAR 計畫),同時也有能力自製中大口徑的望遠鏡。目前國內第一大自製望遠鏡「南瀛天文台」(圖四)及第二大自製望遠鏡「台大溪頭鳳凰山天文台」皆是由我所主導規劃監造的。

-----廣告,請繼續往下閱讀-----
圖四:南瀛天文台(口徑76公分牛頓式)於2006 年8 月驗收時所攝。圓頂結構的頂部還藏有當時的 縣長蘇煥智和我的簽名。

教育部的計畫雖然於2006年即告結束,但之後很神奇地在沒有任何經費支助下,望遠鏡DIY的活動竟如柳成蔭般地開花結果,每年先後皆有不同的單位接洽主辦。目前還保存有的資料顯示,自2 0 0 9 全球天文年至今,在我親自指導下全國已製作出超過一千支以塑膠水管及木材為主幹材料的天文望遠鏡,俗稱「水管望遠鏡」,在網路上已有許多網友分享資料,也有中國時報、蘋果日報、自由時報等多家平面及網路媒體報導過,這都是始料未及的。其中的參與者從小學生到年近八十的民眾都有。在這些營隊中,有的是從徒手磨鏡開始,有的則是使用半成品搭配水管和木料以土法製作(圖五)。過程雖然辛苦,又占用許多和家人相處的時間,但總希望不會有人再像我小時候一般無奈,希望能多啟發一些科學人才。支持我一直走下去的,其實就是學員們滿意的笑容,和細數不完的感謝信及成果照。

圖五:DIY 營隊的水管望遠鏡設計已演進至第六代,其中並教導如何徒手磨鏡。

實 作

望遠鏡的打造主要分作三大步驟:鏡片製作(包含磨鏡及鍍膜)、鏡身打造、以及光學校準(圖六)。過程中的「磨鏡」是最關鍵也是最具技術性的步驟,畢竟鏡片是望遠鏡的心臟,所以其市價主要是貴在這個部份。就反射式望遠鏡而言,其主鏡片材料費其實並不高,主要是貴在製作工錢,因此磨鏡DIY 的主要價值之一便在於此,以下將作簡要的介紹。

圖六:我向DIY 營隊演示自製望遠鏡的概念流程。

「鍍膜」則是有工業界可以支援,只要花點錢即可解決,但在上述教育部計畫的補助下,我自行設計了一台900X750 公釐的真空蒸鍍機(圖六左下),是目前台大物理系最大的蒸鍍機,最大可以處理直徑720公釐的鏡片,可以自動控制鍍多層膜,半小時內即可完成一個循環,且真空度高達10-6 托( torr ,壓力單位)。「鏡身打造」則是自製望遠鏡的重要樂趣之一(圖七),可以自由發揮創意使用不同的材料來進行,懂一點機械及電子學的人甚至可以自製追星用的赤道儀。最後「光學校準」則是極重要卻常被忽略的步驟,基本上就是要將各光學元件的光軸對齊,以減低各類像差的產生。

圖七:用大小水管及吉他調弦器拼組而成的口徑20 公分望遠鏡。
接下來將針對最具關鍵技術的「磨鏡」部分作進一步地說明。望遠鏡分為折射式及反射式兩類,後者的優點多,包括材料價格低( 因為不需透明的材料)、製作時程較短(因只須磨一個面)、機械結構較易建造( 因為主鏡在下方所以重心低)、沒有色散問題(因為採用反射原理而不是折射)等。因此不但世界級的大型望遠鏡皆已採用反射式,一般自製時也是以反射式為主。反射式的主鏡是拋物面鏡,其磨鏡過程可大致分為三步驟:「研磨、精拋、拋物面化」。自製時可以選用的材料頗多,一般雖多用玻璃,但也可使用陶磁材料,只要分子結構夠細緻即可。在「研磨」時,將未來的鏡片玻璃壓置於俗稱的「工具」之上,中間夾以磨粉和水(常用的磨粉為氧化鋁或氧化矽),將玻璃來回推拉,並一邊旋轉以減小系統誤差(圖八)。

圖八:(A)實作,磨鏡時的基本建置。
圖八:(B)實作,我示範磨鏡。

經過數小時後,物理定律便很神奇地將上方的玻璃磨成凹面,而下方的工具便形成凸面。過程中可利用三腳球徑儀、或直尺配合電鑽頭的土法來量測曲率半徑,直到快到目標曲率時,即可將磨粉換成較細的規格,讓原本粗糙的表面越來越細,最後變成毛玻璃般。接著進入「精拋」的階段,需要將原本的工具灌製上一層瀝青(圖六中),並將磨粉換為拋光粉(一般常用氧化鈰或氧化鐵)。繼續一段推拉的時間後,原本毛霧的玻璃表面便會漸漸光亮起來,等到全部亮起來後,此時的玻璃表面已大致呈球面。接著須要將其「拋物面化」,工具不變,只是原本簡單的直線來回推拉路徑,要換成「8 字形」或「W形」的路徑,以讓鏡片四周的曲率相對於中心漸漸減小,逼近拋物面。這是最難的步驟,因為W要多大、或是8字要多大,都是問題,技術好的話一下就完成了,抓不到要領的、或是之前一直有不良研磨習慣的,則會耗上很長的時間。

在這個步驟中,我們還得仰賴「干涉儀」來判斷施作的品質及進度。以一個直徑10 公分、焦長為100 公分的圓鏡而言,其球面和拋物面如果在中心相切,則在邊緣上只差大約100奈米,也就是如果要將一個球面鏡拋物面化,則需磨除的部分在鏡緣上只有約100奈米!如此小的差異就得靠干涉儀來量測(參考圖六中的直條紋干涉圖)。我們所教導製作的干涉儀利用人人自家可製的簡單光柵和LED 光源,成本大約只有100元不到,效果卻很好,再配合自撰的模擬軟體,即可將拋物面的誤差控制在100奈米以內,如再佐以刀邊測試,則可將誤差下修到2 0 奈米以內。很多人在親自體驗之前,都不敢也不願相信這一切皆是以徒手完成!徒手磨鏡在台灣數十年前即已有人陸續嘗試,並非新鮮事,而我們這裡所不同的是,對於最終階段的品管以及改進的技術,這也是掌控一面鏡片好壞的關鍵。以上的這些步驟其實都不難,但要知道要領;材料也不貴,但要找到合適的。當你徒手完成一片奈米精度的鏡片時,這一切辛苦所換取的便是無法言喻的喜樂。

眼見為憑

很多人在參與我們的活動之前,多半懷疑我們的水管到底能不能用?圖九是一位嘉義和興國小的學生所自製的水管望遠鏡,由於其家中經營汽車烤漆,便將水管外表烤上最高級的汽車烤漆,使其質感瞬間提升數百倍。重點是,這樣的東西能用嗎?

圖九:土味十足的水管望遠鏡在汽車烤漆的塗裝加持後,瞬間升級!

我們營隊活動的重點之一,便是教學員如何以零成本或低成本進行天文攝影,方法有很多,最簡單的就是利用自己的手機相機或家中的傻瓜相機。圖十是用手機相機直接搭配水管望遠鏡(無加裝其它任何配件)所拍攝到的太陽黑子、月球表面、及木星木紋。圖十一是從台大物理系頂樓於夜間使用水管望遠鏡所攝得的101 大樓。參加過我們活動的學員手機中,都有無數和此處類似的照片。

圖十:以手機相機直接搭配口徑11.4 公分的水管望遠鏡所拍攝到的(A)太陽黑子(使用A4 紙直接投影)、(B)月球表面(2010.6 月偏食),以 及(C)木星,皆攝於市區。
圖十一:夜間自台大物理系頂樓使用水管望遠鏡所攝得的101 大樓。

除此土法外,我們也教營隊學員如何改裝一般的平價USB網路攝影機,配合免費卻很專業的疊圖軟體(Registax),讓其瞬間變成天文專用攝錄影機(圖十二),此法可搭配個人筆電,於夜間進行天文攝影或於日間進行賞鳥,或於大運動場中觀看比賽。依此法所攝得的照片,其品質已可媲美專業天文照片,而成本卻只有數百元。由於我們教製的望遠鏡口徑都在10 公分以上,集光力多在250 倍以上,所以即使是在市區,只要天候正常,都可以進行觀測,本文所展示的天體照片,都是在台北市區內所攝,若在無光害處拍攝其效果將會更好。我們也曾在仁愛路邊及台大校園利用水管望遠鏡辦理數次的觀星活動,民眾無不驚喜萬分。重點是,我們的DIY望遠鏡成本都很低,以十多公分的口徑為例,我們的製作成本僅約三千元左右,這和市售動輒數萬元的天文望遠鏡相比,就效能而言有過之無不及,其中的關鍵就在於我們自製的鏡片其精度都較市售的品質為高;即使是使用現成鏡片的營隊,其每一片鏡片都是由我親自使用干涉儀一一檢測過後才發出去,凡是精度不達要求的(八分之一波長),都一律退回給廠商。至此,所謂「低成本、高效益」,應是相去不遠矣。

圖十二:由一般PC 用的網路攝影機所改裝成的天文望遠鏡專用攝錄影機。

山寨營的出現

多年推廣下來,該營隊活動其實也引起廠商和部分科教人員的注意,近年已有數起所謂的山寨營出現。原本推廣是件好事,但仿效的人多半只學半套,也就是製作出來的望遠鏡外觀和我們的很像、或是購製使用和我們規格相同的零組件,但最終所呈現的影像品質卻大大不如我們,其原因在於所使用的光學元件並沒有像我們一樣在精心檢測通過後才發給學員,或是在DIY 的最後並沒有進行精確的光學調校(見圖六的第3步驟)。台灣的光學元件供貨商畢竟還是良莠不齊,許多賣出來的貨其實都沒有達到所標榜的光學精確度,而一般民眾大多也沒有能力查察。有些更惡劣的主辦單位甚至收取學員高額的學費;口徑1 1 . 4 公分、焦長91 公分的望遠鏡其總材料費明明才大約三千元,卻要價四、五千元以上,而所使用的材料其光學品質也未達規格,實在令人感歎。

未來展望

近年來由於沒有固定的主辦單位,加上自己還是以學術研究工作為主軸,所以常會不得已要推辭掉一些主辦單位的邀約。所幸目前已有台南的南瀛科學館開始規劃長期的營運,積極要讓該活動上軌道,實在是南部人的福氣。目前我們規劃於2011 年底前,將在南瀛科學館開辦全國第一梯口徑15 公分的平價高精度望遠鏡DIY 研習營,希望能將這個系列活動向上昇華,讓貴族天文平民化!

圖十三:那些年,我們一起DIY 的天文望遠鏡——我與我的望遠鏡DIY 營隊們。

而民眾也常問我:下一梯將在何時辦在哪裡?有沒有專屬的網站可以參考?這些問題其實都讓我一再掙扎,因為自己的時間實在有限。目前我只有一個建置已超過1 5 年的英文網站提供DIY的資訊(就掛在我台大的個人網站上),目前計畫將其重整,提供更好的資訊,以便能讓更多的人受惠。另外我們在全國已組成了一個志工團(特別感謝發起人兼團長許麗香小姐),目前負責擔任各地DIY 營隊的助教人力;凡是參加過我們望遠鏡DIY營隊的學員,都有資格加入我們的志工團。如果你有資格、想加入而未加入,也都隨時歡迎你和我連絡。

真的很感謝全國各地有一群熱心的路人甲相挺和相助,讓這個活動能一路走到今天。

結 語

兒時的自製望遠鏡造就了今天的我,也造就了許多科學家。關於望遠鏡DIY 一事,或許是為自私的夢想,或許是為啟發更多的後進,我都得感謝母親當年騎車載我奔走街巷、感謝蘇拉科夫斯基的傾囊相授、感謝當年褚德三教授的支持及鼓勵、感謝各地路人的大力相挺、感謝上天讓我心想事成。願有夢人終能成大事,共勉之。(本文圖片皆由作者提供)

吳俊輝:任教台灣大學物理系暨天文物理研究所

科學月刊 第四十二卷第十期

文章難易度
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

5
2

文字

分享

0
5
2
用黑白相機拍出色彩繽紛的宇宙
全國大學天文社聯盟
・2022/04/30 ・2550字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/邵思齊,現就讀臺大地質科學系,著迷於大自然的鬼斧神工。

現代的人們生活在充滿明亮人造光源的城鎮中,難以想像純粹的夜空是什麼樣子。對宇宙中天體的印象,多半來自各地天文台與太空望遠鏡所捕捉的絢麗星雲、星團、星系。但這些影像中的顏色是真實的嗎?如果我們能夠用肉眼看到這些天體,它們的顏色真能如影像中如此的五彩繽紛嗎?

色彩的起源:為什麼人眼能看到顏色?

電磁波跨越各種尺度的波段,有波長遠小於 1 奈米的伽瑪射線,也有波長數百公里長的無線電波。但人類眼睛中的的感光細胞僅能感測到波長介於 400-700 奈米之間的電磁波,也就是僅有這段電磁波能夠以紅到紫的色彩出現在人類的視野當中,所以我們對外界的認知就受限於這小一段稱為可見光(Visible Light)的視窗。人之所以能夠辨識不同的顏色,靠的是人眼中的視錐細胞。視錐細胞分成 S、M、L 三種,分別代表 short, medium, long,其感測到的不同波長的光,大致可對應到藍色、綠色、紅色。

S、M、L 三種視錐細胞可以感測不同的顏色,後來的相機設計也以此為基礎。圖/Wikipedia

肉眼可以,那相機呢?

在還沒有電子感光元件的時代,紀錄影像的方法是透過讓底片中的銀離子曝光、沖洗後,變成不透光的金屬銀(負片),但這樣只能呈現出黑白影像。於是,歷經長時間的研究與測試,有著三層感光層的彩色底片誕生了。它的原理是在不同感光層之間加上遮色片,讓三層感光片能夠分別接收到各自顏色的光線。最常使用的遮色片是藍、綠、紅三色。進入數位時代,電子感光元件同樣遇到了只有明暗黑白、無法分辨色彩的問題,但這次,因為感光元件無法透光,不能像底片一樣分層感光,工程師們只好另闢蹊徑。

於是專為相機感光元件量身打造的拜爾濾色鏡(Bayer Filter)誕生了,也就是由紅色、綠色、藍色三種方形濾光片相間排列成的馬賽克狀濾鏡,每一格只會讓一種顏色通過,如此一來,底下的感光元件就只會接收到一種顏色的光。接著,再把相鄰的像素數值相互內插計算,就可以得到一張彩色影像。由於人的視錐細胞對綠色特別敏感,因此拜爾濾色鏡的設計中,綠色濾光片的數量是其他顏色的兩倍。

-----廣告,請繼續往下閱讀-----

這種讓各個像素接收不同顏色資訊的做法,雖然方便快速,卻需要好幾個像素才能還原一個區塊的顏色,因此會大幅降低影像解析度。這對寸解析度寸金的天文研究來說,非常划不來,畢竟我們既想得知每個像素接收到的原始顏色,又想獲得以像素為解析單位的最佳畫質,盡可能不要損失任何資訊。

藍綠紅相間的拜爾綠色鏡,廣泛用於日常使用的彩色感光元件,例如手機鏡頭、單眼相機等裝置。圖/Wikipedia

要怎麼讓每個像素都能獨立呈現接收到的光子,而且還能夠完整得到顏色的資訊呢?最好的方法就是在整塊感光元件前加上一塊單色的濾色鏡,然後輪流更換不同的濾色鏡,一次只記錄一種顏色的強度。然後,依照濾鏡的波段賦予影像顏色,進行疊合,得到一張還原真實顏色的照片。如此一來,我們就能用較長的拍攝時間,來換取最完整的資訊量。以天文研究來說,這種做法更加划算。

另外,由於視錐細胞並不是只對單一波長的光敏感,而是能夠接收波長範圍大約數百奈米寬的光,因此若是要還原真實顏色的影像,人們通常會使用寬頻濾鏡(Broadband filter),也就是波段跨足數百奈米的濾鏡進行拍攝。

美麗之外?濾鏡的科學妙用

雖然還原天體的真實顏色是個相當直覺的作法,但既然我們有能力分開不同的顏色,當然就有各式各樣的應用方法。當電子從高能階躍遷回到低能階,就會釋放能量,也就是放出固定波長的電磁波。若是受到激發的元素不同,電子躍遷時放出的電磁波波長也會隨之改變,呈現出不同顏色的光。

-----廣告,請繼續往下閱讀-----

如果我們在拍攝時,可以只捕捉這些特定波長的光,那我們拍出的照片,就代表著該元素在宇宙中的分佈位置。對天文學家來說,這是相當重要的資訊。因此,我們也常使用所謂的窄頻濾鏡(Narrowband filter),只接收目標波段周圍數十甚至數個奈米寬的波長範圍。常見的窄頻濾鏡有氫(H)、氦(He)、氮(N)、氧(O)、硫(S)等等。

有時候,按照原本的顏色疊合一組元素影像並不是那麼妥當,例如 H-alpha(氫原子)和 N II(氮離子)這兩條譜線,同樣都是波長 600 多奈米的紅色光,但如果按照它們原本的波長,在合成影像時都用紅色表示,就很難分辨氫和氮的分布狀態。這時候,天文學家們會按照各個元素之間的相對波長來配製顏色。

以底下的氣泡星雲(Bubble Nebula, NGC7635)為例,波長比較長的 N II 會被調成紅色,相對短一點的 H-alpha 就會調成綠色,而原本是綠色的 O III 氧離子則會被調成藍色。如此一來,我們就可以相對輕鬆地在畫面中分辨各個元素出現的位置。缺點是,如果我們真的用肉眼觀測這些天體,看到的顏色就會跟圖中大不相同。

由哈伯太空望遠鏡拍攝的氣泡星雲,使用了三種波段的窄頻濾鏡。圖/NASA

當然,這種人工配製顏色的方法也可以用來呈現可見光以外的電磁波,例如紅外線、紫外線等。舉哈伯太空望遠鏡的代表作「創生之柱」為例,他們使用了兩個近紅外線波段,比較長波的 F160W 在 1400~1700nm,比較短的 F110W在900~1400nm,分別就被調成了黃色和藍色。星點發出的紅外光穿越了創生之柱的塵埃,與可見光疊合的影像比較,各有各的獨特之處。

三窄頻濾鏡疊合的可見光影像與兩近紅外線波段疊合的影像對比。圖/NASA

望遠鏡接收來自千萬光年外的天體光線,一顆一顆的光子累積成影像上的點點像素,經過科學家們的巧手,成為烙印在人們記憶中的壯麗影像。有些天體按照他們原始的顏色重組,讓我們有如身歷其境,親眼見證它們的存在;有些影像雖然經過調製,並非原汁原味,卻調和了肉眼所不能見的波段,讓我們得以一窺它們背後的故事。

全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲

0

6
3

文字

分享

0
6
3
從太空窺探金星表面的派克太陽探測器
Heidi_96
・2022/03/04 ・3829字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

在天文觀測中,自古以來就有許多關於金星的紀錄。從 1960 年代起,蘇聯、美國太空總署(NASA)、歐洲太空總署(ESA)和日本也都相繼發射探測器,執行不同類型的太空任務,希望能夠更認識金星。

2020 年,NASA 的派克太陽探測器(Parker Solar Probe,簡稱「派克號」)首次在太空中以可見光拍攝金星表面,並在 2021 年 2 月再次拍攝一系列可見光照片後,將他們的分析成果公諸於世。

本篇文章將依序介紹金星探測史、派克號的探測方法、可見光照片的分析成果,以及金星探測的未來展望。現在,就讓我們從頭認識這位閃閃發亮的鄰居吧!

始於科學革命的金星之旅

對地球上的我們來說,月亮是夜空中最亮的天體,但你知道最亮的「行星」是哪一顆嗎?那就是本篇文章的主角——金星!金星的平均視星等,也就是肉眼所看到的平均星體亮度,大約是 -4.14,僅次於月亮的 -12.74 與太陽的 -26.74(數字越小就越亮)[1],不只是地球夜空中最亮的行星,更是太陽系第三明亮的星體。

-----廣告,請繼續往下閱讀-----

有個這麼耀眼的酷東西掛在天上,想必科學家絕不會輕易放過!就在科學革命(1543–1687 年)期間,天文學領域突飛猛進——哥白尼提倡日心說、牛頓發現萬有引力、克卜勒導出行星運動定律等等。同時期的知名科學家還有伽利略,他改良望遠鏡,透過觀測金星相位(圖一),也就是金星表面的光照變化,得知金星並不是繞著地球運行,進而推翻當時蔚為盛行的地心說。

圖一:伽利略透過望遠鏡發現金星和月亮一樣有盈缺變化。圖片上半部分別是土星、木星和火星。圖/NASA

此後,眾多業餘天文學家和天文愛好者也都一窩蜂利用望遠鏡觀測金星。有許多人聲稱在背光側看見了微弱的灰白色光芒,並將其稱作「灰光」(Ashen light)。

有些人認為是灰光是金星上的閃電,有些人則認為是紫外線穿透金星大氣時,氧離子游離而輻射出的暗綠色光芒(類似地球上的極光現象),可是沒有人能夠確實拍照紀錄,因此當時普遍認為灰光只是一種視錯覺。時至今日,這些假設也都還沒有確切的科學根據。[2]

不斷演進的金星探測技術

時間來到 1960 年代,繼水手 2 號(Mariner 2)在 1962 年掠過金星後,金星 4 號(Venera 4) 在 1967 年進入金星大氣層進行分析,結果顯示金星大氣約含有 90-93% 二氧化碳、7% 氮氣,以及少許氧氣和水蒸氣。[3] 緊接著在 1975 年,金星 9 號(Venera 9)測出表面溫度約 485 °C、雲層厚度約 30–40 公里。除此之外,還拍下金星表面的 180 度全景照片(圖二),是史上第一個將金星照片傳回地球的探測器。[4]

-----廣告,請繼續往下閱讀-----
圖二:1975 年 10 月 22 日,Venera 9 拍下第一張金星表面的照片。圖/NASA 

金星大氣層布滿厚厚的硫酸雲,不僅反射了大約 75% 的陽光,也阻擋了來自金星表面的大部分可見光。因此,科學家決定改用雷達儀器測繪金星表面。1990 年代,麥哲倫(Magellan)多次以雷達測繪金星表面的火山和隕石坑等地貌結構,其清晰程度與可見光測繪不相上下,可說是目前最詳細的金星地圖(圖三)。[5]

圖三:根據麥哲倫的數據資料製作的金星視圖。圖/NASA

此後,科學家進一步利用近紅外線(NIR)觀測金星背光面,因為近紅外線(波長 0.75–1.5 μm)有利於影像在低光環境下生成,而這個波段恰好也是大氣透明度最高的範圍,可以更清楚地看見金星表面。1998 年,卡西尼號(Cassini)以 0.85 μm 的波段觀測金星,可惜這種方法在技術上難以突破,因為輻射強度會隨著波長變短而迅速下降。直到 2020 年,派克號才終於以更短的波長捕捉到金星表面的輻射。

飛越金星七次的「派克號」

2018 年 8 月,派克號發射升空,飛往太陽(圖四)。為了在這漫長的旅途中節省燃料,派克號總共得進行七次重力輔助飛越(VGA),利用金星的引力逐步修正飛行軌道,最終在 2025 年抵達距離太陽中心 10 個太陽半徑(約 690 萬公里)的地方,進行日冕和太陽風的測量任務。

七次重力輔助飛越(VGA)的時程分別如下[6]

-----廣告,請繼續往下閱讀-----
  • VGA1:2018 年 10 月 3 日
  • VGA2:2019 年 12 月 26 日
  • VGA3:2020 年 7 月 11 日
  • VGA4:2021 年 2 月 20 日
  • VGA5:2021 年 10 月 16 日
  • VGA6:2023 年 8 月 21 日
  • VGA7:2024 年 11 月 6 日
圖四:準備發射升空的派克號。圖/NASA

截至目前(2022 年 3 月),派克號順利完成了前 5 次 VGA。在 VGA1 和 VGA2 期間,派克號都沒有任何動作。

後來,科學家認為可以利用其搭載的 WISPR 望遠鏡(Wide-Field Imager for Parker Solar Probe)觀測金星雲層。WISPR 可說是派克號的靈魂之窗,但它並不只是一座望遠鏡,而是兩座寬頻光學望遠鏡—— WISPR-I(Inner)和 WISPR-O(Outer),兩者配備的濾光片都只能讓可見光(波長 0.5–0.8 μm)通過。

於是,在 VGA3 和 VGA4 期間,科學家突發奇想,讓 WISPR 對準金星的向光面和背光面,分別拍下照片,想藉此測量雲的速度。沒想到 WISPR 竟然直接穿透了厚重的雲層,以可見光拍攝到明暗不一的表面,同時達成「以光學望遠鏡觀測金星表面」和「從太空拍攝金星表面的可見光照片」兩項創舉。

這時候,問題來了!WISPR 的最短曝光時間是 2 秒,但金星的向光面太亮了,拍出來的照片張張過曝、過飽和,還產生假影,使得原圖和電腦重組照片有所誤差。為了避免這樣的問題,科學家只好放棄拍攝向光面,改以背光面的照片作為研究材料。

-----廣告,請繼續往下閱讀-----

WISPR 拍攝的可見光照片

VGA3 期間拍攝的照片只有兩張可以用,其中一張如下(圖五,黑白部分)。在這張照片長達 18.4 秒的曝光期間,派克號不斷被宇宙塵埃(漂浮在太空中的小顆粒)撞擊,造成隔熱罩上的材料燒毀,留下許多水平方向的刮痕。若是忽略刮痕,可以清楚看到明暗不一致的區域,而造成顏色深淺不一的主要原因就是金星的地形特徵。

藉由比對 WISPR 照片與麥哲倫的雷達地形圖(圖五,彩色部分),科學家得以了解溫度如何隨高度變化。圖中黑色(紅色)部分是金星最大的高地區域,位於阿芙蘿黛蒂高地(Aphrodite Terra)西邊的奧瓦達區(Ovda Regio)——越接近白色的區塊越熱,是低海拔地形;越接近黑色的區塊則越冷,是高海拔地形。

圖五:VGA3 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

有了 VGA3 的失敗經驗後,VGA4 的照片就沒有出現刮痕了,而且還從不同的角度拍到了金星表面(圖六)。在 VGA3 期間,派克號是從金星後方飛越,因此 WISPR 拍到的是金星的東側邊緣;在 VGA4 期間,派克號則是從金星前方飛越,因此 WISPR 拍到的是金星的西側邊緣——這讓科學家能夠更細微、更全面地觀察金星的背光面。

圖六:VGA4 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

金星探測的未來展望

雖然金星、地球和火星都是在同一時間形成,現在卻大不相同——火星的大氣層非常稀薄,而金星的大氣層非常厚重。為了解開這個謎團,NASA 和 ESA 在 2021 年 6 月宣布了 3 項全新的金星探測任務,分別是 VERITAS[7]、DAVINCI[8] 和 EnVision[9]。這些任務將進一步探測金星的大氣、地質和其他條件,瞭解這顆星球是否曾經宜居,又是如何演變成現在的樣貌。

-----廣告,請繼續往下閱讀-----

至於派克號,不幸的消息是,2021 年 10 月的 VGA5 不利於背光面拍攝,而 2023 年 8 月的 VGA6 也將是如此。如果你也和我一樣想看更多 WISPR 拍攝的可見光照片,就讓我們期待 2024 年 11 月的最後一次飛越(VGA7)吧!

NASA 官方針對派克號金星探測任務的介紹。影/YouTube-NASA

註解

  1. Apparent magnitude – Wikipedia
  2. Ashen light – Wikipedia
  3. Venera 4 – Wikipedia
  4. Venera 9 – Wikipedia
  5. Magellan (spacecraft) – Wikipedia
  6. Parker Solar Probe: The Mission
  7. In Depth | Veritas – NASA Solar System Exploration
  8. DAVINCI Homepage – Probe and Flyby Mission to Venus Atmosphere
  9. EnVision: a mission for understanding planets everywhere

參考資料

Heidi_96
7 篇文章 ・ 13 位粉絲
PanSci 編輯部角落生物|外語系畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

0

2
0

文字

分享

0
2
0
「泛星計畫」再度發現肉眼可見的彗星
臺北天文館_96
・2022/01/13 ・2598字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/林建爭|美國夏威夷大學天文研究所、泛星計畫博士後研究員
  • 校稿/王品方|美國夏威夷專案文物修復師

位於美國夏威夷茂宜(Maui)島哈萊阿卡拉(Haleakal)山上,由夏威夷大學天文研究所執行的泛星計畫(Pan-STARRS)望遠鏡近期又發現了一顆新的彗星。這顆彗星將在明(2022)年四月底至五月初最接近地球,目前估計其亮度最亮可達 5 等,因此人們將很有機會透過肉眼或是雙筒望眼鏡看見。

泛星計畫英文全名是(Panoramic Survey Telescope and Rapid Response System; Pan-STARRS),直譯為全天域觀測望遠鏡及快速反應系統,其最主要目的是藉由此觀測系統,指認出軌道可能與地球相交的近地小行星,使人們能預警撞擊與研擬避免撞擊地球的解決方案,關於泛星計畫《臺北星空 42 期》有詳細介紹。該計畫原本要建置四座 1.8 米口徑的望遠鏡,不過由於經費限制,目前僅建造兩座望遠鏡(PS1 與 PS2)並投入科學觀測中,圖 1 是 PS1 圓頂。PS1 及 PS2 裝載了目前世界上最大的數位相機,大約有 14 及 15 億像素,一幅影像視野約 7 平方度。

圖 1. 泛星原型望遠鏡及圓頂。圖/Pan-STARRS

每天晚上每個望遠鏡總觀測天區約 1,000 平方度的夜空,而每個目標星場會曝光四次,每次曝光約 45-120 秒,每次間隔約 15 分鐘。圖 2 是泛星計畫所使用的六個濾鏡,分別是 grizyw,其中 w 波段較寬,橫跨 gri 三個波段,而 y 波段接近 1 微米近紅外線。目前搜尋小行星主要以 w 波段觀測,曝光時間 45 秒,其他波段的曝光時間則依其科學目的而有所調整。天文臺拍攝完的影像,會同步下載到夏威夷大學計算中心的伺服器上,團隊人員隨即處理影像,接著每兩幅影像互相比較,因此在一小時內移動的星體便能即時辨識;如果有近地小行星軌道與地球軌道重疊,且有撞擊地球之風險,泛星團隊會立即回報給小行星中心,全世界大大小小望遠鏡將會對該星體進行後續的觀測,以估算其軌道和大小,並進一步確認它們對地球構成威脅的機率。一般說來,泛星團隊在觀測後的 12 小時內,便能將當晚觀測到已知或新發現的近地小行星位置及亮度匯報給小行星中心。

圖 2. 泛星計畫所使用的濾鏡與集光通量分布圖,該濾鏡由 Asahi 公司設計、製作。每個波段下方數字表示單次曝光的星等誤差小於 0.2 等的極限星等。(台北星空原稿PDF沒有放圖說)

泛星計畫在發現近地小行星方面一直處於領先的角色,自從泛星望遠鏡上線後,有近五成較大的近地小行星(直徑>140 米)由該望遠鏡發現,圖 3 顯示自 2014 年起,泛星計畫的小行星發現數量開始領先其它巡天計畫並持續至今。自從 2010 年十月泛星計畫發現了第一顆新彗星 P/2010 T2 以來,該計畫在發現彗星方面也有不少收穫;其中過去五年(2016 年至 2021 年)從美國噴射推進實驗室小行星資料庫的統計中,新發現的彗星約有 350 顆,而泛星計畫發現約 130 顆,每一年佔新發現的彗星中約有三成五以上。

圖 3. 過去十年由不同巡天計畫所發現的近地小行星統計圖。泛星計畫(Pan-STARRS)及卡特林那巡天計畫(Catalina)兩大計畫是過去幾年來最主要的貢獻者。圖/NASA

今年 7 月底,泛星計畫望遠鏡再度發現了一顆新彗星,當時被暫時命名為「P11ibiE」,這顆彗星預估在明(2022)年四月底至五月初最接近地球,當彗星接近地球和太陽時,太陽的輻射會使彗星表面變暖,隨著氣體和塵埃從其冰冷的表面釋放出來後,整體的表面積(塵埃與氣體)變大,讓更多陽光從彗星反射出來,這樣的過程使得彗星變亮。也因此這顆彗星讓我們很有機會透過肉眼或是雙筒望遠鏡看見。

-----廣告,請繼續往下閱讀-----

這顆彗星是由夏威夷大學天文所的天文學家 Robert Weryk 在 2021 年 7 月 26 日首次觀測記錄,通報至小行星中心,接著由全球的望遠鏡協助觀測確認後,在 8 月 1 日正式命名為 Comet C/2021 O3(PANSTARRS)。儘管這顆彗星正逐漸接近地球,但屬於對地球沒有威脅的星體,其軌道預測近日點距離約 0.29 天文單位(註:地球與太陽距離是 1 天文單位),目前與地球的距離約 3 天文單位,如圖 4 所示,這顆彗星以雙曲線軌道繞行太陽,目前預計在 2022 年 4 月 21 日經過近日點,接著它就會展開新的旅程,朝太陽系外遠去。

圖 4. Comet C/2021 O3(PANSTARRS)在 2021 年 8 月 1 日在太陽系中的位置圖。該彗星當時離地球約 4 天文單位,不過該彗星於截稿時離地球約 3 天文單位。圖/NASA

夏威夷大學天文所的天文學家 Richard Wainscoat 也表示,類似這種長週期彗星的軌道是相當難預測其未來的路徑,它可能受到其他行星(例如:木星)的重力影響而改變軌道週期。而 Comet C/2021 O3(PANSTARRS)在運行的過程中,也有可能會因重力或其他小行星體撞擊而偏離軌道,甚至可能會變成週期彗星而回歸,不過即使再次回來,也是數百或是千年後的事了。Robert Weryk 認為這顆彗星不大,這可能會導致它在接近太陽時,受太陽重力拉扯碎裂解體;即使沒有,太陽的輻射也會使彗星內的物質蒸發,形成彗星特有的標誌「彗尾」。目前預估要觀察該彗星的最佳機會是明年五月的前幾天,屆時彗星將在日落後低懸於西方天空。

YouTube 相關影片:

世界上最大的數位巡天資料庫。影/YouTube
日冕噴發造成彗星變亮。影/YouTube
彗星、流星、小行星大不同。影/YouTube

參考資料:

臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!